MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcvx Structured version   Visualization version   GIF version

Theorem dvcvx 24617
Description: A real function with strictly increasing derivative is strictly convex. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
dvcvx.a (𝜑𝐴 ∈ ℝ)
dvcvx.b (𝜑𝐵 ∈ ℝ)
dvcvx.l (𝜑𝐴 < 𝐵)
dvcvx.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvcvx.d (𝜑 → (ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊))
dvcvx.t (𝜑𝑇 ∈ (0(,)1))
dvcvx.c 𝐶 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
Assertion
Ref Expression
dvcvx (𝜑 → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵))))

Proof of Theorem dvcvx
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcvx.a . . 3 (𝜑𝐴 ∈ ℝ)
2 dvcvx.c . . . 4 𝐶 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))
3 dvcvx.t . . . . . . 7 (𝜑𝑇 ∈ (0(,)1))
4 elioore 12769 . . . . . . 7 (𝑇 ∈ (0(,)1) → 𝑇 ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝜑𝑇 ∈ ℝ)
65, 1remulcld 10671 . . . . 5 (𝜑 → (𝑇 · 𝐴) ∈ ℝ)
7 1re 10641 . . . . . . 7 1 ∈ ℝ
8 resubcl 10950 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
97, 5, 8sylancr 589 . . . . . 6 (𝜑 → (1 − 𝑇) ∈ ℝ)
10 dvcvx.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
119, 10remulcld 10671 . . . . 5 (𝜑 → ((1 − 𝑇) · 𝐵) ∈ ℝ)
126, 11readdcld 10670 . . . 4 (𝜑 → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℝ)
132, 12eqeltrid 2917 . . 3 (𝜑𝐶 ∈ ℝ)
14 1cnd 10636 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
155recnd 10669 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
161recnd 10669 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1714, 15, 16subdird 11097 . . . . . . 7 (𝜑 → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
1816mulid2d 10659 . . . . . . . 8 (𝜑 → (1 · 𝐴) = 𝐴)
1918oveq1d 7171 . . . . . . 7 (𝜑 → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
2017, 19eqtrd 2856 . . . . . 6 (𝜑 → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
21 dvcvx.l . . . . . . 7 (𝜑𝐴 < 𝐵)
22 eliooord 12797 . . . . . . . . . . 11 (𝑇 ∈ (0(,)1) → (0 < 𝑇𝑇 < 1))
233, 22syl 17 . . . . . . . . . 10 (𝜑 → (0 < 𝑇𝑇 < 1))
2423simprd 498 . . . . . . . . 9 (𝜑𝑇 < 1)
25 posdif 11133 . . . . . . . . . 10 ((𝑇 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑇 < 1 ↔ 0 < (1 − 𝑇)))
265, 7, 25sylancl 588 . . . . . . . . 9 (𝜑 → (𝑇 < 1 ↔ 0 < (1 − 𝑇)))
2724, 26mpbid 234 . . . . . . . 8 (𝜑 → 0 < (1 − 𝑇))
28 ltmul2 11491 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((1 − 𝑇) ∈ ℝ ∧ 0 < (1 − 𝑇))) → (𝐴 < 𝐵 ↔ ((1 − 𝑇) · 𝐴) < ((1 − 𝑇) · 𝐵)))
291, 10, 9, 27, 28syl112anc 1370 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ((1 − 𝑇) · 𝐴) < ((1 − 𝑇) · 𝐵)))
3021, 29mpbid 234 . . . . . 6 (𝜑 → ((1 − 𝑇) · 𝐴) < ((1 − 𝑇) · 𝐵))
3120, 30eqbrtrrd 5090 . . . . 5 (𝜑 → (𝐴 − (𝑇 · 𝐴)) < ((1 − 𝑇) · 𝐵))
321, 6, 11ltsubadd2d 11238 . . . . 5 (𝜑 → ((𝐴 − (𝑇 · 𝐴)) < ((1 − 𝑇) · 𝐵) ↔ 𝐴 < ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
3331, 32mpbid 234 . . . 4 (𝜑𝐴 < ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))
3433, 2breqtrrdi 5108 . . 3 (𝜑𝐴 < 𝐶)
351leidd 11206 . . . . 5 (𝜑𝐴𝐴)
3610recnd 10669 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
3714, 15, 36subdird 11097 . . . . . . . . . 10 (𝜑 → ((1 − 𝑇) · 𝐵) = ((1 · 𝐵) − (𝑇 · 𝐵)))
3836mulid2d 10659 . . . . . . . . . . 11 (𝜑 → (1 · 𝐵) = 𝐵)
3938oveq1d 7171 . . . . . . . . . 10 (𝜑 → ((1 · 𝐵) − (𝑇 · 𝐵)) = (𝐵 − (𝑇 · 𝐵)))
4037, 39eqtrd 2856 . . . . . . . . 9 (𝜑 → ((1 − 𝑇) · 𝐵) = (𝐵 − (𝑇 · 𝐵)))
415, 10remulcld 10671 . . . . . . . . . 10 (𝜑 → (𝑇 · 𝐵) ∈ ℝ)
4223simpld 497 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑇)
