Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brcic | Structured version Visualization version GIF version |
Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020.) |
Ref | Expression |
---|---|
cic.i | ⊢ 𝐼 = (Iso‘𝐶) |
cic.b | ⊢ 𝐵 = (Base‘𝐶) |
cic.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
cic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
brcic | ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cic.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | cicfval 17509 | . . . 4 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) |
4 | 3 | breqd 5085 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ 𝑋((Iso‘𝐶) supp ∅)𝑌)) |
5 | df-br 5075 | . . 3 ⊢ (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅)) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝑋((Iso‘𝐶) supp ∅)𝑌 ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) |
7 | cic.i | . . . . . 6 ⊢ 𝐼 = (Iso‘𝐶) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐼 = (Iso‘𝐶)) |
9 | 8 | fveq1d 6776 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝑌〉) = ((Iso‘𝐶)‘〈𝑋, 𝑌〉)) |
10 | 9 | neeq1d 3003 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝑌〉) ≠ ∅ ↔ ((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅)) |
11 | df-ov 7278 | . . . . . 6 ⊢ (𝑋𝐼𝑌) = (𝐼‘〈𝑋, 𝑌〉) | |
12 | 11 | eqcomi 2747 | . . . . 5 ⊢ (𝐼‘〈𝑋, 𝑌〉) = (𝑋𝐼𝑌) |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝑌〉) = (𝑋𝐼𝑌)) |
14 | 13 | neeq1d 3003 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝑌〉) ≠ ∅ ↔ (𝑋𝐼𝑌) ≠ ∅)) |
15 | fvexd 6789 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) ∈ V) | |
16 | 15, 15 | xpexd 7601 | . . . 4 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) ∈ V) |
17 | cic.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
18 | cic.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
19 | 17, 18 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
20 | cic.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
21 | 20, 18 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
22 | 19, 21 | opelxpd 5627 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((Base‘𝐶) × (Base‘𝐶))) |
23 | isofn 17487 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
24 | 1, 23 | syl 17 | . . . 4 ⊢ (𝜑 → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
25 | fvn0elsuppb 7997 | . . . 4 ⊢ ((((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ 〈𝑋, 𝑌〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) → (((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅ ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) | |
26 | 16, 22, 24, 25 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (((Iso‘𝐶)‘〈𝑋, 𝑌〉) ≠ ∅ ↔ 〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅))) |
27 | 10, 14, 26 | 3bitr3rd 310 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ ((Iso‘𝐶) supp ∅) ↔ (𝑋𝐼𝑌) ≠ ∅)) |
28 | 4, 6, 27 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 〈cop 4567 class class class wbr 5074 × cxp 5587 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 Basecbs 16912 Catccat 17373 Isociso 17458 ≃𝑐 ccic 17507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-supp 7978 df-inv 17460 df-iso 17461 df-cic 17508 |
This theorem is referenced by: cic 17511 |
Copyright terms: Public domain | W3C validator |