Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brcic | Structured version Visualization version GIF version |
Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020.) |
Ref | Expression |
---|---|
cic.i | ⊢ 𝐼 = (Iso‘𝐶) |
cic.b | ⊢ 𝐵 = (Base‘𝐶) |
cic.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
cic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
brcic | ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cic.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | cicfval 17426 | . . . 4 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
4 | 3 | breqd 5081 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ 𝑋((Iso‘𝐶) supp ∅)𝑌)) |
5 | df-br 5071 | . . 3 ⊢ (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅)) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) |
7 | cic.i | . . . . . 6 ⊢ 𝐼 = (Iso‘𝐶) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐼 = (Iso‘𝐶)) |
9 | 8 | fveq1d 6758 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝑌〉) = ((Iso‘𝐶)‘〈𝑋, 𝑌〉)) |
10 | 9 | neeq1d 3002 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝑌〉) ≠ ∅ ↔ ((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅)) |
11 | df-ov 7258 | . . . . . 6 ⊢ (𝑋𝐼𝑌) = (𝐼‘〈𝑋, 𝑌〉) | |
12 | 11 | eqcomi 2747 | . . . . 5 ⊢ (𝐼‘〈𝑋, 𝑌〉) = (𝑋𝐼𝑌) |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝑌〉) = (𝑋𝐼𝑌)) |
14 | 13 | neeq1d 3002 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝑌〉) ≠ ∅ ↔ (𝑋𝐼𝑌) ≠ ∅)) |
15 | fvexd 6771 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) ∈ V) | |
16 | 15, 15 | xpexd 7579 | . . . 4 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) |
17 | cic.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
18 | cic.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
19 | 17, 18 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
20 | cic.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
21 | 20, 18 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
22 | 19, 21 | opelxpd 5618 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((Base‘𝐶) × (Base‘𝐶))) |
23 | isofn 17404 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
24 | 1, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
25 | fvn0elsuppb 7968 | . . . 4 ⊢ ((((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ 〈𝑋, 𝑌〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) → (((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅ ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) | |
26 | 16, 22, 24, 25 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅ ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) |
27 | 10, 14, 26 | 3bitr3rd 309 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅) ↔ (𝑋𝐼𝑌) ≠ ∅)) |
28 | 4, 6, 27 | 3bitrd 304 | 1 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 〈cop 4564 class class class wbr 5070 × cxp 5578 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 Basecbs 16840 Catccat 17290 Isociso 17375 ≃𝑐 ccic 17424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-supp 7949 df-inv 17377 df-iso 17378 df-cic 17425 |
This theorem is referenced by: cic 17428 |
Copyright terms: Public domain | W3C validator |