HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcan Structured version   Visualization version   GIF version

Theorem hvmulcan 31034
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcan (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem hvmulcan
StepHypRef Expression
1 df-ne 2926 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 biorf 936 . . . . 5 𝐴 = 0 → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
31, 2sylbi 217 . . . 4 (𝐴 ≠ 0 → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
43ad2antlr 727 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ) → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
543adant3 1132 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
6 hvsubeq0 31030 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0𝐵 = 𝐶))
763adant1 1130 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0𝐵 = 𝐶))
8 hvsubdistr1 31011 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
98eqeq1d 2731 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ ((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0))
10 hvsubcl 30979 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 𝐶) ∈ ℋ)
11 hvmul0or 30987 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵 𝐶) ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
1210, 11sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
13123impb 1114 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
14 hvmulcl 30975 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
15143adant3 1132 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
16 hvmulcl 30975 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
17163adant2 1131 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
18 hvsubeq0 31030 . . . . 5 (((𝐴 · 𝐵) ∈ ℋ ∧ (𝐴 · 𝐶) ∈ ℋ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
1915, 17, 18syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
209, 13, 193bitr3d 309 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 𝐶) = 0) ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
21203adant1r 1178 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 𝐶) = 0) ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
225, 7, 213bitr3rd 310 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7353  cc 11026  0cc0 11028  chba 30881   · csm 30883  0c0v 30886   cmv 30887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-hvsub 30933
This theorem is referenced by:  hvsubcan  31036  hvsubcan2  31037
  Copyright terms: Public domain W3C validator