MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvscan Structured version   Visualization version   GIF version

Theorem lvecvscan 21043
Description: Cancellation law for scalar multiplication. (hvmulcan 31044 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmulcan.v 𝑉 = (Base‘𝑊)
lvecmulcan.s · = ( ·𝑠𝑊)
lvecmulcan.f 𝐹 = (Scalar‘𝑊)
lvecmulcan.k 𝐾 = (Base‘𝐹)
lvecmulcan.o 0 = (0g𝐹)
lvecmulcan.w (𝜑𝑊 ∈ LVec)
lvecmulcan.a (𝜑𝐴𝐾)
lvecmulcan.x (𝜑𝑋𝑉)
lvecmulcan.y (𝜑𝑌𝑉)
lvecmulcan.n (𝜑𝐴0 )
Assertion
Ref Expression
lvecvscan (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem lvecvscan
StepHypRef Expression
1 lvecmulcan.n . . 3 (𝜑𝐴0 )
2 df-ne 2929 . . . 4 (𝐴0 ↔ ¬ 𝐴 = 0 )
3 biorf 936 . . . 4 𝐴 = 0 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
42, 3sylbi 217 . . 3 (𝐴0 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
51, 4syl 17 . 2 (𝜑 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
6 lvecmulcan.w . . . 4 (𝜑𝑊 ∈ LVec)
7 lveclmod 21035 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . 3 (𝜑𝑊 ∈ LMod)
9 lvecmulcan.x . . 3 (𝜑𝑋𝑉)
10 lvecmulcan.y . . 3 (𝜑𝑌𝑉)
11 lvecmulcan.v . . . 4 𝑉 = (Base‘𝑊)
12 eqid 2731 . . . 4 (0g𝑊) = (0g𝑊)
13 eqid 2731 . . . 4 (-g𝑊) = (-g𝑊)
1411, 12, 13lmodsubeq0 20849 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ 𝑋 = 𝑌))
158, 9, 10, 14syl3anc 1373 . 2 (𝜑 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ 𝑋 = 𝑌))
16 lvecmulcan.s . . . . 5 · = ( ·𝑠𝑊)
17 lvecmulcan.f . . . . 5 𝐹 = (Scalar‘𝑊)
18 lvecmulcan.k . . . . 5 𝐾 = (Base‘𝐹)
19 lvecmulcan.a . . . . 5 (𝜑𝐴𝐾)
2011, 16, 17, 18, 13, 8, 19, 9, 10lmodsubdi 20847 . . . 4 (𝜑 → (𝐴 · (𝑋(-g𝑊)𝑌)) = ((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)))
2120eqeq1d 2733 . . 3 (𝜑 → ((𝐴 · (𝑋(-g𝑊)𝑌)) = (0g𝑊) ↔ ((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)) = (0g𝑊)))
22 lvecmulcan.o . . . 4 0 = (0g𝐹)
2311, 13lmodvsubcl 20835 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋(-g𝑊)𝑌) ∈ 𝑉)
248, 9, 10, 23syl3anc 1373 . . . 4 (𝜑 → (𝑋(-g𝑊)𝑌) ∈ 𝑉)
2511, 16, 17, 18, 22, 12, 6, 19, 24lvecvs0or 21040 . . 3 (𝜑 → ((𝐴 · (𝑋(-g𝑊)𝑌)) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
2611, 17, 16, 18lmodvscl 20806 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
278, 19, 9, 26syl3anc 1373 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
2811, 17, 16, 18lmodvscl 20806 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
298, 19, 10, 28syl3anc 1373 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
3011, 12, 13lmodsubeq0 20849 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)) = (0g𝑊) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌)))
318, 27, 29, 30syl3anc 1373 . . 3 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)) = (0g𝑊) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌)))
3221, 25, 313bitr3d 309 . 2 (𝜑 → ((𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊)) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌)))
335, 15, 323bitr3rd 310 1 (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1541  wcel 2111  wne 2928  cfv 6476  (class class class)co 7341  Basecbs 17115  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338  -gcsg 18843  LModclmod 20788  LVecclvec 21031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-drng 20641  df-lmod 20790  df-lvec 21032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator