MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashneq0 Structured version   Visualization version   GIF version

Theorem hashneq0 13728
Description: Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
hashneq0 (𝐴𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅))

Proof of Theorem hashneq0
StepHypRef Expression
1 hashnn0pnf 13705 . . 3 (𝐴𝑉 → ((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞))
2 nn0re 11909 . . . . . 6 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ)
3 nn0ge0 11925 . . . . . 6 ((♯‘𝐴) ∈ ℕ0 → 0 ≤ (♯‘𝐴))
4 ne0gt0 10747 . . . . . 6 (((♯‘𝐴) ∈ ℝ ∧ 0 ≤ (♯‘𝐴)) → ((♯‘𝐴) ≠ 0 ↔ 0 < (♯‘𝐴)))
52, 3, 4syl2anc 586 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) ≠ 0 ↔ 0 < (♯‘𝐴)))
65bicomd 225 . . . 4 ((♯‘𝐴) ∈ ℕ0 → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
7 breq2 5072 . . . . 5 ((♯‘𝐴) = +∞ → (0 < (♯‘𝐴) ↔ 0 < +∞))
8 neeq1 3080 . . . . . 6 ((♯‘𝐴) = +∞ → ((♯‘𝐴) ≠ 0 ↔ +∞ ≠ 0))
9 0ltpnf 12520 . . . . . . 7 0 < +∞
10 0re 10645 . . . . . . . . 9 0 ∈ ℝ
11 renepnf 10691 . . . . . . . . 9 (0 ∈ ℝ → 0 ≠ +∞)
1210, 11ax-mp 5 . . . . . . . 8 0 ≠ +∞
1312necomi 3072 . . . . . . 7 +∞ ≠ 0
149, 132th 266 . . . . . 6 (0 < +∞ ↔ +∞ ≠ 0)
158, 14syl6rbbr 292 . . . . 5 ((♯‘𝐴) = +∞ → (0 < +∞ ↔ (♯‘𝐴) ≠ 0))
167, 15bitrd 281 . . . 4 ((♯‘𝐴) = +∞ → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
176, 16jaoi 853 . . 3 (((♯‘𝐴) ∈ ℕ0 ∨ (♯‘𝐴) = +∞) → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
181, 17syl 17 . 2 (𝐴𝑉 → (0 < (♯‘𝐴) ↔ (♯‘𝐴) ≠ 0))
19 hasheq0 13727 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
2019necon3bid 3062 . 2 (𝐴𝑉 → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅))
2118, 20bitrd 281 1 (𝐴𝑉 → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wo 843   = wceq 1537  wcel 2114  wne 3018  c0 4293   class class class wbr 5068  cfv 6357  cr 10538  0cc0 10539  +∞cpnf 10674   < clt 10677  cle 10678  0cn0 11900  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694
This theorem is referenced by:  hashgt0n0  13729  wrdlenge1n0  13904  ccatws1n0  13993  swrdlsw  14031  pfxsuff1eqwrdeq  14063  ccats1pfxeq  14078  wwlksnextinj  27679  clwwlkext2edg  27837  wwlksext2clwwlk  27838  numclwwlk2lem1lem  28123  tgoldbachgt  31936  lfuhgr2  32367
  Copyright terms: Public domain W3C validator