| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecvscan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for scalar multiplication. (hvmulcan 31019 analog.) (Contributed by NM, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| lvecmulcan.v | ⊢ 𝑉 = (Base‘𝑊) |
| lvecmulcan.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lvecmulcan.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lvecmulcan.k | ⊢ 𝐾 = (Base‘𝐹) |
| lvecmulcan.o | ⊢ 0 = (0g‘𝐹) |
| lvecmulcan.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecmulcan.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lvecmulcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lvecmulcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lvecmulcan.n | ⊢ (𝜑 → 𝐴 ≠ 0 ) |
| Ref | Expression |
|---|---|
| lvecvscan | ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmulcan.n | . . 3 ⊢ (𝜑 → 𝐴 ≠ 0 ) | |
| 2 | df-ne 2932 | . . . 4 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) | |
| 3 | biorf 936 | . . . 4 ⊢ (¬ 𝐴 = 0 → ((𝑋(-g‘𝑊)𝑌) = (0g‘𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g‘𝑊)𝑌) = (0g‘𝑊)))) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ (𝐴 ≠ 0 → ((𝑋(-g‘𝑊)𝑌) = (0g‘𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g‘𝑊)𝑌) = (0g‘𝑊)))) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑋(-g‘𝑊)𝑌) = (0g‘𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g‘𝑊)𝑌) = (0g‘𝑊)))) |
| 6 | lvecmulcan.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | lveclmod 21073 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 9 | lvecmulcan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 10 | lvecmulcan.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 11 | lvecmulcan.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 12 | eqid 2734 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 13 | eqid 2734 | . . . 4 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 14 | 11, 12, 13 | lmodsubeq0 20887 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋(-g‘𝑊)𝑌) = (0g‘𝑊) ↔ 𝑋 = 𝑌)) |
| 15 | 8, 9, 10, 14 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝑋(-g‘𝑊)𝑌) = (0g‘𝑊) ↔ 𝑋 = 𝑌)) |
| 16 | lvecmulcan.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 17 | lvecmulcan.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 18 | lvecmulcan.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 19 | lvecmulcan.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 20 | 11, 16, 17, 18, 13, 8, 19, 9, 10 | lmodsubdi 20885 | . . . 4 ⊢ (𝜑 → (𝐴 · (𝑋(-g‘𝑊)𝑌)) = ((𝐴 · 𝑋)(-g‘𝑊)(𝐴 · 𝑌))) |
| 21 | 20 | eqeq1d 2736 | . . 3 ⊢ (𝜑 → ((𝐴 · (𝑋(-g‘𝑊)𝑌)) = (0g‘𝑊) ↔ ((𝐴 · 𝑋)(-g‘𝑊)(𝐴 · 𝑌)) = (0g‘𝑊))) |
| 22 | lvecmulcan.o | . . . 4 ⊢ 0 = (0g‘𝐹) | |
| 23 | 11, 13 | lmodvsubcl 20873 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋(-g‘𝑊)𝑌) ∈ 𝑉) |
| 24 | 8, 9, 10, 23 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝑋(-g‘𝑊)𝑌) ∈ 𝑉) |
| 25 | 11, 16, 17, 18, 22, 12, 6, 19, 24 | lvecvs0or 21078 | . . 3 ⊢ (𝜑 → ((𝐴 · (𝑋(-g‘𝑊)𝑌)) = (0g‘𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g‘𝑊)𝑌) = (0g‘𝑊)))) |
| 26 | 11, 17, 16, 18 | lmodvscl 20844 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 27 | 8, 19, 9, 26 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
| 28 | 11, 17, 16, 18 | lmodvscl 20844 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) |
| 29 | 8, 19, 10, 28 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) |
| 30 | 11, 12, 13 | lmodsubeq0 20887 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (((𝐴 · 𝑋)(-g‘𝑊)(𝐴 · 𝑌)) = (0g‘𝑊) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌))) |
| 31 | 8, 27, 29, 30 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐴 · 𝑌)) = (0g‘𝑊) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌))) |
| 32 | 21, 25, 31 | 3bitr3d 309 | . 2 ⊢ (𝜑 → ((𝐴 = 0 ∨ (𝑋(-g‘𝑊)𝑌) = (0g‘𝑊)) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌))) |
| 33 | 5, 15, 32 | 3bitr3rd 310 | 1 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 Scalarcsca 17276 ·𝑠 cvsca 17277 0gc0g 17455 -gcsg 18922 LModclmod 20826 LVecclvec 21069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-sbg 18925 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-drng 20699 df-lmod 20828 df-lvec 21070 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |