![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecvscan | Structured version Visualization version GIF version |
Description: Cancellation law for scalar multiplication. (hvmulcan 30320 analog.) (Contributed by NM, 2-Jul-2014.) |
Ref | Expression |
---|---|
lvecmulcan.v | β’ π = (Baseβπ) |
lvecmulcan.s | β’ Β· = ( Β·π βπ) |
lvecmulcan.f | β’ πΉ = (Scalarβπ) |
lvecmulcan.k | β’ πΎ = (BaseβπΉ) |
lvecmulcan.o | β’ 0 = (0gβπΉ) |
lvecmulcan.w | β’ (π β π β LVec) |
lvecmulcan.a | β’ (π β π΄ β πΎ) |
lvecmulcan.x | β’ (π β π β π) |
lvecmulcan.y | β’ (π β π β π) |
lvecmulcan.n | β’ (π β π΄ β 0 ) |
Ref | Expression |
---|---|
lvecvscan | β’ (π β ((π΄ Β· π) = (π΄ Β· π) β π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecmulcan.n | . . 3 β’ (π β π΄ β 0 ) | |
2 | df-ne 2941 | . . . 4 β’ (π΄ β 0 β Β¬ π΄ = 0 ) | |
3 | biorf 935 | . . . 4 β’ (Β¬ π΄ = 0 β ((π(-gβπ)π) = (0gβπ) β (π΄ = 0 β¨ (π(-gβπ)π) = (0gβπ)))) | |
4 | 2, 3 | sylbi 216 | . . 3 β’ (π΄ β 0 β ((π(-gβπ)π) = (0gβπ) β (π΄ = 0 β¨ (π(-gβπ)π) = (0gβπ)))) |
5 | 1, 4 | syl 17 | . 2 β’ (π β ((π(-gβπ)π) = (0gβπ) β (π΄ = 0 β¨ (π(-gβπ)π) = (0gβπ)))) |
6 | lvecmulcan.w | . . . 4 β’ (π β π β LVec) | |
7 | lveclmod 20716 | . . . 4 β’ (π β LVec β π β LMod) | |
8 | 6, 7 | syl 17 | . . 3 β’ (π β π β LMod) |
9 | lvecmulcan.x | . . 3 β’ (π β π β π) | |
10 | lvecmulcan.y | . . 3 β’ (π β π β π) | |
11 | lvecmulcan.v | . . . 4 β’ π = (Baseβπ) | |
12 | eqid 2732 | . . . 4 β’ (0gβπ) = (0gβπ) | |
13 | eqid 2732 | . . . 4 β’ (-gβπ) = (-gβπ) | |
14 | 11, 12, 13 | lmodsubeq0 20530 | . . 3 β’ ((π β LMod β§ π β π β§ π β π) β ((π(-gβπ)π) = (0gβπ) β π = π)) |
15 | 8, 9, 10, 14 | syl3anc 1371 | . 2 β’ (π β ((π(-gβπ)π) = (0gβπ) β π = π)) |
16 | lvecmulcan.s | . . . . 5 β’ Β· = ( Β·π βπ) | |
17 | lvecmulcan.f | . . . . 5 β’ πΉ = (Scalarβπ) | |
18 | lvecmulcan.k | . . . . 5 β’ πΎ = (BaseβπΉ) | |
19 | lvecmulcan.a | . . . . 5 β’ (π β π΄ β πΎ) | |
20 | 11, 16, 17, 18, 13, 8, 19, 9, 10 | lmodsubdi 20528 | . . . 4 β’ (π β (π΄ Β· (π(-gβπ)π)) = ((π΄ Β· π)(-gβπ)(π΄ Β· π))) |
21 | 20 | eqeq1d 2734 | . . 3 β’ (π β ((π΄ Β· (π(-gβπ)π)) = (0gβπ) β ((π΄ Β· π)(-gβπ)(π΄ Β· π)) = (0gβπ))) |
22 | lvecmulcan.o | . . . 4 β’ 0 = (0gβπΉ) | |
23 | 11, 13 | lmodvsubcl 20516 | . . . . 5 β’ ((π β LMod β§ π β π β§ π β π) β (π(-gβπ)π) β π) |
24 | 8, 9, 10, 23 | syl3anc 1371 | . . . 4 β’ (π β (π(-gβπ)π) β π) |
25 | 11, 16, 17, 18, 22, 12, 6, 19, 24 | lvecvs0or 20720 | . . 3 β’ (π β ((π΄ Β· (π(-gβπ)π)) = (0gβπ) β (π΄ = 0 β¨ (π(-gβπ)π) = (0gβπ)))) |
26 | 11, 17, 16, 18 | lmodvscl 20488 | . . . . 5 β’ ((π β LMod β§ π΄ β πΎ β§ π β π) β (π΄ Β· π) β π) |
27 | 8, 19, 9, 26 | syl3anc 1371 | . . . 4 β’ (π β (π΄ Β· π) β π) |
28 | 11, 17, 16, 18 | lmodvscl 20488 | . . . . 5 β’ ((π β LMod β§ π΄ β πΎ β§ π β π) β (π΄ Β· π) β π) |
29 | 8, 19, 10, 28 | syl3anc 1371 | . . . 4 β’ (π β (π΄ Β· π) β π) |
30 | 11, 12, 13 | lmodsubeq0 20530 | . . . 4 β’ ((π β LMod β§ (π΄ Β· π) β π β§ (π΄ Β· π) β π) β (((π΄ Β· π)(-gβπ)(π΄ Β· π)) = (0gβπ) β (π΄ Β· π) = (π΄ Β· π))) |
31 | 8, 27, 29, 30 | syl3anc 1371 | . . 3 β’ (π β (((π΄ Β· π)(-gβπ)(π΄ Β· π)) = (0gβπ) β (π΄ Β· π) = (π΄ Β· π))) |
32 | 21, 25, 31 | 3bitr3d 308 | . 2 β’ (π β ((π΄ = 0 β¨ (π(-gβπ)π) = (0gβπ)) β (π΄ Β· π) = (π΄ Β· π))) |
33 | 5, 15, 32 | 3bitr3rd 309 | 1 β’ (π β ((π΄ Β· π) = (π΄ Β· π) β π = π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β¨ wo 845 = wceq 1541 β wcel 2106 β wne 2940 βcfv 6543 (class class class)co 7408 Basecbs 17143 Scalarcsca 17199 Β·π cvsca 17200 0gc0g 17384 -gcsg 18820 LModclmod 20470 LVecclvec 20712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mgp 19987 df-ur 20004 df-ring 20057 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-drng 20358 df-lmod 20472 df-lvec 20713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |