Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvscan Structured version   Visualization version   GIF version

Theorem lvecvscan 19324
 Description: Cancellation law for scalar multiplication. (hvmulcan 28269 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmulcan.v 𝑉 = (Base‘𝑊)
lvecmulcan.s · = ( ·𝑠𝑊)
lvecmulcan.f 𝐹 = (Scalar‘𝑊)
lvecmulcan.k 𝐾 = (Base‘𝐹)
lvecmulcan.o 0 = (0g𝐹)
lvecmulcan.w (𝜑𝑊 ∈ LVec)
lvecmulcan.a (𝜑𝐴𝐾)
lvecmulcan.x (𝜑𝑋𝑉)
lvecmulcan.y (𝜑𝑌𝑉)
lvecmulcan.n (𝜑𝐴0 )
Assertion
Ref Expression
lvecvscan (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem lvecvscan
StepHypRef Expression
1 lvecmulcan.n . . 3 (𝜑𝐴0 )
2 df-ne 2944 . . . 4 (𝐴0 ↔ ¬ 𝐴 = 0 )
3 biorf 920 . . . 4 𝐴 = 0 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
42, 3sylbi 207 . . 3 (𝐴0 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
51, 4syl 17 . 2 (𝜑 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
6 lvecmulcan.w . . . 4 (𝜑𝑊 ∈ LVec)
7 lveclmod 19319 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . 3 (𝜑𝑊 ∈ LMod)
9 lvecmulcan.x . . 3 (𝜑𝑋𝑉)
10 lvecmulcan.y . . 3 (𝜑𝑌𝑉)
11 lvecmulcan.v . . . 4 𝑉 = (Base‘𝑊)
12 eqid 2771 . . . 4 (0g𝑊) = (0g𝑊)
13 eqid 2771 . . . 4 (-g𝑊) = (-g𝑊)
1411, 12, 13lmodsubeq0 19132 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ 𝑋 = 𝑌))
158, 9, 10, 14syl3anc 1476 . 2 (𝜑 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ 𝑋 = 𝑌))
16 lvecmulcan.s . . . . 5 · = ( ·𝑠𝑊)
17 lvecmulcan.f . . . . 5 𝐹 = (Scalar‘𝑊)
18 lvecmulcan.k . . . . 5 𝐾 = (Base‘𝐹)
19 lvecmulcan.a . . . . 5 (𝜑𝐴𝐾)
2011, 16, 17, 18, 13, 8, 19, 9, 10lmodsubdi 19130 . . . 4 (𝜑 → (𝐴 · (𝑋(-g𝑊)𝑌)) = ((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)))
2120eqeq1d 2773 . . 3 (𝜑 → ((𝐴 · (𝑋(-g𝑊)𝑌)) = (0g𝑊) ↔ ((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)) = (0g𝑊)))
22 lvecmulcan.o . . . 4 0 = (0g𝐹)
2311, 13lmodvsubcl 19118 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋(-g𝑊)𝑌) ∈ 𝑉)
248, 9, 10, 23syl3anc 1476 . . . 4 (𝜑 → (𝑋(-g𝑊)𝑌) ∈ 𝑉)
2511, 16, 17, 18, 22, 12, 6, 19, 24lvecvs0or 19321 . . 3 (𝜑 → ((𝐴 · (𝑋(-g𝑊)𝑌)) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
2611, 17, 16, 18lmodvscl 19090 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
278, 19, 9, 26syl3anc 1476 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
2811, 17, 16, 18lmodvscl 19090 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
298, 19, 10, 28syl3anc 1476 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
3011, 12, 13lmodsubeq0 19132 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)) = (0g𝑊) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌)))
318, 27, 29, 30syl3anc 1476 . . 3 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)) = (0g𝑊) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌)))
3221, 25, 313bitr3d 298 . 2 (𝜑 → ((𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊)) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌)))
335, 15, 323bitr3rd 299 1 (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 834   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ‘cfv 6031  (class class class)co 6793  Basecbs 16064  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308  -gcsg 17632  LModclmod 19073  LVecclvec 19315 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-drng 18959  df-lmod 19075  df-lvec 19316 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator