MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashneq0 Structured version   Visualization version   GIF version

Theorem hashneq0 14329
Description: Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
hashneq0 (𝐴𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅))

Proof of Theorem hashneq0
StepHypRef Expression
1 hashnn0pnf 14307 . . 3 (𝐴𝑉 → ((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞))
2 nn0re 12485 . . . . . 6 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ)
3 nn0ge0 12501 . . . . . 6 ((♯‘𝐴) ∈ ℕ0 → 0 ≤ (♯‘𝐴))
4 ne0gt0 11323 . . . . . 6 (((♯‘𝐴) ∈ ℝ ∧ 0 ≤ (♯‘𝐴)) → ((♯‘𝐴) ≠ 0 ↔ 0 < (♯‘𝐴)))
52, 3, 4syl2anc 583 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) ≠ 0 ↔ 0 < (♯‘𝐴)))
65bicomd 222 . . . 4 ((♯‘𝐴) ∈ ℕ0 → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
7 breq2 5145 . . . . 5 ((♯‘𝐴) = +∞ → (0 < (♯‘𝐴) ↔ 0 < +∞))
8 0ltpnf 13108 . . . . . . 7 0 < +∞
9 0re 11220 . . . . . . . . 9 0 ∈ ℝ
10 renepnf 11266 . . . . . . . . 9 (0 ∈ ℝ → 0 ≠ +∞)
119, 10ax-mp 5 . . . . . . . 8 0 ≠ +∞
1211necomi 2989 . . . . . . 7 +∞ ≠ 0
138, 122th 264 . . . . . 6 (0 < +∞ ↔ +∞ ≠ 0)
14 neeq1 2997 . . . . . 6 ((♯‘𝐴) = +∞ → ((♯‘𝐴) ≠ 0 ↔ +∞ ≠ 0))
1513, 14bitr4id 290 . . . . 5 ((♯‘𝐴) = +∞ → (0 < +∞ ↔ (♯‘𝐴) ≠ 0))
167, 15bitrd 279 . . . 4 ((♯‘𝐴) = +∞ → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
176, 16jaoi 854 . . 3 (((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞) → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
181, 17syl 17 . 2 (𝐴𝑉 → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
19 hasheq0 14328 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
2019necon3bid 2979 . 2 (𝐴𝑉 → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅))
2118, 20bitrd 279 1 (𝐴𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844   = wceq 1533  wcel 2098  wne 2934  c0 4317   class class class wbr 5141  cfv 6537  cr 11111  0cc0 11112  +∞cpnf 11249   < clt 11252  cle 11253  0cn0 12476  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296
This theorem is referenced by:  hashgt0n0  14330  wrdlenge1n0  14506  ccatws1n0  14588  swrdlsw  14623  pfxsuff1eqwrdeq  14655  ccats1pfxeq  14670  wwlksnextinj  29662  clwwlkext2edg  29818  wwlksext2clwwlk  29819  numclwwlk2lem1lem  30104  tgoldbachgt  34204  lfuhgr2  34637
  Copyright terms: Public domain W3C validator