| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ringdif | Structured version Visualization version GIF version | ||
| Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| 0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
| 0ring.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| 0ringdif | ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3961 | . 2 ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing)) | |
| 2 | 0ring.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘𝑅)) |
| 4 | 3 | fveqeq2d 6914 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ (♯‘(Base‘𝑅)) = 1)) |
| 5 | 0ring.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 6 | 2, 5 | 0ring 20526 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
| 7 | 6 | ex 412 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 𝐵 = { 0 })) |
| 8 | fveq2 6906 | . . . . . 6 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = (♯‘{ 0 })) | |
| 9 | 5 | fvexi 6920 | . . . . . . 7 ⊢ 0 ∈ V |
| 10 | hashsng 14408 | . . . . . . 7 ⊢ ( 0 ∈ V → (♯‘{ 0 }) = 1) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{ 0 }) = 1 |
| 12 | 8, 11 | eqtrdi 2793 | . . . . 5 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = 1) |
| 13 | 7, 12 | impbid1 225 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 𝐵 = { 0 })) |
| 14 | 0ringnnzr 20525 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) | |
| 15 | 4, 13, 14 | 3bitr3rd 310 | . . 3 ⊢ (𝑅 ∈ Ring → (¬ 𝑅 ∈ NzRing ↔ 𝐵 = { 0 })) |
| 16 | 15 | pm5.32i 574 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
| 17 | 1, 16 | bitri 275 | 1 ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 {csn 4626 ‘cfv 6561 1c1 11156 ♯chash 14369 Basecbs 17247 0gc0g 17484 Ringcrg 20230 NzRingcnzr 20512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-nzr 20513 |
| This theorem is referenced by: 0ringbas 20528 |
| Copyright terms: Public domain | W3C validator |