![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcic | Structured version Visualization version GIF version |
Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020.) |
Ref | Expression |
---|---|
cic.i | ⊢ 𝐼 = (Iso‘𝐶) |
cic.b | ⊢ 𝐵 = (Base‘𝐶) |
cic.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
cic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
brcic | ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cic.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | cicfval 17858 | . . . 4 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
4 | 3 | breqd 5177 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ 𝑋((Iso‘𝐶) supp ∅)𝑌)) |
5 | df-br 5167 | . . 3 ⊢ (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅)) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) |
7 | cic.i | . . . . . 6 ⊢ 𝐼 = (Iso‘𝐶) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐼 = (Iso‘𝐶)) |
9 | 8 | fveq1d 6922 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝑌〉) = ((Iso‘𝐶)‘〈𝑋, 𝑌〉)) |
10 | 9 | neeq1d 3006 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝑌〉) ≠ ∅ ↔ ((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅)) |
11 | df-ov 7451 | . . . . . 6 ⊢ (𝑋𝐼𝑌) = (𝐼‘〈𝑋, 𝑌〉) | |
12 | 11 | eqcomi 2749 | . . . . 5 ⊢ (𝐼‘〈𝑋, 𝑌〉) = (𝑋𝐼𝑌) |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝑌〉) = (𝑋𝐼𝑌)) |
14 | 13 | neeq1d 3006 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝑌〉) ≠ ∅ ↔ (𝑋𝐼𝑌) ≠ ∅)) |
15 | fvexd 6935 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) ∈ V) | |
16 | 15, 15 | xpexd 7786 | . . . 4 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) |
17 | cic.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
18 | cic.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
19 | 17, 18 | eleqtrdi 2854 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
20 | cic.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
21 | 20, 18 | eleqtrdi 2854 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
22 | 19, 21 | opelxpd 5739 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((Base‘𝐶) × (Base‘𝐶))) |
23 | isofn 17836 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
24 | 1, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
25 | fvn0elsuppb 8222 | . . . 4 ⊢ ((((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ 〈𝑋, 𝑌〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) → (((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅ ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) | |
26 | 16, 22, 24, 25 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅ ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) |
27 | 10, 14, 26 | 3bitr3rd 310 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅) ↔ (𝑋𝐼𝑌) ≠ ∅)) |
28 | 4, 6, 27 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 〈cop 4654 class class class wbr 5166 × cxp 5698 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 Basecbs 17258 Catccat 17722 Isociso 17807 ≃𝑐 ccic 17856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-supp 8202 df-inv 17809 df-iso 17810 df-cic 17857 |
This theorem is referenced by: cic 17860 |
Copyright terms: Public domain | W3C validator |