![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ringdif | Structured version Visualization version GIF version |
Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
0ring.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
0ringdif | ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3959 | . 2 ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing)) | |
2 | 0ring.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘𝑅)) |
4 | 3 | fveqeq2d 6910 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ (♯‘(Base‘𝑅)) = 1)) |
5 | 0ring.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
6 | 2, 5 | 0ring 20470 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
7 | 6 | ex 411 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 𝐵 = { 0 })) |
8 | fveq2 6902 | . . . . . 6 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = (♯‘{ 0 })) | |
9 | 5 | fvexi 6916 | . . . . . . 7 ⊢ 0 ∈ V |
10 | hashsng 14368 | . . . . . . 7 ⊢ ( 0 ∈ V → (♯‘{ 0 }) = 1) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{ 0 }) = 1 |
12 | 8, 11 | eqtrdi 2784 | . . . . 5 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = 1) |
13 | 7, 12 | impbid1 224 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 𝐵 = { 0 })) |
14 | 0ringnnzr 20469 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) | |
15 | 4, 13, 14 | 3bitr3rd 309 | . . 3 ⊢ (𝑅 ∈ Ring → (¬ 𝑅 ∈ NzRing ↔ 𝐵 = { 0 })) |
16 | 15 | pm5.32i 573 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
17 | 1, 16 | bitri 274 | 1 ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∖ cdif 3946 {csn 4632 ‘cfv 6553 1c1 11147 ♯chash 14329 Basecbs 17187 0gc0g 17428 Ringcrg 20180 NzRingcnzr 20458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13525 df-hash 14330 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-plusg 17253 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-nzr 20459 |
This theorem is referenced by: 0ringbas 20472 |
Copyright terms: Public domain | W3C validator |