![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvmulcan | Structured version Visualization version GIF version |
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcan | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2970 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
2 | biorf 961 | . . . . 5 ⊢ (¬ 𝐴 = 0 → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) | |
3 | 1, 2 | sylbi 209 | . . . 4 ⊢ (𝐴 ≠ 0 → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
4 | 3 | ad2antlr 719 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
5 | 4 | 3adant3 1163 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
6 | hvsubeq0 28442 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ 𝐵 = 𝐶)) | |
7 | 6 | 3adant1 1161 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ 𝐵 = 𝐶)) |
8 | hvsubdistr1 28423 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) | |
9 | 8 | eqeq1d 2799 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ)) |
10 | hvsubcl 28391 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) ∈ ℋ) | |
11 | hvmul0or 28399 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 −ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) | |
12 | 10, 11 | sylan2 587 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
13 | 12 | 3impb 1144 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
14 | hvmulcl 28387 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
15 | 14 | 3adant3 1163 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
16 | hvmulcl 28387 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
17 | 16 | 3adant2 1162 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
18 | hvsubeq0 28442 | . . . . 5 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ (𝐴 ·ℎ 𝐶) ∈ ℋ) → (((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) | |
19 | 15, 17, 18 | syl2anc 580 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
20 | 9, 13, 19 | 3bitr3d 301 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ) ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
21 | 20 | 3adant1r 1224 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ) ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
22 | 5, 7, 21 | 3bitr3rd 302 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 (class class class)co 6876 ℂcc 10220 0cc0 10222 ℋchba 28293 ·ℎ csm 28295 0ℎc0v 28298 −ℎ cmv 28299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-hfvadd 28374 ax-hvcom 28375 ax-hvass 28376 ax-hv0cl 28377 ax-hvaddid 28378 ax-hfvmul 28379 ax-hvmulid 28380 ax-hvmulass 28381 ax-hvdistr1 28382 ax-hvdistr2 28383 ax-hvmul0 28384 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-hvsub 28345 |
This theorem is referenced by: hvsubcan 28448 hvsubcan2 28449 |
Copyright terms: Public domain | W3C validator |