MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashneq0 Structured version   Visualization version   GIF version

Theorem hashneq0 14387
Description: Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
hashneq0 (𝐴𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅))

Proof of Theorem hashneq0
StepHypRef Expression
1 hashnn0pnf 14365 . . 3 (𝐴𝑉 → ((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞))
2 nn0re 12515 . . . . . 6 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ)
3 nn0ge0 12531 . . . . . 6 ((♯‘𝐴) ∈ ℕ0 → 0 ≤ (♯‘𝐴))
4 ne0gt0 11345 . . . . . 6 (((♯‘𝐴) ∈ ℝ ∧ 0 ≤ (♯‘𝐴)) → ((♯‘𝐴) ≠ 0 ↔ 0 < (♯‘𝐴)))
52, 3, 4syl2anc 584 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) ≠ 0 ↔ 0 < (♯‘𝐴)))
65bicomd 223 . . . 4 ((♯‘𝐴) ∈ ℕ0 → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
7 breq2 5128 . . . . 5 ((♯‘𝐴) = +∞ → (0 < (♯‘𝐴) ↔ 0 < +∞))
8 0ltpnf 13143 . . . . . . 7 0 < +∞
9 0re 11242 . . . . . . . . 9 0 ∈ ℝ
10 renepnf 11288 . . . . . . . . 9 (0 ∈ ℝ → 0 ≠ +∞)
119, 10ax-mp 5 . . . . . . . 8 0 ≠ +∞
1211necomi 2987 . . . . . . 7 +∞ ≠ 0
138, 122th 264 . . . . . 6 (0 < +∞ ↔ +∞ ≠ 0)
14 neeq1 2995 . . . . . 6 ((♯‘𝐴) = +∞ → ((♯‘𝐴) ≠ 0 ↔ +∞ ≠ 0))
1513, 14bitr4id 290 . . . . 5 ((♯‘𝐴) = +∞ → (0 < +∞ ↔ (♯‘𝐴) ≠ 0))
167, 15bitrd 279 . . . 4 ((♯‘𝐴) = +∞ → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
176, 16jaoi 857 . . 3 (((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞) → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
181, 17syl 17 . 2 (𝐴𝑉 → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
19 hasheq0 14386 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
2019necon3bid 2977 . 2 (𝐴𝑉 → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅))
2118, 20bitrd 279 1 (𝐴𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wne 2933  c0 4313   class class class wbr 5124  cfv 6536  cr 11133  0cc0 11134  +∞cpnf 11271   < clt 11274  cle 11275  0cn0 12506  chash 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354
This theorem is referenced by:  hashgt0n0  14388  wrdlenge1n0  14573  ccatws1n0  14655  swrdlsw  14690  pfxsuff1eqwrdeq  14722  ccats1pfxeq  14737  wwlksnextinj  29886  clwwlkext2edg  30042  wwlksext2clwwlk  30043  numclwwlk2lem1lem  30328  tgoldbachgt  34700  lfuhgr2  35146  unitscyglem5  42217
  Copyright terms: Public domain W3C validator