43 ltmul2 11491 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑇 ∈ ℝ ∧ 0 < 𝑇)) → (𝐴 < 𝐵 ↔ (𝑇 · 𝐴) < (𝑇 · 𝐵)))
441, 10, 5, 42, 43syl112anc 1370 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ (𝑇 · 𝐴) < (𝑇 · 𝐵)))
4521, 44mpbid 234 . . . . . . . . . 10 (𝜑 → (𝑇 · 𝐴) < (𝑇 · 𝐵))
466, 41, 10, 45ltsub2dd 11253 . . . . . . . . 9 (𝜑 → (𝐵 − (𝑇 · 𝐵)) < (𝐵 − (𝑇 · 𝐴)))
4740, 46eqbrtrd 5088 . . . . . . . 8 (𝜑 → ((1 − 𝑇) · 𝐵) < (𝐵 − (𝑇 · 𝐴)))
486, 11, 10ltaddsub2d 11241 . . . . . . . 8 (𝜑 → (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) < 𝐵 ↔ ((1 − 𝑇) · 𝐵) < (𝐵 − (𝑇 · 𝐴))))
4947, 48mpbird 259 . . . . . . 7 (𝜑 → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) < 𝐵)
502, 49eqbrtrid 5101 . . . . . 6 (𝜑𝐶 < 𝐵)
5113, 10, 50ltled 10788 . . . . 5 (𝜑𝐶𝐵)
52 iccss 12805 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐴𝐶𝐵)) → (𝐴[,]𝐶) ⊆ (𝐴[,]𝐵))
531, 10, 35, 51, 52syl22anc 836 . . . 4 (𝜑 → (𝐴[,]𝐶) ⊆ (𝐴[,]𝐵))
54 dvcvx.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
55 rescncf 23505 . . . 4 ((𝐴[,]𝐶) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐴[,]𝐶)) ∈ ((𝐴[,]𝐶)–cn→ℝ)))
5653, 54, 55sylc 65 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐶)) ∈ ((𝐴[,]𝐶)–cn→ℝ))
57 ax-resscn 10594 . . . . . . . 8 ℝ ⊆ ℂ
5857a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
59 cncff 23501 . . . . . . . . 9 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
6054, 59syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
61 fss 6527 . . . . . . . 8 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
6260, 57, 61sylancl 588 . . . . . . 7 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
63 iccssre 12819 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
641, 10, 63syl2anc 586 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
65 iccssre 12819 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴[,]𝐶) ⊆ ℝ)
661, 13, 65syl2anc 586 . . . . . . 7 (𝜑 → (𝐴[,]𝐶) ⊆ ℝ)
67 eqid 2821 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6867tgioo2 23411 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6967, 68dvres 24509 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴[,]𝐶) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐶))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐶))))
7058, 62, 64, 66, 69syl22anc 836 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐶))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐶))))
71 iccntr 23429 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐶)) = (𝐴(,)𝐶))
721, 13, 71syl2anc 586 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐶)) = (𝐴(,)𝐶))
7372reseq2d 5853 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐶))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐶)))
7470, 73eqtrd 2856 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐶))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐶)))
7574dmeqd 5774 . . . 4 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴[,]𝐶))) = dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐶)))
76 dmres 5875 . . . . 5 dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐶)) = ((𝐴(,)𝐶) ∩ dom (ℝ D 𝐹))
7710rexrd 10691 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
78 iooss2 12775 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶𝐵) → (𝐴(,)𝐶) ⊆ (𝐴(,)𝐵))
7977, 51, 78syl2anc 586 . . . . . . 7 (𝜑 → (𝐴(,)𝐶) ⊆ (𝐴(,)𝐵))
80 dvcvx.d . . . . . . . 8 (𝜑 → (ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊))
81 isof1o 7076 . . . . . . . 8 ((ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊) → (ℝ D 𝐹):(𝐴(,)𝐵)–1-1-onto𝑊)
