Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap11 Structured version   Visualization version   GIF version

Theorem hdmap11 41831
Description: Part of proof of part 12 in [Baer] p. 49 line 4, aS=bS iff a=b in their notation (S = sigma). The sigma map is one-to-one. (Contributed by NM, 26-May-2015.)
Hypotheses
Ref Expression
hdmap12d.h 𝐻 = (LHyp‘𝐾)
hdmap12d.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap12d.v 𝑉 = (Base‘𝑈)
hdmap12d.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap12d.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap12d.x (𝜑𝑋𝑉)
hdmap12d.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hdmap11 (𝜑 → ((𝑆𝑋) = (𝑆𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem hdmap11
StepHypRef Expression
1 hdmap12d.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 hdmap12d.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap12d.v . . . . 5 𝑉 = (Base‘𝑈)
4 eqid 2735 . . . . 5 (-g𝑈) = (-g𝑈)
5 eqid 2735 . . . . 5 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
6 eqid 2735 . . . . 5 (-g‘((LCDual‘𝐾)‘𝑊)) = (-g‘((LCDual‘𝐾)‘𝑊))
7 hdmap12d.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
8 hdmap12d.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 hdmap12d.x . . . . 5 (𝜑𝑋𝑉)
10 hdmap12d.y . . . . 5 (𝜑𝑌𝑉)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10hdmapsub 41830 . . . 4 (𝜑 → (𝑆‘(𝑋(-g𝑈)𝑌)) = ((𝑆𝑋)(-g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑌)))
1211eqeq1d 2737 . . 3 (𝜑 → ((𝑆‘(𝑋(-g𝑈)𝑌)) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ ((𝑆𝑋)(-g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑌)) = (0g‘((LCDual‘𝐾)‘𝑊))))
13 eqid 2735 . . . 4 (0g𝑈) = (0g𝑈)
14 eqid 2735 . . . 4 (0g‘((LCDual‘𝐾)‘𝑊)) = (0g‘((LCDual‘𝐾)‘𝑊))
151, 2, 8dvhlmod 41093 . . . . 5 (𝜑𝑈 ∈ LMod)
163, 4lmodvsubcl 20922 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋(-g𝑈)𝑌) ∈ 𝑉)
1715, 9, 10, 16syl3anc 1370 . . . 4 (𝜑 → (𝑋(-g𝑈)𝑌) ∈ 𝑉)
181, 2, 3, 13, 5, 14, 7, 8, 17hdmapeq0 41827 . . 3 (𝜑 → ((𝑆‘(𝑋(-g𝑈)𝑌)) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ (𝑋(-g𝑈)𝑌) = (0g𝑈)))
191, 5, 8lcdlmod 41575 . . . . 5 (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod)
20 lmodgrp 20882 . . . . 5 (((LCDual‘𝐾)‘𝑊) ∈ LMod → ((LCDual‘𝐾)‘𝑊) ∈ Grp)
2119, 20syl 17 . . . 4 (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ Grp)
22 eqid 2735 . . . . 5 (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊))
231, 2, 3, 5, 22, 7, 8, 9hdmapcl 41813 . . . 4 (𝜑 → (𝑆𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
241, 2, 3, 5, 22, 7, 8, 10hdmapcl 41813 . . . 4 (𝜑 → (𝑆𝑌) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
2522, 14, 6grpsubeq0 19057 . . . 4 ((((LCDual‘𝐾)‘𝑊) ∈ Grp ∧ (𝑆𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊)) ∧ (𝑆𝑌) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) → (((𝑆𝑋)(-g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑌)) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ (𝑆𝑋) = (𝑆𝑌)))
2621, 23, 24, 25syl3anc 1370 . . 3 (𝜑 → (((𝑆𝑋)(-g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑌)) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ (𝑆𝑋) = (𝑆𝑌)))
2712, 18, 263bitr3rd 310 . 2 (𝜑 → ((𝑆𝑋) = (𝑆𝑌) ↔ (𝑋(-g𝑈)𝑌) = (0g𝑈)))
28 lmodgrp 20882 . . . 4 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
2915, 28syl 17 . . 3 (𝜑𝑈 ∈ Grp)
303, 13, 4grpsubeq0 19057 . . 3 ((𝑈 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → ((𝑋(-g𝑈)𝑌) = (0g𝑈) ↔ 𝑋 = 𝑌))
3129, 9, 10, 30syl3anc 1370 . 2 (𝜑 → ((𝑋(-g𝑈)𝑌) = (0g𝑈) ↔ 𝑋 = 𝑌))
3227, 31bitrd 279 1 (𝜑 → ((𝑆𝑋) = (𝑆𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  0gc0g 17486  Grpcgrp 18964  -gcsg 18966  LModclmod 20875  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061  LCDualclcd 41569  HDMapchdma 41775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-oppg 19377  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-nzr 20530  df-rlreg 20711  df-domn 20712  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lshyp 38959  df-lcv 39001  df-lfl 39040  df-lkr 39068  df-ldual 39106  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726  df-tendo 40738  df-edring 40740  df-dveca 40986  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212  df-doch 41331  df-djh 41378  df-lcdual 41570  df-mapd 41608  df-hvmap 41740  df-hdmap1 41776  df-hdmap 41777
This theorem is referenced by:  hdmapf1oN  41848  hgmap11  41885
  Copyright terms: Public domain W3C validator