HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopf1o Structured version   Visualization version   GIF version

Theorem unopf1o 31897
Description: A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopf1o (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)

Proof of Theorem unopf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunop 31853 . . . . 5 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
21simplbi 497 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ–onto→ ℋ)
3 fof 6790 . . . 4 (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ)
42, 3syl 17 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
5 unop 31896 . . . . . . . . . . . . 13 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
653anidm23 1423 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
763adant3 1132 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑥)) = (𝑥 ·ih 𝑥))
8 unop 31896 . . . . . . . . . . . . 13 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
983anidm23 1423 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
1093adant2 1131 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑦)) = (𝑦 ·ih 𝑦))
117, 10oveq12d 7423 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) = ((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)))
12 unop 31896 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
13 unop 31896 . . . . . . . . . . . 12 ((𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑥)) = (𝑦 ·ih 𝑥))
14133com23 1126 . . . . . . . . . . 11 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑦) ·ih (𝑇𝑥)) = (𝑦 ·ih 𝑥))
1512, 14oveq12d 7423 . . . . . . . . . 10 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥))) = ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥)))
1611, 15oveq12d 7423 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
17163expb 1120 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
18 ffvelcdm 7071 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
19 ffvelcdm 7071 . . . . . . . . . . 11 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2018, 19anim12dan 619 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
214, 20sylan 580 . . . . . . . . 9 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
22 normlem9at 31102 . . . . . . . . 9 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))))
2321, 22syl 17 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = ((((𝑇𝑥) ·ih (𝑇𝑥)) + ((𝑇𝑦) ·ih (𝑇𝑦))) − (((𝑇𝑥) ·ih (𝑇𝑦)) + ((𝑇𝑦) ·ih (𝑇𝑥)))))
24 normlem9at 31102 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
2524adantl 481 . . . . . . . 8 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑥 ·ih 𝑥) + (𝑦 ·ih 𝑦)) − ((𝑥 ·ih 𝑦) + (𝑦 ·ih 𝑥))))
2617, 23, 253eqtr4rd 2781 . . . . . . 7 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 𝑦) ·ih (𝑥 𝑦)) = (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))))
2726eqeq1d 2737 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0))
28 hvsubcl 30998 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) ∈ ℋ)
29 his6 31080 . . . . . . . . 9 ((𝑥 𝑦) ∈ ℋ → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (𝑥 𝑦) = 0))
3028, 29syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ (𝑥 𝑦) = 0))
31 hvsubeq0 31049 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 𝑦) = 0𝑥 = 𝑦))
3230, 31bitrd 279 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ 𝑥 = 𝑦))
3332adantl 481 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑥 𝑦) ·ih (𝑥 𝑦)) = 0 ↔ 𝑥 = 𝑦))
34 hvsubcl 30998 . . . . . . . . 9 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑇𝑥) − (𝑇𝑦)) ∈ ℋ)
35 his6 31080 . . . . . . . . 9 (((𝑇𝑥) − (𝑇𝑦)) ∈ ℋ → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ ((𝑇𝑥) − (𝑇𝑦)) = 0))
3634, 35syl 17 . . . . . . . 8 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ ((𝑇𝑥) − (𝑇𝑦)) = 0))
37 hvsubeq0 31049 . . . . . . . 8 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (((𝑇𝑥) − (𝑇𝑦)) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
3836, 37bitrd 279 . . . . . . 7 (((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
3921, 38syl 17 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((((𝑇𝑥) − (𝑇𝑦)) ·ih ((𝑇𝑥) − (𝑇𝑦))) = 0 ↔ (𝑇𝑥) = (𝑇𝑦)))
4027, 33, 393bitr3rd 310 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) = (𝑇𝑦) ↔ 𝑥 = 𝑦))
4140biimpd 229 . . . 4 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
4241ralrimivva 3187 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
43 dff13 7247 . . 3 (𝑇: ℋ–1-1→ ℋ ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
444, 42, 43sylanbrc 583 . 2 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1→ ℋ)
45 df-f1o 6538 . 2 (𝑇: ℋ–1-1-onto→ ℋ ↔ (𝑇: ℋ–1-1→ ℋ ∧ 𝑇: ℋ–onto→ ℋ))
4644, 2, 45sylanbrc 583 1 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wf 6527  1-1wf1 6528  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  0cc0 11129   + caddc 11132  cmin 11466  chba 30900   ·ih csp 30903  0c0v 30905   cmv 30906  UniOpcuo 30930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-hilex 30980  ax-hfvadd 30981  ax-hvcom 30982  ax-hvass 30983  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvdistr2 30990  ax-hvmul0 30991  ax-hfi 31060  ax-his1 31063  ax-his2 31064  ax-his3 31065  ax-his4 31066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-cj 15118  df-re 15119  df-im 15120  df-hvsub 30952  df-unop 31824
This theorem is referenced by:  unopnorm  31898  cnvunop  31899  unopadj  31900  unoplin  31901  counop  31902  unopbd  31996
  Copyright terms: Public domain W3C validator