MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ringdif Structured version   Visualization version   GIF version

Theorem 0ringdif 20471
Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
0ring.b 𝐵 = (Base‘𝑅)
0ring.0 0 = (0g𝑅)
Assertion
Ref Expression
0ringdif (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 }))

Proof of Theorem 0ringdif
StepHypRef Expression
1 eldif 3959 . 2 (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing))
2 0ring.b . . . . . 6 𝐵 = (Base‘𝑅)
32a1i 11 . . . . 5 (𝑅 ∈ Ring → 𝐵 = (Base‘𝑅))
43fveqeq2d 6910 . . . 4 (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ (♯‘(Base‘𝑅)) = 1))
5 0ring.0 . . . . . . 7 0 = (0g𝑅)
62, 50ring 20470 . . . . . 6 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 })
76ex 411 . . . . 5 (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 𝐵 = { 0 }))
8 fveq2 6902 . . . . . 6 (𝐵 = { 0 } → (♯‘𝐵) = (♯‘{ 0 }))
95fvexi 6916 . . . . . . 7 0 ∈ V
10 hashsng 14368 . . . . . . 7 ( 0 ∈ V → (♯‘{ 0 }) = 1)
119, 10ax-mp 5 . . . . . 6 (♯‘{ 0 }) = 1
128, 11eqtrdi 2784 . . . . 5 (𝐵 = { 0 } → (♯‘𝐵) = 1)
137, 12impbid1 224 . . . 4 (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 𝐵 = { 0 }))
14 0ringnnzr 20469 . . . 4 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
154, 13, 143bitr3rd 309 . . 3 (𝑅 ∈ Ring → (¬ 𝑅 ∈ NzRing ↔ 𝐵 = { 0 }))
1615pm5.32i 573 . 2 ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 }))
171, 16bitri 274 1 (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  cdif 3946  {csn 4632  cfv 6553  1c1 11147  chash 14329  Basecbs 17187  0gc0g 17428  Ringcrg 20180  NzRingcnzr 20458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13525  df-hash 14330  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-nzr 20459
This theorem is referenced by:  0ringbas  20472
  Copyright terms: Public domain W3C validator