Step | Hyp | Ref
| Expression |
1 | | difss 4066 |
. . . . . 6
⊢ (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ⊆ ((𝐺 ∘ 𝐹) ∘ ◡𝐺) |
2 | | dmss 5811 |
. . . . . 6
⊢ ((((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ⊆ ((𝐺 ∘ 𝐹) ∘ ◡𝐺) → dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ⊆ dom ((𝐺 ∘ 𝐹) ∘ ◡𝐺)) |
3 | 1, 2 | ax-mp 5 |
. . . . 5
⊢ dom
(((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ⊆ dom ((𝐺 ∘ 𝐹) ∘ ◡𝐺) |
4 | | dmcoss 5880 |
. . . . 5
⊢ dom
((𝐺 ∘ 𝐹) ∘ ◡𝐺) ⊆ dom ◡𝐺 |
5 | 3, 4 | sstri 3930 |
. . . 4
⊢ dom
(((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ⊆ dom ◡𝐺 |
6 | | f1ocnv 6728 |
. . . . . 6
⊢ (𝐺:𝐴–1-1-onto→𝐴 → ◡𝐺:𝐴–1-1-onto→𝐴) |
7 | 6 | adantl 482 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ◡𝐺:𝐴–1-1-onto→𝐴) |
8 | | f1odm 6720 |
. . . . 5
⊢ (◡𝐺:𝐴–1-1-onto→𝐴 → dom ◡𝐺 = 𝐴) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → dom ◡𝐺 = 𝐴) |
10 | 5, 9 | sseqtrid 3973 |
. . 3
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ⊆ 𝐴) |
11 | 10 | sselda 3921 |
. 2
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I )) → 𝑥 ∈ 𝐴) |
12 | | imassrn 5980 |
. . . 4
⊢ (𝐺 “ dom (𝐹 ∖ I )) ⊆ ran 𝐺 |
13 | | f1of 6716 |
. . . . . 6
⊢ (𝐺:𝐴–1-1-onto→𝐴 → 𝐺:𝐴⟶𝐴) |
14 | 13 | adantl 482 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → 𝐺:𝐴⟶𝐴) |
15 | 14 | frnd 6608 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ran 𝐺 ⊆ 𝐴) |
16 | 12, 15 | sstrid 3932 |
. . 3
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → (𝐺 “ dom (𝐹 ∖ I )) ⊆ 𝐴) |
17 | 16 | sselda 3921 |
. 2
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ (𝐺 “ dom (𝐹 ∖ I ))) → 𝑥 ∈ 𝐴) |
18 | | simpl 483 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → 𝐹:𝐴⟶𝐴) |
19 | | fco 6624 |
. . . . . . 7
⊢ ((𝐺:𝐴⟶𝐴 ∧ 𝐹:𝐴⟶𝐴) → (𝐺 ∘ 𝐹):𝐴⟶𝐴) |
20 | 14, 18, 19 | syl2anc 584 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → (𝐺 ∘ 𝐹):𝐴⟶𝐴) |
21 | | f1of 6716 |
. . . . . . 7
⊢ (◡𝐺:𝐴–1-1-onto→𝐴 → ◡𝐺:𝐴⟶𝐴) |
22 | 7, 21 | syl 17 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ◡𝐺:𝐴⟶𝐴) |
23 | | fco 6624 |
. . . . . 6
⊢ (((𝐺 ∘ 𝐹):𝐴⟶𝐴 ∧ ◡𝐺:𝐴⟶𝐴) → ((𝐺 ∘ 𝐹) ∘ ◡𝐺):𝐴⟶𝐴) |
24 | 20, 22, 23 | syl2anc 584 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((𝐺 ∘ 𝐹) ∘ ◡𝐺):𝐴⟶𝐴) |
25 | 24 | ffnd 6601 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ((𝐺 ∘ 𝐹) ∘ ◡𝐺) Fn 𝐴) |
26 | | fnelnfp 7049 |
. . . 4
⊢ ((((𝐺 ∘ 𝐹) ∘ ◡𝐺) Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ↔ (((𝐺 ∘ 𝐹) ∘ ◡𝐺)‘𝑥) ≠ 𝑥)) |
27 | 25, 26 | sylan 580 |
. . 3
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ↔ (((𝐺 ∘ 𝐹) ∘ ◡𝐺)‘𝑥) ≠ 𝑥)) |
28 | | f1ofn 6717 |
. . . . . . . . 9
⊢ (◡𝐺:𝐴–1-1-onto→𝐴 → ◡𝐺 Fn 𝐴) |
29 | 7, 28 | syl 17 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → ◡𝐺 Fn 𝐴) |
30 | | fvco2 6865 |
. . . . . . . 8
⊢ ((◡𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (((𝐺 ∘ 𝐹) ∘ ◡𝐺)‘𝑥) = ((𝐺 ∘ 𝐹)‘(◡𝐺‘𝑥))) |
31 | 29, 30 | sylan 580 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → (((𝐺 ∘ 𝐹) ∘ ◡𝐺)‘𝑥) = ((𝐺 ∘ 𝐹)‘(◡𝐺‘𝑥))) |
32 | | ffn 6600 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐴 → 𝐹 Fn 𝐴) |
33 | 32 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn 𝐴) |
34 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ ((◡𝐺:𝐴⟶𝐴 ∧ 𝑥 ∈ 𝐴) → (◡𝐺‘𝑥) ∈ 𝐴) |
35 | 22, 34 | sylan 580 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → (◡𝐺‘𝑥) ∈ 𝐴) |
36 | | fvco2 6865 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ (◡𝐺‘𝑥) ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘(◡𝐺‘𝑥)) = (𝐺‘(𝐹‘(◡𝐺‘𝑥)))) |
37 | 33, 35, 36 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘(◡𝐺‘𝑥)) = (𝐺‘(𝐹‘(◡𝐺‘𝑥)))) |
38 | 31, 37 | eqtrd 2778 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → (((𝐺 ∘ 𝐹) ∘ ◡𝐺)‘𝑥) = (𝐺‘(𝐹‘(◡𝐺‘𝑥)))) |
39 | 38 | eqeq1d 2740 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → ((((𝐺 ∘ 𝐹) ∘ ◡𝐺)‘𝑥) = 𝑥 ↔ (𝐺‘(𝐹‘(◡𝐺‘𝑥))) = 𝑥)) |
40 | | simplr 766 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → 𝐺:𝐴–1-1-onto→𝐴) |
41 | | simpll 764 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶𝐴) |
42 | | ffvelrn 6959 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐴 ∧ (◡𝐺‘𝑥) ∈ 𝐴) → (𝐹‘(◡𝐺‘𝑥)) ∈ 𝐴) |
43 | 41, 35, 42 | syl2anc 584 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐹‘(◡𝐺‘𝑥)) ∈ 𝐴) |
44 | | simpr 485 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
45 | | f1ocnvfvb 7151 |
. . . . . 6
⊢ ((𝐺:𝐴–1-1-onto→𝐴 ∧ (𝐹‘(◡𝐺‘𝑥)) ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐺‘(𝐹‘(◡𝐺‘𝑥))) = 𝑥 ↔ (◡𝐺‘𝑥) = (𝐹‘(◡𝐺‘𝑥)))) |
46 | 40, 43, 44, 45 | syl3anc 1370 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘(𝐹‘(◡𝐺‘𝑥))) = 𝑥 ↔ (◡𝐺‘𝑥) = (𝐹‘(◡𝐺‘𝑥)))) |
47 | 39, 46 | bitrd 278 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → ((((𝐺 ∘ 𝐹) ∘ ◡𝐺)‘𝑥) = 𝑥 ↔ (◡𝐺‘𝑥) = (𝐹‘(◡𝐺‘𝑥)))) |