82 f1odm 6619 . . . . . . . 8 ((ℝ D 𝐹):(𝐴(,)𝐵)–1-1-onto𝑊 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8380, 81, 823syl 18 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8479, 83sseqtrrd 4008 . . . . . 6 (𝜑 → (𝐴(,)𝐶) ⊆ dom (ℝ D 𝐹))
85 df-ss 3952 . . . . . 6 ((𝐴(,)𝐶) ⊆ dom (ℝ D 𝐹) ↔ ((𝐴(,)𝐶) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐶))
8684, 85sylib 220 . . . . 5 (𝜑 → ((𝐴(,)𝐶) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐶))
8776, 86syl5eq 2868 . . . 4 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐶)) = (𝐴(,)𝐶))
8875, 87eqtrd 2856 . . 3 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐴[,]𝐶))) = (𝐴(,)𝐶))
891, 13, 34, 56, 88mvth 24589 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐶)((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)))
901, 13, 34ltled 10788 . . . . 5 (𝜑𝐴𝐶)
9110leidd 11206 . . . . 5 (𝜑𝐵𝐵)
92 iccss 12805 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐵)) → (𝐶[,]𝐵) ⊆ (𝐴[,]𝐵))
931, 10, 90, 91, 92syl22anc 836 . . . 4 (𝜑 → (𝐶[,]𝐵) ⊆ (𝐴[,]𝐵))
94 rescncf 23505 . . . 4 ((𝐶[,]𝐵) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝐶[,]𝐵)) ∈ ((𝐶[,]𝐵)–cn→ℝ)))
9593, 54, 94sylc 65 . . 3 (𝜑 → (𝐹 ↾ (𝐶[,]𝐵)) ∈ ((𝐶[,]𝐵)–cn→ℝ))
96 iccssre 12819 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶[,]𝐵) ⊆ ℝ)
9713, 10, 96syl2anc 586 . . . . . . 7 (𝜑 → (𝐶[,]𝐵) ⊆ ℝ)
9867, 68dvres 24509 . . . . . . 7 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐶[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐶[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐵))))
9958, 62, 64, 97, 98syl22anc 836 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐵))))
100 iccntr 23429 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐵)) = (𝐶(,)𝐵))
10113, 10, 100syl2anc 586 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐵)) = (𝐶(,)𝐵))
102101reseq2d 5853 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐶[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐵)))
10399, 102eqtrd 2856 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐶[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐶(,)𝐵)))
104103dmeqd 5774 . . . 4 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐵))) = dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐵)))
105 dmres 5875 . . . . 5 dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐵)) = ((𝐶(,)𝐵) ∩ dom (ℝ D 𝐹))
1061rexrd 10691 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
107 iooss1 12774 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴𝐶) → (𝐶(,)𝐵) ⊆ (𝐴(,)𝐵))
108106, 90, 107syl2anc 586 . . . . . . 7 (𝜑 → (𝐶(,)𝐵) ⊆ (𝐴(,)𝐵))
109108, 83sseqtrrd 4008 . . . . . 6 (𝜑 → (𝐶(,)𝐵) ⊆ dom (ℝ D 𝐹))
110 df-ss 3952 . . . . . 6 ((𝐶(,)𝐵) ⊆ dom (ℝ D 𝐹) ↔ ((𝐶(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐶(,)𝐵))
111109, 110sylib 220 . . . . 5 (𝜑 → ((𝐶(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐶(,)𝐵))
112105, 111syl5eq 2868 . . . 4 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐶(,)𝐵)) = (𝐶(,)𝐵))
113104, 112eqtrd 2856 . . 3 (𝜑 → dom (ℝ D (𝐹 ↾ (𝐶[,]𝐵))) = (𝐶(,)𝐵))
11413, 10, 50, 95, 113mvth 24589 . 2 (𝜑 → ∃𝑦 ∈ (𝐶(,)𝐵)((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶)))
115 reeanv 3367 . . 3 (∃𝑥 ∈ (𝐴(,)𝐶)∃𝑦 ∈ (𝐶(,)𝐵)(((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))) ↔ (∃𝑥 ∈ (𝐴(,)𝐶)((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ∃𝑦 ∈ (𝐶(,)𝐵)((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))))
11674fveq1d 6672 . . . . . . . 8 (𝜑 → ((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐶))‘𝑥))
