HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcan Structured version   Visualization version   GIF version

Theorem hvmulcan 31100
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcan (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem hvmulcan
StepHypRef Expression
1 df-ne 2938 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 biorf 936 . . . . 5 𝐴 = 0 → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
31, 2sylbi 217 . . . 4 (𝐴 ≠ 0 → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
43ad2antlr 727 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ) → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
543adant3 1131 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
6 hvsubeq0 31096 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0𝐵 = 𝐶))
763adant1 1129 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 𝐶) = 0𝐵 = 𝐶))
8 hvsubdistr1 31077 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
98eqeq1d 2736 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ ((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0))
10 hvsubcl 31045 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 𝐶) ∈ ℋ)
11 hvmul0or 31053 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵 𝐶) ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
1210, 11sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
13123impb 1114 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · (𝐵 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 𝐶) = 0)))
14 hvmulcl 31041 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
15143adant3 1131 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
16 hvmulcl 31041 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
17163adant2 1130 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
18 hvsubeq0 31096 . . . . 5 (((𝐴 · 𝐵) ∈ ℋ ∧ (𝐴 · 𝐶) ∈ ℋ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
1915, 17, 18syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
209, 13, 193bitr3d 309 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 𝐶) = 0) ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
21203adant1r 1176 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 𝐶) = 0) ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶)))
225, 7, 213bitr3rd 310 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  (class class class)co 7430  cc 11150  0cc0 11152  chba 30947   · csm 30949  0c0v 30952   cmv 30953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-hfvadd 31028  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr1 31036  ax-hvdistr2 31037  ax-hvmul0 31038
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-hvsub 30999
This theorem is referenced by:  hvsubcan  31102  hvsubcan2  31103
  Copyright terms: Public domain W3C validator