Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcan Structured version   Visualization version   GIF version

Theorem hvmulcan 28968
 Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcan (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem hvmulcan
StepHypRef Expression
1 df-ne 2952 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 biorf 934 . . . . 5 𝐴 = 0 → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
31, 2sylbi 220 . . . 4 (𝐴 ≠ 0 → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
43ad2antlr 726 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ) → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
543adant3 1129 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
6 hvsubeq0 28964 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0𝐵 = 𝐶))
763adant1 1127 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0𝐵 = 𝐶))
8 hvsubdistr1 28945 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
98eqeq1d 2760 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ ((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0))
10 hvsubcl 28913 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 𝐶) ∈ ℋ)
11 hvmul0or 28921 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵 𝐶) ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
1210, 11sylan2 595 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
13123impb 1112 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
14 hvmulcl 28909 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
15143adant3 1129 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
16 hvmulcl 28909 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
17163adant2 1128 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
18 hvsubeq0 28964 . . . . 5 (((𝐴 · 𝐵) ∈ ℋ ∧ (𝐴 · 𝐶) ∈ ℋ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
1915, 17, 18syl2anc 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
209, 13, 193bitr3d 312 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 𝐶) = 0) ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
21203adant1r 1174 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 𝐶) = 0) ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
225, 7, 213bitr3rd 313 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ 𝐵 = 𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  (class class class)co 7156  ℂcc 10586  0cc0 10588   ℋchba 28815   ·ℎ csm 28817  0ℎc0v 28820   −ℎ cmv 28821 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-hfvadd 28896  ax-hvcom 28897  ax-hvass 28898  ax-hv0cl 28899  ax-hvaddid 28900  ax-hfvmul 28901  ax-hvmulid 28902  ax-hvmulass 28903  ax-hvdistr1 28904  ax-hvdistr2 28905  ax-hvmul0 28906 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-hvsub 28867 This theorem is referenced by:  hvsubcan  28970  hvsubcan2  28971
 Copyright terms: Public domain W3C validator