117 fvres 6689 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐶) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐶))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
118117adantr 483 . . . . . . . 8 ((𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵)) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐶))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
119116, 118sylan9eq 2876 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((ℝ D 𝐹)‘𝑥))
12013rexrd 10691 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ*)
121 ubicc2 12854 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → 𝐶 ∈ (𝐴[,]𝐶))
122106, 120, 90, 121syl3anc 1367 . . . . . . . . . . 11 (𝜑𝐶 ∈ (𝐴[,]𝐶))
123122fvresd 6690 . . . . . . . . . 10 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) = (𝐹𝐶))
124 lbicc2 12853 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → 𝐴 ∈ (𝐴[,]𝐶))
125106, 120, 90, 124syl3anc 1367 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐴[,]𝐶))
126125fvresd 6690 . . . . . . . . . 10 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴) = (𝐹𝐴))
127123, 126oveq12d 7174 . . . . . . . . 9 (𝜑 → (((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) = ((𝐹𝐶) − (𝐹𝐴)))
128127oveq1d 7171 . . . . . . . 8 (𝜑 → ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)))
129128adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)))
130119, 129eqeq12d 2837 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ↔ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴))))
131103fveq1d 6672 . . . . . . . 8 (𝜑 → ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = (((ℝ D 𝐹) ↾ (𝐶(,)𝐵))‘𝑦))
132 fvres 6689 . . . . . . . . 9 (𝑦 ∈ (𝐶(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐶(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
133132adantl 484 . . . . . . . 8 ((𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵)) → (((ℝ D 𝐹) ↾ (𝐶(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
134131, 133sylan9eq 2876 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
135 ubicc2 12854 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → 𝐵 ∈ (𝐶[,]𝐵))
136120, 77, 51, 135syl3anc 1367 . . . . . . . . . . 11 (𝜑𝐵 ∈ (𝐶[,]𝐵))
137136fvresd 6690 . . . . . . . . . 10 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) = (𝐹𝐵))
138 lbicc2 12853 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → 𝐶 ∈ (𝐶[,]𝐵))
139120, 77, 51, 138syl3anc 1367 . . . . . . . . . . 11 (𝜑𝐶 ∈ (𝐶[,]𝐵))
140139fvresd 6690 . . . . . . . . . 10 (𝜑 → ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶) = (𝐹𝐶))
141137, 140oveq12d 7174 . . . . . . . . 9 (𝜑 → (((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) = ((𝐹𝐵) − (𝐹𝐶)))
142141oveq1d 7171 . . . . . . . 8 (𝜑 → ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶)) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)))
143142adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶)) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)))
144134, 143eqeq12d 2837 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶)) ↔ ((ℝ D 𝐹)‘𝑦) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))))
145130, 144anbi12d 632 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))) ↔ (((ℝ D 𝐹)‘𝑥) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) ∧ ((ℝ D 𝐹)‘𝑦) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)))))
146 elioore 12769 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐶) → 𝑥 ∈ ℝ)
147146ad2antrl 726 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑥 ∈ ℝ)
14813adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝐶 ∈ ℝ)
