| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcan | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2941 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
| 2 | biorf 937 | . . . . 5 ⊢ (¬ 𝐴 = 0 → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) | |
| 3 | 1, 2 | sylbi 217 | . . . 4 ⊢ (𝐴 ≠ 0 → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
| 4 | 3 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
| 5 | 4 | 3adant3 1133 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
| 6 | hvsubeq0 31087 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ 𝐵 = 𝐶)) | |
| 7 | 6 | 3adant1 1131 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ 𝐵 = 𝐶)) |
| 8 | hvsubdistr1 31068 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) | |
| 9 | 8 | eqeq1d 2739 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ)) |
| 10 | hvsubcl 31036 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) ∈ ℋ) | |
| 11 | hvmul0or 31044 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 −ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) | |
| 12 | 10, 11 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
| 13 | 12 | 3impb 1115 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
| 14 | hvmulcl 31032 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
| 15 | 14 | 3adant3 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| 16 | hvmulcl 31032 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
| 17 | 16 | 3adant2 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
| 18 | hvsubeq0 31087 | . . . . 5 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ (𝐴 ·ℎ 𝐶) ∈ ℋ) → (((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) | |
| 19 | 15, 17, 18 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
| 20 | 9, 13, 19 | 3bitr3d 309 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ) ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
| 21 | 20 | 3adant1r 1178 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ) ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
| 22 | 5, 7, 21 | 3bitr3rd 310 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 (class class class)co 7431 ℂcc 11153 0cc0 11155 ℋchba 30938 ·ℎ csm 30940 0ℎc0v 30943 −ℎ cmv 30944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvmulass 31026 ax-hvdistr1 31027 ax-hvdistr2 31028 ax-hvmul0 31029 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-hvsub 30990 |
| This theorem is referenced by: hvsubcan 31093 hvsubcan2 31094 |
| Copyright terms: Public domain | W3C validator |