Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap11 Structured version   Visualization version   GIF version

Theorem hdmap11 40524
Description: Part of proof of part 12 in [Baer] p. 49 line 4, aS=bS iff a=b in their notation (S = sigma). The sigma map is one-to-one. (Contributed by NM, 26-May-2015.)
Hypotheses
Ref Expression
hdmap12d.h 𝐻 = (LHyp‘𝐾)
hdmap12d.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap12d.v 𝑉 = (Base‘𝑈)
hdmap12d.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap12d.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap12d.x (𝜑𝑋𝑉)
hdmap12d.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hdmap11 (𝜑 → ((𝑆𝑋) = (𝑆𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem hdmap11
StepHypRef Expression
1 hdmap12d.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 hdmap12d.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap12d.v . . . . 5 𝑉 = (Base‘𝑈)
4 eqid 2731 . . . . 5 (-g𝑈) = (-g𝑈)
5 eqid 2731 . . . . 5 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
6 eqid 2731 . . . . 5 (-g‘((LCDual‘𝐾)‘𝑊)) = (-g‘((LCDual‘𝐾)‘𝑊))
7 hdmap12d.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
8 hdmap12d.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 hdmap12d.x . . . . 5 (𝜑𝑋𝑉)
10 hdmap12d.y . . . . 5 (𝜑𝑌𝑉)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10hdmapsub 40523 . . . 4 (𝜑 → (𝑆‘(𝑋(-g𝑈)𝑌)) = ((𝑆𝑋)(-g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑌)))
1211eqeq1d 2733 . . 3 (𝜑 → ((𝑆‘(𝑋(-g𝑈)𝑌)) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ ((𝑆𝑋)(-g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑌)) = (0g‘((LCDual‘𝐾)‘𝑊))))
13 eqid 2731 . . . 4 (0g𝑈) = (0g𝑈)
14 eqid 2731 . . . 4 (0g‘((LCDual‘𝐾)‘𝑊)) = (0g‘((LCDual‘𝐾)‘𝑊))
151, 2, 8dvhlmod 39786 . . . . 5 (𝜑𝑈 ∈ LMod)
163, 4lmodvsubcl 20466 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋(-g𝑈)𝑌) ∈ 𝑉)
1715, 9, 10, 16syl3anc 1371 . . . 4 (𝜑 → (𝑋(-g𝑈)𝑌) ∈ 𝑉)
181, 2, 3, 13, 5, 14, 7, 8, 17hdmapeq0 40520 . . 3 (𝜑 → ((𝑆‘(𝑋(-g𝑈)𝑌)) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ (𝑋(-g𝑈)𝑌) = (0g𝑈)))
191, 5, 8lcdlmod 40268 . . . . 5 (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod)
20 lmodgrp 20427 . . . . 5 (((LCDual‘𝐾)‘𝑊) ∈ LMod → ((LCDual‘𝐾)‘𝑊) ∈ Grp)
2119, 20syl 17 . . . 4 (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ Grp)
22 eqid 2731 . . . . 5 (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊))
231, 2, 3, 5, 22, 7, 8, 9hdmapcl 40506 . . . 4 (𝜑 → (𝑆𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
241, 2, 3, 5, 22, 7, 8, 10hdmapcl 40506 . . . 4 (𝜑 → (𝑆𝑌) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
2522, 14, 6grpsubeq0 18883 . . . 4 ((((LCDual‘𝐾)‘𝑊) ∈ Grp ∧ (𝑆𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊)) ∧ (𝑆𝑌) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) → (((𝑆𝑋)(-g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑌)) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ (𝑆𝑋) = (𝑆𝑌)))
2621, 23, 24, 25syl3anc 1371 . . 3 (𝜑 → (((𝑆𝑋)(-g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑌)) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ (𝑆𝑋) = (𝑆𝑌)))
2712, 18, 263bitr3rd 309 . 2 (𝜑 → ((𝑆𝑋) = (𝑆𝑌) ↔ (𝑋(-g𝑈)𝑌) = (0g𝑈)))
28 lmodgrp 20427 . . . 4 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
2915, 28syl 17 . . 3 (𝜑𝑈 ∈ Grp)
303, 13, 4grpsubeq0 18883 . . 3 ((𝑈 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → ((𝑋(-g𝑈)𝑌) = (0g𝑈) ↔ 𝑋 = 𝑌))
3129, 9, 10, 30syl3anc 1371 . 2 (𝜑 → ((𝑋(-g𝑈)𝑌) = (0g𝑈) ↔ 𝑋 = 𝑌))
3227, 31bitrd 278 1 (𝜑 → ((𝑆𝑋) = (𝑆𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cfv 6532  (class class class)co 7393  Basecbs 17126  0gc0g 17367  Grpcgrp 18794  -gcsg 18796  LModclmod 20420  HLchlt 38025  LHypclh 38660  DVecHcdvh 39754  LCDualclcd 40262  HDMapchdma 40468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-riotaBAD 37628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-ot 4631  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-tpos 8193  df-undef 8240  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17369  df-mre 17512  df-mrc 17513  df-acs 17515  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-subg 18975  df-cntz 19147  df-oppg 19174  df-lsm 19468  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-oppr 20102  df-dvdsr 20123  df-unit 20124  df-invr 20154  df-dvr 20165  df-drng 20267  df-lmod 20422  df-lss 20492  df-lsp 20532  df-lvec 20663  df-lsatoms 37651  df-lshyp 37652  df-lcv 37694  df-lfl 37733  df-lkr 37761  df-ldual 37799  df-oposet 37851  df-ol 37853  df-oml 37854  df-covers 37941  df-ats 37942  df-atl 37973  df-cvlat 37997  df-hlat 38026  df-llines 38174  df-lplanes 38175  df-lvols 38176  df-lines 38177  df-psubsp 38179  df-pmap 38180  df-padd 38472  df-lhyp 38664  df-laut 38665  df-ldil 38780  df-ltrn 38781  df-trl 38835  df-tgrp 39419  df-tendo 39431  df-edring 39433  df-dveca 39679  df-disoa 39705  df-dvech 39755  df-dib 39815  df-dic 39849  df-dih 39905  df-doch 40024  df-djh 40071  df-lcdual 40263  df-mapd 40301  df-hvmap 40433  df-hdmap1 40469  df-hdmap 40470
This theorem is referenced by:  hdmapf1oN  40541  hgmap11  40578
  Copyright terms: Public domain W3C validator