149 elioore 12769 . . . . . . . . . 10 (𝑦 ∈ (𝐶(,)𝐵) → 𝑦 ∈ ℝ)
150149ad2antll 727 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑦 ∈ ℝ)
151 eliooord 12797 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐶) → (𝐴 < 𝑥𝑥 < 𝐶))
152151ad2antrl 726 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (𝐴 < 𝑥𝑥 < 𝐶))
153152simprd 498 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑥 < 𝐶)
154 eliooord 12797 . . . . . . . . . . 11 (𝑦 ∈ (𝐶(,)𝐵) → (𝐶 < 𝑦𝑦 < 𝐵))
155154ad2antll 727 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (𝐶 < 𝑦𝑦 < 𝐵))
156155simpld 497 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝐶 < 𝑦)
157147, 148, 150, 153, 156lttrd 10801 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑥 < 𝑦)
15880adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊))
15979sselda 3967 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝑥 ∈ (𝐴(,)𝐵))
160159adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑥 ∈ (𝐴(,)𝐵))
161108sselda 3967 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐶(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
162161adantrl 714 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → 𝑦 ∈ (𝐴(,)𝐵))
163 isorel 7079 . . . . . . . . 9 (((ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊) ∧ (𝑥 ∈ (𝐴(,)𝐵) ∧ 𝑦 ∈ (𝐴(,)𝐵))) → (𝑥 < 𝑦 ↔ ((ℝ D 𝐹)‘𝑥) < ((ℝ D 𝐹)‘𝑦)))
164158, 160, 162, 163syl12anc 834 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → (𝑥 < 𝑦 ↔ ((ℝ D 𝐹)‘𝑥) < ((ℝ D 𝐹)‘𝑦)))
165157, 164mpbid 234 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((ℝ D 𝐹)‘𝑥) < ((ℝ D 𝐹)‘𝑦))
166 breq12 5071 . . . . . . 7 ((((ℝ D 𝐹)‘𝑥) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) ∧ ((ℝ D 𝐹)‘𝑦) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))) → (((ℝ D 𝐹)‘𝑥) < ((ℝ D 𝐹)‘𝑦) ↔ (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) < (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))))
167165, 166syl5ibcom 247 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((ℝ D 𝐹)‘𝑥) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) ∧ ((ℝ D 𝐹)‘𝑦) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))) → (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) < (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))))
16853, 122sseldd 3968 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝐴[,]𝐵))
16960, 168ffvelrnd 6852 . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) ∈ ℝ)
17053, 125sseldd 3968 . . . . . . . . . . . 12 (𝜑𝐴 ∈ (𝐴[,]𝐵))
17160, 170ffvelrnd 6852 . . . . . . . . . . 11 (𝜑 → (𝐹𝐴) ∈ ℝ)
172169, 171resubcld 11068 . . . . . . . . . 10 (𝜑 → ((𝐹𝐶) − (𝐹𝐴)) ∈ ℝ)
17327gt0ne0d 11204 . . . . . . . . . 10 (𝜑 → (1 − 𝑇) ≠ 0)
174172, 9, 173redivcld 11468 . . . . . . . . 9 (𝜑 → (((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) ∈ ℝ)
17593, 136sseldd 3968 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (𝐴[,]𝐵))
17660, 175ffvelrnd 6852 . . . . . . . . . . 11 (𝜑 → (𝐹𝐵) ∈ ℝ)
177176, 169resubcld 11068 . . . . . . . . . 10 (𝜑 → ((𝐹𝐵) − (𝐹𝐶)) ∈ ℝ)
17842gt0ne0d 11204 . . . . . . . . . 10 (𝜑𝑇 ≠ 0)
179177, 5, 178redivcld 11468 . . . . . . . . 9 (𝜑 → (((𝐹𝐵) − (𝐹𝐶)) / 𝑇) ∈ ℝ)
18010, 1resubcld 11068 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℝ)
1811, 10posdifd 11227 . . . . . . . . . 10 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
18221, 181mpbid 234 . . . . . . . . 9 (𝜑 → 0 < (𝐵𝐴))
183 ltdiv1 11504 . . . . . . . . 9 (((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) ∈ ℝ ∧ (((𝐹𝐵) − (𝐹𝐶)) / 𝑇) ∈ ℝ ∧ ((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴))) → ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) < (((𝐹𝐵) − (𝐹𝐶)) / 𝑇) ↔ ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) / (𝐵𝐴)) < ((((𝐹𝐵) − (𝐹𝐶)) / 𝑇) / (𝐵𝐴))))
