| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcic | Structured version Visualization version GIF version | ||
| Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| cic.i | ⊢ 𝐼 = (Iso‘𝐶) |
| cic.b | ⊢ 𝐵 = (Base‘𝐶) |
| cic.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| cic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| brcic | ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cic.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | cicfval 17759 | . . . 4 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
| 4 | 3 | breqd 5118 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ 𝑋((Iso‘𝐶) supp ∅)𝑌)) |
| 5 | df-br 5108 | . . 3 ⊢ (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅)) | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) |
| 7 | cic.i | . . . . . 6 ⊢ 𝐼 = (Iso‘𝐶) | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐼 = (Iso‘𝐶)) |
| 9 | 8 | fveq1d 6860 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝑌〉) = ((Iso‘𝐶)‘〈𝑋, 𝑌〉)) |
| 10 | 9 | neeq1d 2984 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝑌〉) ≠ ∅ ↔ ((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅)) |
| 11 | df-ov 7390 | . . . . . 6 ⊢ (𝑋𝐼𝑌) = (𝐼‘〈𝑋, 𝑌〉) | |
| 12 | 11 | eqcomi 2738 | . . . . 5 ⊢ (𝐼‘〈𝑋, 𝑌〉) = (𝑋𝐼𝑌) |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝑌〉) = (𝑋𝐼𝑌)) |
| 14 | 13 | neeq1d 2984 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝑌〉) ≠ ∅ ↔ (𝑋𝐼𝑌) ≠ ∅)) |
| 15 | fvexd 6873 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) ∈ V) | |
| 16 | 15, 15 | xpexd 7727 | . . . 4 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) |
| 17 | cic.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 18 | cic.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 19 | 17, 18 | eleqtrdi 2838 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 20 | cic.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 21 | 20, 18 | eleqtrdi 2838 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 22 | 19, 21 | opelxpd 5677 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((Base‘𝐶) × (Base‘𝐶))) |
| 23 | isofn 17737 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 24 | 1, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 25 | fvn0elsuppb 8160 | . . . 4 ⊢ ((((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ 〈𝑋, 𝑌〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) → (((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅ ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) | |
| 26 | 16, 22, 24, 25 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅ ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) |
| 27 | 10, 14, 26 | 3bitr3rd 310 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅) ↔ (𝑋𝐼𝑌) ≠ ∅)) |
| 28 | 4, 6, 27 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 〈cop 4595 class class class wbr 5107 × cxp 5636 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 Basecbs 17179 Catccat 17625 Isociso 17708 ≃𝑐 ccic 17757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-supp 8140 df-inv 17710 df-iso 17711 df-cic 17758 |
| This theorem is referenced by: cic 17761 oppccic 49033 cicpropdlem 49038 |
| Copyright terms: Public domain | W3C validator |