MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colinearalglem2 Structured version   Visualization version   GIF version

Theorem colinearalglem2 26695
Description: Lemma for colinearalg 26698. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
colinearalglem2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗

Proof of Theorem colinearalglem2
StepHypRef Expression
1 simp1 1132 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2 simpl 485 . . . 4 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
3 fveecn 26690 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
41, 2, 3syl2an 597 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐴𝑖) ∈ ℂ)
5 simp2 1133 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
6 fveecn 26690 . . . 4 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
75, 2, 6syl2an 597 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐵𝑖) ∈ ℂ)
8 simp3 1134 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
9 fveecn 26690 . . . 4 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
108, 2, 9syl2an 597 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐶𝑖) ∈ ℂ)
11 simpr 487 . . . 4 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
12 fveecn 26690 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
131, 11, 12syl2an 597 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐴𝑗) ∈ ℂ)
14 fveecn 26690 . . . 4 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
155, 11, 14syl2an 597 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐵𝑗) ∈ ℂ)
16 fveecn 26690 . . . 4 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
178, 11, 16syl2an 597 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐶𝑗) ∈ ℂ)
18 simp1 1132 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (𝐴𝑖) ∈ ℂ)
19 simp3 1134 . . . . . . . . . . . 12 (((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → (𝐶𝑗) ∈ ℂ)
20 mulcl 10623 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐴𝑖) · (𝐶𝑗)) ∈ ℂ)
2118, 19, 20syl2an 597 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐴𝑖) · (𝐶𝑗)) ∈ ℂ)
22 simp2 1133 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (𝐵𝑖) ∈ ℂ)
23 simp1 1132 . . . . . . . . . . . 12 (((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → (𝐴𝑗) ∈ ℂ)
24 mulcl 10623 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((𝐵𝑖) · (𝐴𝑗)) ∈ ℂ)
2522, 23, 24syl2an 597 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐵𝑖) · (𝐴𝑗)) ∈ ℂ)
2621, 25addcld 10662 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) ∈ ℂ)
27 mulcl 10623 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐵𝑖) · (𝐶𝑗)) ∈ ℂ)
2822, 19, 27syl2an 597 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐵𝑖) · (𝐶𝑗)) ∈ ℂ)
2926, 28subcld 10999 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) ∈ ℂ)
30 simp2 1133 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → (𝐵𝑗) ∈ ℂ)
31 mulcl 10623 . . . . . . . . . 10 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((𝐴𝑖) · (𝐵𝑗)) ∈ ℂ)
3218, 30, 31syl2an 597 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐴𝑖) · (𝐵𝑗)) ∈ ℂ)
33 simp3 1134 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (𝐶𝑖) ∈ ℂ)
34 mulcl 10623 . . . . . . . . . . 11 (((𝐶𝑖) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((𝐶𝑖) · (𝐴𝑗)) ∈ ℂ)
3533, 23, 34syl2an 597 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐶𝑖) · (𝐴𝑗)) ∈ ℂ)
36 mulcl 10623 . . . . . . . . . . 11 (((𝐶𝑖) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((𝐶𝑖) · (𝐵𝑗)) ∈ ℂ)
3733, 30, 36syl2an 597 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐶𝑖) · (𝐵𝑗)) ∈ ℂ)
3835, 37subcld 10999 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ∈ ℂ)
3929, 32, 38subadd2d 11018 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗)))))
40 eqcom 2830 . . . . . . . 8 (((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) ↔ ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))))
4139, 40syl6bb 289 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗)))))
4235, 32, 37addsubd 11020 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐶𝑖) · (𝐵𝑗))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))))
4335, 32addcomd 10844 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐶𝑖) · (𝐴𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) = (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))))
4443oveq1d 7173 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐶𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))))
4542, 44eqtr3d 2860 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))))
4645eqeq2d 2834 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))) ↔ ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗)))))
4741, 46bitrd 281 . . . . . 6 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗)))))
4826, 28, 32subsub4d 11030 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))))
4928, 32addcld 10662 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) ∈ ℂ)
5021, 49, 25subsub3d 11029 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − ((((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗)))) = ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))))
5128, 25, 32subsub3d 11029 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐵𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))) = ((((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗))))
5251eqcomd 2829 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗))) = (((𝐵𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))))
5352oveq2d 7174 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − ((((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗))))))
5425, 32subcld 10999 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗))) ∈ ℂ)
5521, 28, 54subsubd 11027 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗))))) = ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) + (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))))
5653, 55eqtrd 2858 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − ((((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗)))) = ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) + (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))))
5748, 50, 563eqtr2d 2864 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) + (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))))
5821, 28subcld 10999 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) ∈ ℂ)
5958, 25, 32addsub12d 11022 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) + (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐵𝑖) · (𝐴𝑗)) + ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗)))))
6021, 28, 32subsub4d 11030 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))))
6160oveq2d 7174 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐵𝑖) · (𝐴𝑗)) + ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
6257, 59, 613eqtrd 2862 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
6362eqeq1d 2825 . . . . . 6 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗)))))
6432, 35addcld 10662 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) ∈ ℂ)
65 subeqrev 11064 . . . . . . 7 ((((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) ∈ ℂ ∧ ((𝐵𝑖) · (𝐶𝑗)) ∈ ℂ) ∧ ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) ∈ ℂ ∧ ((𝐶𝑖) · (𝐵𝑗)) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐵𝑖) · (𝐶𝑗)) − (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐶𝑖) · (𝐵𝑗)) − (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))))))
6626, 28, 64, 37, 65syl22anc 836 . . . . . 6 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐵𝑖) · (𝐶𝑗)) − (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐶𝑖) · (𝐵𝑗)) − (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))))))
6747, 63, 663bitr3rd 312 . . . . 5 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐶𝑗)) − (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐶𝑖) · (𝐵𝑗)) − (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗)))) ↔ (((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗)))))
6821, 49subcld 10999 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) ∈ ℂ)
6925, 68, 38addrsub 11059 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗)))))
7035, 37, 25sub32d 11031 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐵𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))))
7135, 25, 37subsub4d 11030 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐵𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))))
7270, 71eqtrd 2858 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))))
7372eqeq2d 2834 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗))) ↔ (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗))))))
7469, 73bitrd 281 . . . . . 6 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗))))))
75 eqcom 2830 . . . . . 6 ((((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) ↔ (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))))
7674, 75syl6bb 289 . . . . 5 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
7767, 76bitrd 281 . . . 4 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐶𝑗)) − (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐶𝑖) · (𝐵𝑗)) − (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗)))) ↔ (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
78 colinearalglem1 26694 . . . 4 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) · (𝐶𝑗)) − (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐶𝑖) · (𝐵𝑗)) − (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))))))
79 3anrot 1096 . . . . 5 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ↔ ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐴𝑖) ∈ ℂ))
80 3anrot 1096 . . . . 5 (((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ↔ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ))
81 colinearalglem1 26694 . . . . 5 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐴𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ)) → ((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))) ↔ (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
8279, 80, 81syl2anb 599 . . . 4 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))) ↔ (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
8377, 78, 823bitr4d 313 . . 3 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))))
844, 7, 10, 13, 15, 17, 83syl33anc 1381 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))))
85842ralbidva 3200 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cfv 6357  (class class class)co 7158  cc 10537  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872  ...cfz 12895  𝔼cee 26676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682  df-sub 10874  df-neg 10875  df-ee 26679
This theorem is referenced by:  colinearalglem3  26696  colinearalg  26698
  Copyright terms: Public domain W3C validator