184174, 179, 180, 182, 183syl112anc 1370 . . . . . . . 8 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) < (((𝐹𝐵) − (𝐹𝐶)) / 𝑇) ↔ ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) / (𝐵𝐴)) < ((((𝐹𝐵) − (𝐹𝐶)) / 𝑇) / (𝐵𝐴))))
185172recnd 10669 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐶) − (𝐹𝐴)) ∈ ℂ)
186185, 15mulcomd 10662 . . . . . . . . . . 11 (𝜑 → (((𝐹𝐶) − (𝐹𝐴)) · 𝑇) = (𝑇 · ((𝐹𝐶) − (𝐹𝐴))))
187169recnd 10669 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐶) ∈ ℂ)
188171recnd 10669 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐴) ∈ ℂ)
18915, 187, 188subdid 11096 . . . . . . . . . . 11 (𝜑 → (𝑇 · ((𝐹𝐶) − (𝐹𝐴))) = ((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))))
190186, 189eqtrd 2856 . . . . . . . . . 10 (𝜑 → (((𝐹𝐶) − (𝐹𝐴)) · 𝑇) = ((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))))
191177recnd 10669 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐵) − (𝐹𝐶)) ∈ ℂ)
1929recnd 10669 . . . . . . . . . . . 12 (𝜑 → (1 − 𝑇) ∈ ℂ)
193191, 192mulcomd 10662 . . . . . . . . . . 11 (𝜑 → (((𝐹𝐵) − (𝐹𝐶)) · (1 − 𝑇)) = ((1 − 𝑇) · ((𝐹𝐵) − (𝐹𝐶))))
194176recnd 10669 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐵) ∈ ℂ)
195192, 194, 187subdid 11096 . . . . . . . . . . 11 (𝜑 → ((1 − 𝑇) · ((𝐹𝐵) − (𝐹𝐶))) = (((1 − 𝑇) · (𝐹𝐵)) − ((1 − 𝑇) · (𝐹𝐶))))
196193, 195eqtrd 2856 . . . . . . . . . 10 (𝜑 → (((𝐹𝐵) − (𝐹𝐶)) · (1 − 𝑇)) = (((1 − 𝑇) · (𝐹𝐵)) − ((1 − 𝑇) · (𝐹𝐶))))
197190, 196breq12d 5079 . . . . . . . . 9 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) · 𝑇) < (((𝐹𝐵) − (𝐹𝐶)) · (1 − 𝑇)) ↔ ((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) < (((1 − 𝑇) · (𝐹𝐵)) − ((1 − 𝑇) · (𝐹𝐶)))))
1985, 42jca 514 . . . . . . . . . 10 (𝜑 → (𝑇 ∈ ℝ ∧ 0 < 𝑇))
1999, 27jca 514 . . . . . . . . . 10 (𝜑 → ((1 − 𝑇) ∈ ℝ ∧ 0 < (1 − 𝑇)))
200 lt2mul2div 11518 . . . . . . . . . 10 (((((𝐹𝐶) − (𝐹𝐴)) ∈ ℝ ∧ (𝑇 ∈ ℝ ∧ 0 < 𝑇)) ∧ (((𝐹𝐵) − (𝐹𝐶)) ∈ ℝ ∧ ((1 − 𝑇) ∈ ℝ ∧ 0 < (1 − 𝑇)))) → ((((𝐹𝐶) − (𝐹𝐴)) · 𝑇) < (((𝐹𝐵) − (𝐹𝐶)) · (1 − 𝑇)) ↔ (((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) < (((𝐹𝐵) − (𝐹𝐶)) / 𝑇)))
201172, 198, 177, 199, 200syl22anc 836 . . . . . . . . 9 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) · 𝑇) < (((𝐹𝐵) − (𝐹𝐶)) · (1 − 𝑇)) ↔ (((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) < (((𝐹𝐵) − (𝐹𝐶)) / 𝑇)))
2025, 169remulcld 10671 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 · (𝐹𝐶)) ∈ ℝ)
203202recnd 10669 . . . . . . . . . . . . 13 (𝜑 → (𝑇 · (𝐹𝐶)) ∈ ℂ)
2049, 169remulcld 10671 . . . . . . . . . . . . . 14 (𝜑 → ((1 − 𝑇) · (𝐹𝐶)) ∈ ℝ)
205204recnd 10669 . . . . . . . . . . . . 13 (𝜑 → ((1 − 𝑇) · (𝐹𝐶)) ∈ ℂ)
2065, 171remulcld 10671 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 · (𝐹𝐴)) ∈ ℝ)
207206recnd 10669 . . . . . . . . . . . . 13 (𝜑 → (𝑇 · (𝐹𝐴)) ∈ ℂ)
208203, 205, 207addsubd 11018 . . . . . . . . . . . 12 (𝜑 → (((𝑇 · (𝐹𝐶)) + ((1 − 𝑇) · (𝐹𝐶))) − (𝑇 · (𝐹𝐴))) = (((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) + ((1 − 𝑇) · (𝐹𝐶))))
209 ax-1cn 10595 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
210 pncan3 10894 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑇 + (1 − 𝑇)) = 1)
21115, 209, 210sylancl 588 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇 + (1 − 𝑇)) = 1)
212211oveq1d 7171 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 + (1 − 𝑇)) · (𝐹𝐶)) = (1 · (𝐹𝐶)))
21315, 192, 187adddird 10666 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 + (1 − 𝑇)) · (𝐹𝐶)) = ((𝑇 · (𝐹𝐶)) + ((1 − 𝑇) · (𝐹𝐶))))
