MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem1 Structured version   Visualization version   GIF version

Theorem lgslem1 27341
Description: When 𝑎 is coprime to the prime 𝑝, 𝑎↑((𝑝 − 1) / 2) is equivalent mod 𝑝 to 1 or -1, and so adding 1 makes it equivalent to 0 or 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgslem1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})

Proof of Theorem lgslem1
StepHypRef Expression
1 eldifi 4131 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
213ad2ant2 1135 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℙ)
3 prmnn 16711 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℕ)
5 simp1 1137 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
6 prmz 16712 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
72, 6syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℤ)
85, 7gcdcomd 16551 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
9 simp3 1139 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ¬ 𝑃𝐴)
10 coprm 16748 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
112, 5, 10syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
129, 11mpbid 232 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 gcd 𝐴) = 1)
138, 12eqtrd 2777 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = 1)
14 eulerth 16820 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
154, 5, 13, 14syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
16 phiprm 16814 . . . . . . . . . 10 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
172, 16syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − 1))
18 nnm1nn0 12567 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
194, 18syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℕ0)
2017, 19eqeltrd 2841 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) ∈ ℕ0)
21 zexpcl 14117 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
225, 20, 21syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
23 1zzd 12648 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 1 ∈ ℤ)
24 moddvds 16301 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
254, 22, 23, 24syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
2615, 25mpbid 232 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1))
2719nn0cnd 12589 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℂ)
28 2cnd 12344 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℂ)
29 2ne0 12370 . . . . . . . . . . . . 13 2 ≠ 0
3029a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ≠ 0)
3127, 28, 30divcan1d 12044 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3217, 31eqtr4d 2780 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (((𝑃 − 1) / 2) · 2))
3332oveq2d 7447 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑(((𝑃 − 1) / 2) · 2)))
345zcnd 12723 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
35 2nn0 12543 . . . . . . . . . . 11 2 ∈ ℕ0
3635a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℕ0)
37 oddprm 16848 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
38373ad2ant2 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ)
3938nnnn0d 12587 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ0)
4034, 36, 39expmuld 14189 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(((𝑃 − 1) / 2) · 2)) = ((𝐴↑((𝑃 − 1) / 2))↑2))
4133, 40eqtrd 2777 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = ((𝐴↑((𝑃 − 1) / 2))↑2))
4241oveq1d 7446 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2))↑2) − 1))
43 sq1 14234 . . . . . . . 8 (1↑2) = 1
4443oveq2i 7442 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2))↑2) − 1)
4542, 44eqtr4di 2795 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)))
46 zexpcl 14117 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
475, 39, 46syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
4847zcnd 12723 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
49 ax-1cn 11213 . . . . . . 7 1 ∈ ℂ
50 subsq 14249 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5148, 49, 50sylancl 586 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2))↑2) − (1↑2)) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5245, 51eqtrd 2777 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) = (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5326, 52breqtrd 5169 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)))
5447peano2zd 12725 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ)
55 peano2zm 12660 . . . . . 6 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℤ → ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ)
5647, 55syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ)
57 euclemma 16750 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ ∧ ((𝐴↑((𝑃 − 1) / 2)) − 1) ∈ ℤ) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))))
582, 54, 56, 57syl3anc 1373 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) · ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1))))
5953, 58mpbid 232 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
60 dvdsval3 16294 . . . . 5 ((𝑃 ∈ ℕ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0))
614, 54, 60syl2anc 584 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0))
62 2z 12649 . . . . . . 7 2 ∈ ℤ
6362a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℤ)
64 moddvds 16301 . . . . . 6 ((𝑃 ∈ ℕ ∧ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∈ ℤ ∧ 2 ∈ ℤ) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2)))
654, 54, 63, 64syl3anc 1373 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ 𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2)))
66 2re 12340 . . . . . . . 8 2 ∈ ℝ
6766a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ∈ ℝ)
684nnrpd 13075 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ+)
69 0le2 12368 . . . . . . . 8 0 ≤ 2
7069a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 0 ≤ 2)
714nnred 12281 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ)
72 prmuz2 16733 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
732, 72syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
74 eluzle 12891 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
7573, 74syl 17 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 ≤ 𝑃)
76 eldifsni 4790 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
77763ad2ant2 1135 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 𝑃 ≠ 2)
7867, 71, 75, 77leneltd 11415 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 2 < 𝑃)
79 modid 13936 . . . . . . 7 (((2 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 𝑃)) → (2 mod 𝑃) = 2)
8067, 68, 70, 78, 79syl22anc 839 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (2 mod 𝑃) = 2)
8180eqeq2d 2748 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (2 mod 𝑃) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
82 df-2 12329 . . . . . . . 8 2 = (1 + 1)
8382oveq2i 7442 . . . . . . 7 (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) = (((𝐴↑((𝑃 − 1) / 2)) + 1) − (1 + 1))
8449a1i 11 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → 1 ∈ ℂ)
8548, 84, 84pnpcan2d 11658 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − (1 + 1)) = ((𝐴↑((𝑃 − 1) / 2)) − 1))
8683, 85eqtrid 2789 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) = ((𝐴↑((𝑃 − 1) / 2)) − 1))
8786breq2d 5155 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ (((𝐴↑((𝑃 − 1) / 2)) + 1) − 2) ↔ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)))
8865, 81, 873bitr3rd 310 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1) ↔ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
8961, 88orbi12d 919 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) + 1) ∨ 𝑃 ∥ ((𝐴↑((𝑃 − 1) / 2)) − 1)) ↔ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2)))
9059, 89mpbid 232 . 2 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
91 ovex 7464 . . 3 (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ V
9291elpr 4650 . 2 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} ↔ ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
9390, 92sylibr 234 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cdif 3948  {csn 4626  {cpr 4628   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034   mod cmo 13909  cexp 14102  cdvds 16290   gcd cgcd 16531  cprime 16708  ϕcphi 16801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-phi 16803
This theorem is referenced by:  lgslem4  27344
  Copyright terms: Public domain W3C validator