Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulcan | Structured version Visualization version GIF version |
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcan | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2952 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
2 | biorf 934 | . . . . 5 ⊢ (¬ 𝐴 = 0 → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) | |
3 | 1, 2 | sylbi 220 | . . . 4 ⊢ (𝐴 ≠ 0 → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
4 | 3 | ad2antlr 726 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
5 | 4 | 3adant3 1129 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
6 | hvsubeq0 28964 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ 𝐵 = 𝐶)) | |
7 | 6 | 3adant1 1127 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ 𝐵 = 𝐶)) |
8 | hvsubdistr1 28945 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) | |
9 | 8 | eqeq1d 2760 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ)) |
10 | hvsubcl 28913 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) ∈ ℋ) | |
11 | hvmul0or 28921 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 −ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) | |
12 | 10, 11 | sylan2 595 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
13 | 12 | 3impb 1112 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
14 | hvmulcl 28909 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
15 | 14 | 3adant3 1129 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
16 | hvmulcl 28909 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
17 | 16 | 3adant2 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
18 | hvsubeq0 28964 | . . . . 5 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ (𝐴 ·ℎ 𝐶) ∈ ℋ) → (((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) | |
19 | 15, 17, 18 | syl2anc 587 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
20 | 9, 13, 19 | 3bitr3d 312 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ) ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
21 | 20 | 3adant1r 1174 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ) ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
22 | 5, 7, 21 | 3bitr3rd 313 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 (class class class)co 7156 ℂcc 10586 0cc0 10588 ℋchba 28815 ·ℎ csm 28817 0ℎc0v 28820 −ℎ cmv 28821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-hfvadd 28896 ax-hvcom 28897 ax-hvass 28898 ax-hv0cl 28899 ax-hvaddid 28900 ax-hfvmul 28901 ax-hvmulid 28902 ax-hvmulass 28903 ax-hvdistr1 28904 ax-hvdistr2 28905 ax-hvmul0 28906 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-hvsub 28867 |
This theorem is referenced by: hvsubcan 28970 hvsubcan2 28971 |
Copyright terms: Public domain | W3C validator |