214187mulid2d 10659 . . . . . . . . . . . . . 14 (𝜑 → (1 · (𝐹𝐶)) = (𝐹𝐶))
215212, 213, 2143eqtr3d 2864 . . . . . . . . . . . . 13 (𝜑 → ((𝑇 · (𝐹𝐶)) + ((1 − 𝑇) · (𝐹𝐶))) = (𝐹𝐶))
216215oveq1d 7171 . . . . . . . . . . . 12 (𝜑 → (((𝑇 · (𝐹𝐶)) + ((1 − 𝑇) · (𝐹𝐶))) − (𝑇 · (𝐹𝐴))) = ((𝐹𝐶) − (𝑇 · (𝐹𝐴))))
217208, 216eqtr3d 2858 . . . . . . . . . . 11 (𝜑 → (((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) + ((1 − 𝑇) · (𝐹𝐶))) = ((𝐹𝐶) − (𝑇 · (𝐹𝐴))))
218217breq1d 5076 . . . . . . . . . 10 (𝜑 → ((((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) + ((1 − 𝑇) · (𝐹𝐶))) < ((1 − 𝑇) · (𝐹𝐵)) ↔ ((𝐹𝐶) − (𝑇 · (𝐹𝐴))) < ((1 − 𝑇) · (𝐹𝐵))))
219202, 206resubcld 11068 . . . . . . . . . . 11 (𝜑 → ((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) ∈ ℝ)
2209, 176remulcld 10671 . . . . . . . . . . 11 (𝜑 → ((1 − 𝑇) · (𝐹𝐵)) ∈ ℝ)
221219, 204, 220ltaddsubd 11240 . . . . . . . . . 10 (𝜑 → ((((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) + ((1 − 𝑇) · (𝐹𝐶))) < ((1 − 𝑇) · (𝐹𝐵)) ↔ ((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) < (((1 − 𝑇) · (𝐹𝐵)) − ((1 − 𝑇) · (𝐹𝐶)))))
222169, 206, 220ltsubadd2d 11238 . . . . . . . . . 10 (𝜑 → (((𝐹𝐶) − (𝑇 · (𝐹𝐴))) < ((1 − 𝑇) · (𝐹𝐵)) ↔ (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
223218, 221, 2223bitr3d 311 . . . . . . . . 9 (𝜑 → (((𝑇 · (𝐹𝐶)) − (𝑇 · (𝐹𝐴))) < (((1 − 𝑇) · (𝐹𝐵)) − ((1 − 𝑇) · (𝐹𝐶))) ↔ (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
224197, 201, 2233bitr3d 311 . . . . . . . 8 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) < (((𝐹𝐵) − (𝐹𝐶)) / 𝑇) ↔ (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
225180recnd 10669 . . . . . . . . . . 11 (𝜑 → (𝐵𝐴) ∈ ℂ)
226182gt0ne0d 11204 . . . . . . . . . . 11 (𝜑 → (𝐵𝐴) ≠ 0)
227185, 192, 225, 173, 226divdiv1d 11447 . . . . . . . . . 10 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) / (𝐵𝐴)) = (((𝐹𝐶) − (𝐹𝐴)) / ((1 − 𝑇) · (𝐵𝐴))))
22820oveq2d 7172 . . . . . . . . . . . . 13 (𝜑 → (((1 − 𝑇) · 𝐵) − ((1 − 𝑇) · 𝐴)) = (((1 − 𝑇) · 𝐵) − (𝐴 − (𝑇 · 𝐴))))
22911recnd 10669 . . . . . . . . . . . . . 14 (𝜑 → ((1 − 𝑇) · 𝐵) ∈ ℂ)
2306recnd 10669 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 · 𝐴) ∈ ℂ)
231229, 16, 230subsub3d 11027 . . . . . . . . . . . . 13 (𝜑 → (((1 − 𝑇) · 𝐵) − (𝐴 − (𝑇 · 𝐴))) = ((((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴)) − 𝐴))
232228, 231eqtrd 2856 . . . . . . . . . . . 12 (𝜑 → (((1 − 𝑇) · 𝐵) − ((1 − 𝑇) · 𝐴)) = ((((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴)) − 𝐴))
233192, 36, 16subdid 11096 . . . . . . . . . . . 12 (𝜑 → ((1 − 𝑇) · (𝐵𝐴)) = (((1 − 𝑇) · 𝐵) − ((1 − 𝑇) · 𝐴)))
234230, 229addcomd 10842 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = (((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴)))
2352, 234syl5eq 2868 . . . . . . . . . . . . 13 (𝜑𝐶 = (((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴)))
236235oveq1d 7171 . . . . . . . . . . . 12 (𝜑 → (𝐶𝐴) = ((((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴)) − 𝐴))
237232, 233, 2363eqtr4d 2866 . . . . . . . . . . 11 (𝜑 → ((1 − 𝑇) · (𝐵𝐴)) = (𝐶𝐴))
238237oveq2d 7172 . . . . . . . . . 10 (𝜑 → (((𝐹𝐶) − (𝐹𝐴)) / ((1 − 𝑇) · (𝐵𝐴))) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)))
239227, 238eqtrd 2856 . . . . . . . . 9 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) / (𝐵𝐴)) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)))
240191, 15, 225, 178, 226divdiv1d 11447 . . . . . . . . . 10 (𝜑 → ((((𝐹𝐵) − (𝐹𝐶)) / 𝑇) / (𝐵𝐴)) = (((𝐹𝐵) − (𝐹𝐶)) / (𝑇 · (𝐵𝐴))))