48 | 47 | necon3bid 2988 |
. . 3
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → ((((𝐺 ∘ 𝐹) ∘ ◡𝐺)‘𝑥) ≠ 𝑥 ↔ (◡𝐺‘𝑥) ≠ (𝐹‘(◡𝐺‘𝑥)))) |
49 | | necom 2997 |
. . . 4
⊢ ((◡𝐺‘𝑥) ≠ (𝐹‘(◡𝐺‘𝑥)) ↔ (𝐹‘(◡𝐺‘𝑥)) ≠ (◡𝐺‘𝑥)) |
50 | | f1of1 6715 |
. . . . . . 7
⊢ (𝐺:𝐴–1-1-onto→𝐴 → 𝐺:𝐴–1-1→𝐴) |
51 | 50 | ad2antlr 724 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → 𝐺:𝐴–1-1→𝐴) |
52 | | difss 4066 |
. . . . . . . . 9
⊢ (𝐹 ∖ I ) ⊆ 𝐹 |
53 | | dmss 5811 |
. . . . . . . . 9
⊢ ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹) |
54 | 52, 53 | ax-mp 5 |
. . . . . . . 8
⊢ dom
(𝐹 ∖ I ) ⊆ dom
𝐹 |
55 | | fdm 6609 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶𝐴 → dom 𝐹 = 𝐴) |
56 | 54, 55 | sseqtrid 3973 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐴 → dom (𝐹 ∖ I ) ⊆ 𝐴) |
57 | 56 | ad2antrr 723 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → dom (𝐹 ∖ I ) ⊆ 𝐴) |
58 | | f1elima 7136 |
. . . . . 6
⊢ ((𝐺:𝐴–1-1→𝐴 ∧ (◡𝐺‘𝑥) ∈ 𝐴 ∧ dom (𝐹 ∖ I ) ⊆ 𝐴) → ((𝐺‘(◡𝐺‘𝑥)) ∈ (𝐺 “ dom (𝐹 ∖ I )) ↔ (◡𝐺‘𝑥) ∈ dom (𝐹 ∖ I ))) |
59 | 51, 35, 57, 58 | syl3anc 1370 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘(◡𝐺‘𝑥)) ∈ (𝐺 “ dom (𝐹 ∖ I )) ↔ (◡𝐺‘𝑥) ∈ dom (𝐹 ∖ I ))) |
60 | | f1ocnvfv2 7149 |
. . . . . . 7
⊢ ((𝐺:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑥)) = 𝑥) |
61 | 60 | adantll 711 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑥)) = 𝑥) |
62 | 61 | eleq1d 2823 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘(◡𝐺‘𝑥)) ∈ (𝐺 “ dom (𝐹 ∖ I )) ↔ 𝑥 ∈ (𝐺 “ dom (𝐹 ∖ I )))) |
63 | | fnelnfp 7049 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ (◡𝐺‘𝑥) ∈ 𝐴) → ((◡𝐺‘𝑥) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(◡𝐺‘𝑥)) ≠ (◡𝐺‘𝑥))) |
64 | 33, 35, 63 | syl2anc 584 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → ((◡𝐺‘𝑥) ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘(◡𝐺‘𝑥)) ≠ (◡𝐺‘𝑥))) |
65 | 59, 62, 64 | 3bitr3rd 310 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘(◡𝐺‘𝑥)) ≠ (◡𝐺‘𝑥) ↔ 𝑥 ∈ (𝐺 “ dom (𝐹 ∖ I )))) |
66 | 49, 65 | bitrid 282 |
. . 3
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → ((◡𝐺‘𝑥) ≠ (𝐹‘(◡𝐺‘𝑥)) ↔ 𝑥 ∈ (𝐺 “ dom (𝐹 ∖ I )))) |
67 | 27, 48, 66 | 3bitrd 305 |
. 2
⊢ (((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) ↔ 𝑥 ∈ (𝐺 “ dom (𝐹 ∖ I )))) |
68 | 11, 17, 67 | eqrdav 2737 |
1
⊢ ((𝐹:𝐴⟶𝐴 ∧ 𝐺:𝐴–1-1-onto→𝐴) → dom (((𝐺 ∘ 𝐹) ∘ ◡𝐺) ∖ I ) = (𝐺 “ dom (𝐹 ∖ I ))) |