![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrv | Structured version Visualization version GIF version |
Description: Value of 𝑅 evaluated at 𝐽. (Contributed by Thierry Arnoux, 17-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlemrv | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝐽 ∈ (𝑅‘𝐶) ↔ if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽) ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 468 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → 𝐶 ∈ (𝑂 ∖ 𝐸)) | |
2 | ballotth.m | . . . . . 6 ⊢ 𝑀 ∈ ℕ | |
3 | ballotth.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
4 | ballotth.o | . . . . . 6 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
5 | ballotth.p | . . . . . 6 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
6 | ballotth.f | . . . . . 6 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
7 | ballotth.e | . . . . . 6 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
8 | ballotth.mgtn | . . . . . 6 ⊢ 𝑁 < 𝑀 | |
9 | ballotth.i | . . . . . 6 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
10 | ballotth.s | . . . . . 6 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemsf1o 30915 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) |
12 | 11 | simpld 482 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁))) |
13 | f1ofun 6280 | . . . 4 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → Fun (𝑆‘𝐶)) | |
14 | 1, 12, 13 | 3syl 18 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → Fun (𝑆‘𝐶)) |
15 | simpr 471 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → 𝐽 ∈ (1...(𝑀 + 𝑁))) | |
16 | f1odm 6282 | . . . . 5 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → dom (𝑆‘𝐶) = (1...(𝑀 + 𝑁))) | |
17 | 1, 12, 16 | 3syl 18 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → dom (𝑆‘𝐶) = (1...(𝑀 + 𝑁))) |
18 | 15, 17 | eleqtrrd 2853 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → 𝐽 ∈ dom (𝑆‘𝐶)) |
19 | fvimacnv 6475 | . . 3 ⊢ ((Fun (𝑆‘𝐶) ∧ 𝐽 ∈ dom (𝑆‘𝐶)) → (((𝑆‘𝐶)‘𝐽) ∈ 𝐶 ↔ 𝐽 ∈ (◡(𝑆‘𝐶) “ 𝐶))) | |
20 | 14, 18, 19 | syl2anc 573 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (((𝑆‘𝐶)‘𝐽) ∈ 𝐶 ↔ 𝐽 ∈ (◡(𝑆‘𝐶) “ 𝐶))) |
21 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemsv 30911 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
22 | 21 | eleq1d 2835 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (((𝑆‘𝐶)‘𝐽) ∈ 𝐶 ↔ if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽) ∈ 𝐶)) |
23 | 11 | simprd 483 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ◡(𝑆‘𝐶) = (𝑆‘𝐶)) |
24 | 23 | imaeq1d 5606 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (◡(𝑆‘𝐶) “ 𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
25 | ballotth.r | . . . . . 6 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
26 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 25 | ballotlemrval 30919 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
27 | 24, 26 | eqtr4d 2808 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (◡(𝑆‘𝐶) “ 𝐶) = (𝑅‘𝐶)) |
28 | 27 | eleq2d 2836 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐽 ∈ (◡(𝑆‘𝐶) “ 𝐶) ↔ 𝐽 ∈ (𝑅‘𝐶))) |
29 | 1, 28 | syl 17 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝐽 ∈ (◡(𝑆‘𝐶) “ 𝐶) ↔ 𝐽 ∈ (𝑅‘𝐶))) |
30 | 20, 22, 29 | 3bitr3rd 299 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝐽 ∈ (𝑅‘𝐶) ↔ if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽) ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 ∖ cdif 3720 ∩ cin 3722 ifcif 4225 𝒫 cpw 4297 class class class wbr 4786 ↦ cmpt 4863 ◡ccnv 5248 dom cdm 5249 “ cima 5252 Fun wfun 6025 –1-1-onto→wf1o 6030 ‘cfv 6031 (class class class)co 6793 infcinf 8503 ℝcr 10137 0cc0 10138 1c1 10139 + caddc 10141 < clt 10276 ≤ cle 10277 − cmin 10468 / cdiv 10886 ℕcn 11222 ℤcz 11579 ...cfz 12533 ♯chash 13321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-fz 12534 df-hash 13322 |
This theorem is referenced by: ballotlemrv1 30922 ballotlemrv2 30923 |
Copyright terms: Public domain | W3C validator |