MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcic Structured version   Visualization version   GIF version

Theorem brcic 17811
Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020.)
Hypotheses
Ref Expression
cic.i 𝐼 = (Iso‘𝐶)
cic.b 𝐵 = (Base‘𝐶)
cic.c (𝜑𝐶 ∈ Cat)
cic.x (𝜑𝑋𝐵)
cic.y (𝜑𝑌𝐵)
Assertion
Ref Expression
brcic (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅))

Proof of Theorem brcic
StepHypRef Expression
1 cic.c . . . 4 (𝜑𝐶 ∈ Cat)
2 cicfval 17810 . . . 4 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
31, 2syl 17 . . 3 (𝜑 → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
43breqd 5130 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌𝑋((Iso‘𝐶) supp ∅)𝑌))
5 df-br 5120 . . 3 (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ ((Iso‘𝐶) supp ∅))
65a1i 11 . 2 (𝜑 → (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ ((Iso‘𝐶) supp ∅)))
7 cic.i . . . . . 6 𝐼 = (Iso‘𝐶)
87a1i 11 . . . . 5 (𝜑𝐼 = (Iso‘𝐶))
98fveq1d 6878 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝑌⟩) = ((Iso‘𝐶)‘⟨𝑋, 𝑌⟩))
109neeq1d 2991 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝑌⟩) ≠ ∅ ↔ ((Iso‘𝐶)‘⟨𝑋, 𝑌⟩) ≠ ∅))
11 df-ov 7408 . . . . . 6 (𝑋𝐼𝑌) = (𝐼‘⟨𝑋, 𝑌⟩)
1211eqcomi 2744 . . . . 5 (𝐼‘⟨𝑋, 𝑌⟩) = (𝑋𝐼𝑌)
1312a1i 11 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝑌⟩) = (𝑋𝐼𝑌))
1413neeq1d 2991 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝑌⟩) ≠ ∅ ↔ (𝑋𝐼𝑌) ≠ ∅))
15 fvexd 6891 . . . . 5 (𝜑 → (Base‘𝐶) ∈ V)
1615, 15xpexd 7745 . . . 4 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
17 cic.x . . . . . 6 (𝜑𝑋𝐵)
18 cic.b . . . . . 6 𝐵 = (Base‘𝐶)
1917, 18eleqtrdi 2844 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
20 cic.y . . . . . 6 (𝜑𝑌𝐵)
2120, 18eleqtrdi 2844 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
2219, 21opelxpd 5693 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)))
23 isofn 17788 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
241, 23syl 17 . . . 4 (𝜑 → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
25 fvn0elsuppb 8180 . . . 4 ((((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ⟨𝑋, 𝑌⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) → (((Iso‘𝐶)‘⟨𝑋, 𝑌⟩) ≠ ∅ ↔ ⟨𝑋, 𝑌⟩ ∈ ((Iso‘𝐶) supp ∅)))
2616, 22, 24, 25syl3anc 1373 . . 3 (𝜑 → (((Iso‘𝐶)‘⟨𝑋, 𝑌⟩) ≠ ∅ ↔ ⟨𝑋, 𝑌⟩ ∈ ((Iso‘𝐶) supp ∅)))
2710, 14, 263bitr3rd 310 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ ((Iso‘𝐶) supp ∅) ↔ (𝑋𝐼𝑌) ≠ ∅))
284, 6, 273bitrd 305 1 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  c0 4308  cop 4607   class class class wbr 5119   × cxp 5652   Fn wfn 6526  cfv 6531  (class class class)co 7405   supp csupp 8159  Basecbs 17228  Catccat 17676  Isociso 17759  𝑐 ccic 17808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-supp 8160  df-inv 17761  df-iso 17762  df-cic 17809
This theorem is referenced by:  cic  17812  oppccic  49011  cicpropdlem  49016
  Copyright terms: Public domain W3C validator