24136, 229, 230subsub4d 11028 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 − ((1 − 𝑇) · 𝐵)) − (𝑇 · 𝐴)) = (𝐵 − (((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴))))
24240oveq2d 7172 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − ((1 − 𝑇) · 𝐵)) = (𝐵 − (𝐵 − (𝑇 · 𝐵))))
24341recnd 10669 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
24436, 243nncand 11002 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − (𝐵 − (𝑇 · 𝐵))) = (𝑇 · 𝐵))
245242, 244eqtrd 2856 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 − ((1 − 𝑇) · 𝐵)) = (𝑇 · 𝐵))
246245oveq1d 7171 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 − ((1 − 𝑇) · 𝐵)) − (𝑇 · 𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
247241, 246eqtr3d 2858 . . . . . . . . . . . 12 (𝜑 → (𝐵 − (((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴))) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
248235oveq2d 7172 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐶) = (𝐵 − (((1 − 𝑇) · 𝐵) + (𝑇 · 𝐴))))
24915, 36, 16subdid 11096 . . . . . . . . . . . 12 (𝜑 → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
250247, 248, 2493eqtr4d 2866 . . . . . . . . . . 11 (𝜑 → (𝐵𝐶) = (𝑇 · (𝐵𝐴)))
251250oveq2d 7172 . . . . . . . . . 10 (𝜑 → (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)) = (((𝐹𝐵) − (𝐹𝐶)) / (𝑇 · (𝐵𝐴))))
252240, 251eqtr4d 2859 . . . . . . . . 9 (𝜑 → ((((𝐹𝐵) − (𝐹𝐶)) / 𝑇) / (𝐵𝐴)) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)))
253239, 252breq12d 5079 . . . . . . . 8 (𝜑 → (((((𝐹𝐶) − (𝐹𝐴)) / (1 − 𝑇)) / (𝐵𝐴)) < ((((𝐹𝐵) − (𝐹𝐶)) / 𝑇) / (𝐵𝐴)) ↔ (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) < (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))))
254184, 224, 2533bitr3rd 312 . . . . . . 7 (𝜑 → ((((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) < (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)) ↔ (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
255254adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) < (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶)) ↔ (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
256167, 255sylibd 241 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((ℝ D 𝐹)‘𝑥) = (((𝐹𝐶) − (𝐹𝐴)) / (𝐶𝐴)) ∧ ((ℝ D 𝐹)‘𝑦) = (((𝐹𝐵) − (𝐹𝐶)) / (𝐵𝐶))) → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
257145, 256sylbid 242 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐴(,)𝐶) ∧ 𝑦 ∈ (𝐶(,)𝐵))) → ((((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))) → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
258257rexlimdvva 3294 . . 3 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐶)∃𝑦 ∈ (𝐶(,)𝐵)(((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))) → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
259115, 258syl5bir 245 . 2 (𝜑 → ((∃𝑥 ∈ (𝐴(,)𝐶)((ℝ D (𝐹 ↾ (𝐴[,]𝐶)))‘𝑥) = ((((𝐹 ↾ (𝐴[,]𝐶))‘𝐶) − ((𝐹 ↾ (𝐴[,]𝐶))‘𝐴)) / (𝐶𝐴)) ∧ ∃𝑦 ∈ (𝐶(,)𝐵)((ℝ D (𝐹 ↾ (𝐶[,]𝐵)))‘𝑦) = ((((𝐹 ↾ (𝐶[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐶[,]𝐵))‘𝐶)) / (𝐵𝐶))) → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵)))))
26089, 114, 259mp2and 697 1 (𝜑 → (𝐹𝐶) < ((𝑇 · (𝐹𝐴)) + ((1 − 𝑇) · (𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  cin 3935  wss 3936   class class class wbr 5066  dom cdm 5555  ran crn 5556  cres 5557  wf 6351  1-1-ontowf1o 6354  cfv 6355   Isom wiso 6356  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  (,)cioo 12739  [,]cicc 12742  TopOpenctopn 16695  topGenctg 16711  fldccnfld 20545  intcnt 21625  cnccncf 23484   D cdv 24461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by:  efcvx  25037  logccv  25246
  Copyright terms: Public domain W3C validator