Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashneq0 | Structured version Visualization version GIF version |
Description: Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
Ref | Expression |
---|---|
hashneq0 | ⊢ (𝐴 ∈ 𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnn0pnf 13797 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞)) | |
2 | nn0re 11988 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ) | |
3 | nn0ge0 12004 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 → 0 ≤ (♯‘𝐴)) | |
4 | ne0gt0 10826 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℝ ∧ 0 ≤ (♯‘𝐴)) → ((♯‘𝐴) ≠ 0 ↔ 0 < (♯‘𝐴))) | |
5 | 2, 3, 4 | syl2anc 587 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) ≠ 0 ↔ 0 < (♯‘𝐴))) |
6 | 5 | bicomd 226 | . . . 4 ⊢ ((♯‘𝐴) ∈ ℕ0 → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0)) |
7 | breq2 5035 | . . . . 5 ⊢ ((♯‘𝐴) = +∞ → (0 < (♯‘𝐴) ↔ 0 < +∞)) | |
8 | 0ltpnf 12603 | . . . . . . 7 ⊢ 0 < +∞ | |
9 | 0re 10724 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
10 | renepnf 10770 | . . . . . . . . 9 ⊢ (0 ∈ ℝ → 0 ≠ +∞) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . 8 ⊢ 0 ≠ +∞ |
12 | 11 | necomi 2989 | . . . . . . 7 ⊢ +∞ ≠ 0 |
13 | 8, 12 | 2th 267 | . . . . . 6 ⊢ (0 < +∞ ↔ +∞ ≠ 0) |
14 | neeq1 2997 | . . . . . 6 ⊢ ((♯‘𝐴) = +∞ → ((♯‘𝐴) ≠ 0 ↔ +∞ ≠ 0)) | |
15 | 13, 14 | bitr4id 293 | . . . . 5 ⊢ ((♯‘𝐴) = +∞ → (0 < +∞ ↔ (♯‘𝐴) ≠ 0)) |
16 | 7, 15 | bitrd 282 | . . . 4 ⊢ ((♯‘𝐴) = +∞ → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0)) |
17 | 6, 16 | jaoi 856 | . . 3 ⊢ (((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞) → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0)) |
18 | 1, 17 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0)) |
19 | hasheq0 13819 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
20 | 19 | necon3bid 2979 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
21 | 18, 20 | bitrd 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∨ wo 846 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∅c0 4212 class class class wbr 5031 ‘cfv 6340 ℝcr 10617 0cc0 10618 +∞cpnf 10753 < clt 10756 ≤ cle 10757 ℕ0cn0 11979 ♯chash 13785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-er 8323 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-card 9444 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-nn 11720 df-n0 11980 df-xnn0 12052 df-z 12066 df-uz 12328 df-fz 12985 df-hash 13786 |
This theorem is referenced by: hashgt0n0 13821 wrdlenge1n0 13994 ccatws1n0 14083 swrdlsw 14121 pfxsuff1eqwrdeq 14153 ccats1pfxeq 14168 wwlksnextinj 27840 clwwlkext2edg 27996 wwlksext2clwwlk 27997 numclwwlk2lem1lem 28282 tgoldbachgt 32216 lfuhgr2 32654 |
Copyright terms: Public domain | W3C validator |