Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ringdif | Structured version Visualization version GIF version |
Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
0ringdif.b | ⊢ 𝐵 = (Base‘𝑅) |
0ringdif.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
0ringdif | ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3891 | . 2 ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing)) | |
2 | 0ringdif.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘𝑅)) |
4 | 3 | fveqeq2d 6744 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ (♯‘(Base‘𝑅)) = 1)) |
5 | 0ringdif.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
6 | 2, 5 | 0ring 20333 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
7 | 6 | ex 416 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 𝐵 = { 0 })) |
8 | fveq2 6736 | . . . . . 6 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = (♯‘{ 0 })) | |
9 | 5 | fvexi 6750 | . . . . . . 7 ⊢ 0 ∈ V |
10 | hashsng 13961 | . . . . . . 7 ⊢ ( 0 ∈ V → (♯‘{ 0 }) = 1) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{ 0 }) = 1 |
12 | 8, 11 | eqtrdi 2795 | . . . . 5 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = 1) |
13 | 7, 12 | impbid1 228 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 𝐵 = { 0 })) |
14 | 0ringnnzr 20332 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) | |
15 | 4, 13, 14 | 3bitr3rd 313 | . . 3 ⊢ (𝑅 ∈ Ring → (¬ 𝑅 ∈ NzRing ↔ 𝐵 = { 0 })) |
16 | 15 | pm5.32i 578 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
17 | 1, 16 | bitri 278 | 1 ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2111 Vcvv 3421 ∖ cdif 3878 {csn 4556 ‘cfv 6398 1c1 10755 ♯chash 13921 Basecbs 16785 0gc0g 16969 Ringcrg 19587 NzRingcnzr 20320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-1st 7780 df-2nd 7781 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-oadd 8227 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-dju 9542 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-n0 12116 df-xnn0 12188 df-z 12202 df-uz 12464 df-fz 13121 df-hash 13922 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-plusg 16840 df-0g 16971 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-grp 18393 df-minusg 18394 df-mgp 19530 df-ur 19542 df-ring 19589 df-nzr 20321 |
This theorem is referenced by: 0ringbas 45131 |
Copyright terms: Public domain | W3C validator |