![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ringdif | Structured version Visualization version GIF version |
Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
0ringdif.b | ⊢ 𝐵 = (Base‘𝑅) |
0ringdif.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
0ringdif | ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3959 | . 2 ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing)) | |
2 | 0ringdif.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘𝑅)) |
4 | 3 | fveqeq2d 6900 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ (♯‘(Base‘𝑅)) = 1)) |
5 | 0ringdif.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
6 | 2, 5 | 0ring 20303 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
7 | 6 | ex 414 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 𝐵 = { 0 })) |
8 | fveq2 6892 | . . . . . 6 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = (♯‘{ 0 })) | |
9 | 5 | fvexi 6906 | . . . . . . 7 ⊢ 0 ∈ V |
10 | hashsng 14329 | . . . . . . 7 ⊢ ( 0 ∈ V → (♯‘{ 0 }) = 1) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{ 0 }) = 1 |
12 | 8, 11 | eqtrdi 2789 | . . . . 5 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = 1) |
13 | 7, 12 | impbid1 224 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 𝐵 = { 0 })) |
14 | 0ringnnzr 20302 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) | |
15 | 4, 13, 14 | 3bitr3rd 310 | . . 3 ⊢ (𝑅 ∈ Ring → (¬ 𝑅 ∈ NzRing ↔ 𝐵 = { 0 })) |
16 | 15 | pm5.32i 576 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
17 | 1, 16 | bitri 275 | 1 ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∖ cdif 3946 {csn 4629 ‘cfv 6544 1c1 11111 ♯chash 14290 Basecbs 17144 0gc0g 17385 Ringcrg 20056 NzRingcnzr 20291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-mgp 19988 df-ur 20005 df-ring 20058 df-nzr 20292 |
This theorem is referenced by: 0ringbas 46645 |
Copyright terms: Public domain | W3C validator |