MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvscan Structured version   Visualization version   GIF version

Theorem lvecvscan 19812
Description: Cancellation law for scalar multiplication. (hvmulcan 28776 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmulcan.v 𝑉 = (Base‘𝑊)
lvecmulcan.s · = ( ·𝑠𝑊)
lvecmulcan.f 𝐹 = (Scalar‘𝑊)
lvecmulcan.k 𝐾 = (Base‘𝐹)
lvecmulcan.o 0 = (0g𝐹)
lvecmulcan.w (𝜑𝑊 ∈ LVec)
lvecmulcan.a (𝜑𝐴𝐾)
lvecmulcan.x (𝜑𝑋𝑉)
lvecmulcan.y (𝜑𝑌𝑉)
lvecmulcan.n (𝜑𝐴0 )
Assertion
Ref Expression
lvecvscan (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem lvecvscan
StepHypRef Expression
1 lvecmulcan.n . . 3 (𝜑𝐴0 )
2 df-ne 3014 . . . 4 (𝐴0 ↔ ¬ 𝐴 = 0 )
3 biorf 930 . . . 4 𝐴 = 0 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
42, 3sylbi 218 . . 3 (𝐴0 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
51, 4syl 17 . 2 (𝜑 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
6 lvecmulcan.w . . . 4 (𝜑𝑊 ∈ LVec)
7 lveclmod 19807 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . 3 (𝜑𝑊 ∈ LMod)
9 lvecmulcan.x . . 3 (𝜑𝑋𝑉)
10 lvecmulcan.y . . 3 (𝜑𝑌𝑉)
11 lvecmulcan.v . . . 4 𝑉 = (Base‘𝑊)
12 eqid 2818 . . . 4 (0g𝑊) = (0g𝑊)
13 eqid 2818 . . . 4 (-g𝑊) = (-g𝑊)
1411, 12, 13lmodsubeq0 19622 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ 𝑋 = 𝑌))
158, 9, 10, 14syl3anc 1363 . 2 (𝜑 → ((𝑋(-g𝑊)𝑌) = (0g𝑊) ↔ 𝑋 = 𝑌))
16 lvecmulcan.s . . . . 5 · = ( ·𝑠𝑊)
17 lvecmulcan.f . . . . 5 𝐹 = (Scalar‘𝑊)
18 lvecmulcan.k . . . . 5 𝐾 = (Base‘𝐹)
19 lvecmulcan.a . . . . 5 (𝜑𝐴𝐾)
2011, 16, 17, 18, 13, 8, 19, 9, 10lmodsubdi 19620 . . . 4 (𝜑 → (𝐴 · (𝑋(-g𝑊)𝑌)) = ((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)))
2120eqeq1d 2820 . . 3 (𝜑 → ((𝐴 · (𝑋(-g𝑊)𝑌)) = (0g𝑊) ↔ ((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)) = (0g𝑊)))
22 lvecmulcan.o . . . 4 0 = (0g𝐹)
2311, 13lmodvsubcl 19608 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋(-g𝑊)𝑌) ∈ 𝑉)
248, 9, 10, 23syl3anc 1363 . . . 4 (𝜑 → (𝑋(-g𝑊)𝑌) ∈ 𝑉)
2511, 16, 17, 18, 22, 12, 6, 19, 24lvecvs0or 19809 . . 3 (𝜑 → ((𝐴 · (𝑋(-g𝑊)𝑌)) = (0g𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊))))
2611, 17, 16, 18lmodvscl 19580 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
278, 19, 9, 26syl3anc 1363 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
2811, 17, 16, 18lmodvscl 19580 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
298, 19, 10, 28syl3anc 1363 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
3011, 12, 13lmodsubeq0 19622 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)) = (0g𝑊) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌)))
318, 27, 29, 30syl3anc 1363 . . 3 (𝜑 → (((𝐴 · 𝑋)(-g𝑊)(𝐴 · 𝑌)) = (0g𝑊) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌)))
3221, 25, 313bitr3d 310 . 2 (𝜑 → ((𝐴 = 0 ∨ (𝑋(-g𝑊)𝑌) = (0g𝑊)) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌)))
335, 15, 323bitr3rd 311 1 (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wo 841   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  Basecbs 16471  Scalarcsca 16556   ·𝑠 cvsca 16557  0gc0g 16701  -gcsg 18043  LModclmod 19563  LVecclvec 19803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-drng 19433  df-lmod 19565  df-lvec 19804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator