MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem1 Structured version   Visualization version   GIF version

Theorem lgslem1 25876
Description: When 𝑎 is coprime to the prime 𝑝, 𝑎↑((𝑝 − 1) / 2) is equivalent mod 𝑝 to 1 or -1, and so adding 1 makes it equivalent to 0 or 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgslem1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})

Proof of Theorem lgslem1
StepHypRef Expression
1 eldifi 4106 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
213ad2ant2 1130 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℙ)
3 prmnn 16021 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℕ)
5 simp1 1132 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
6 prmz 16022 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
72, 6syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℤ)
8 gcdcom 15865 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
95, 7, 8syl2anc 586 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
10 simp3 1134 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ¬ 𝑃𝐴)
11 coprm 16058 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
122, 5, 11syl2anc 586 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
1310, 12mpbid 234 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 gcd 𝐴) = 1)
149, 13eqtrd 2859 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = 1)
15 eulerth 16123 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
164, 5, 14, 15syl3anc 1367 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
17 phiprm 16117 . . . . . . . . . 10 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
182, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − 1))
19 nnm1nn0 11941 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
204, 19syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℕ0)
2118, 20eqeltrd 2916 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) ∈ ℕ0)
22 zexpcl 13447 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
235, 21, 22syl2anc 586 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
24 1zzd 12016 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 1 ∈ ℤ)
25 moddvds 15621 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
264, 23, 24, 25syl3anc 1367 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
2716, 26mpbid 234 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1))
2820nn0cnd 11960 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℂ)
29 2cnd 11718 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℂ)
30 2ne0 11744 . . . . . . . . . . . . 13 2 ≠ 0
3130a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ≠ 0)
3228, 29, 31divcan1d 11420 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3318, 32eqtr4d 2862 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (((𝑃 − 1) / 2) · 2))
3433oveq2d 7175 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑(((𝑃 − 1) / 2) · 2)))
355zcnd 12091 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
36 2nn0 11917 . . . . . . . . . . 11 2 ∈ ℕ0
3736a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℕ0)
38 oddprm 16150 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
39383ad2ant2 1130 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ)
4039nnnn0d 11958 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ0)
4135, 37, 40expmuld 13516 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(((𝑃 − 1) / 2) · 2)) = ((𝐴↑((𝑃 − 1) / 2))↑2))
4234, 41eqtrd 2859 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = ((𝐴↑((𝑃 − 1) / 2))↑2))
4342oveq1d 7174 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2))↑2) − 1))
44 sq1 13561 . . . . . . . 8 (1↑2) = 1
4544oveq2i 7170 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2))↑2) − 1)
4643, 45syl6eqr 2877 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)))
47 zexpcl 13447 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
485, 40, 47syl2anc 586 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
4948zcnd 12091 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
50 ax-1cn 10598 . . . . . . 7 1 ∈ ℂ
51 subsq 13575 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5249, 50, 51sylancl 588 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5346, 52eqtrd 2859 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5427, 53breqtrd 5095 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5548peano2zd 12093 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
56 peano2zm 12028 . . . . . 6 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℤ → ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ)
5748, 56syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ)
58 euclemma 16060 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ ∧ ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))))
592, 55, 57, 58syl3anc 1367 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))))
6054, 59mpbid 234 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
61 dvdsval3 15614 . . . . 5 ((𝑃 ∈ ℕ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0))
624, 55, 61syl2anc 586 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0))
63 2z 12017 . . . . . . 7 2 ∈ ℤ
6463a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℤ)
65 moddvds 15621 . . . . . 6 ((𝑃 ∈ ℕ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ ∧ 2 ∈ ℤ) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2)))
664, 55, 64, 65syl3anc 1367 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2)))
67 2re 11714 . . . . . . . 8 2 ∈ ℝ
6867a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℝ)
694nnrpd 12432 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ+)
70 0le2 11742 . . . . . . . 8 0 ≤ 2
7170a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 0 ≤ 2)
724nnred 11656 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ)
73 prmuz2 16043 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
742, 73syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
75 eluzle 12259 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
7674, 75syl 17 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ≤ 𝑃)
77 eldifsni 4725 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
78773ad2ant2 1130 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ≠ 2)
7968, 72, 76, 78leneltd 10797 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 < 𝑃)
80 modid 13267 . . . . . . 7 (((2 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 𝑃)) → (2 mod 𝑃) = 2)
8168, 69, 71, 79, 80syl22anc 836 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (2 mod 𝑃) = 2)
8281eqeq2d 2835 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
83 df-2 11703 . . . . . . . 8 2 = (1 + 1)
8483oveq2i 7170 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − (1 + 1))
8550a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 1 ∈ ℂ)
8649, 85, 85pnpcan2d 11038 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − (1 + 1)) = ((𝐴↑((𝑃 − 1) / 2)) − 1))
8784, 86syl5eq 2871 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) = ((𝐴↑((𝑃 − 1) / 2)) − 1))
8887breq2d 5081 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
8966, 82, 883bitr3rd 312 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
9062, 89orbi12d 915 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2)))
9160, 90mpbid 234 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
92 ovex 7192 . . 3 (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ V
9392elpr 4593 . 2 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} ↔ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
9491, 93sylibr 236 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wo 843  w3a 1083   = wceq 1536  wcel 2113  wne 3019  cdif 3936  {csn 4570  {cpr 4572   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  0cn0 11900  cz 11984  cuz 12246  +crp 12392   mod cmo 13240  cexp 13432  cdvds 15610   gcd cgcd 15846  cprime 16018  ϕcphi 16104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-dvds 15611  df-gcd 15847  df-prm 16019  df-phi 16106
This theorem is referenced by:  lgslem4  25879
  Copyright terms: Public domain W3C validator