![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecvscan | Structured version Visualization version GIF version |
Description: Cancellation law for scalar multiplication. (hvmulcan 31117 analog.) (Contributed by NM, 2-Jul-2014.) |
Ref | Expression |
---|---|
lvecmulcan.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecmulcan.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecmulcan.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecmulcan.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecmulcan.o | ⊢ 0 = (0g‘𝐹) |
lvecmulcan.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecmulcan.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lvecmulcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lvecmulcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lvecmulcan.n | ⊢ (𝜑 → 𝐴 ≠ 0 ) |
Ref | Expression |
---|---|
lvecvscan | ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecmulcan.n | . . 3 ⊢ (𝜑 → 𝐴 ≠ 0 ) | |
2 | df-ne 2941 | . . . 4 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) | |
3 | biorf 937 | . . . 4 ⊢ (¬ 𝐴 = 0 → ((𝑋(-g‘𝑊)𝑌) = (0g‘𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g‘𝑊)𝑌) = (0g‘𝑊)))) | |
4 | 2, 3 | sylbi 217 | . . 3 ⊢ (𝐴 ≠ 0 → ((𝑋(-g‘𝑊)𝑌) = (0g‘𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g‘𝑊)𝑌) = (0g‘𝑊)))) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑋(-g‘𝑊)𝑌) = (0g‘𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g‘𝑊)𝑌) = (0g‘𝑊)))) |
6 | lvecmulcan.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | lveclmod 21132 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
9 | lvecmulcan.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | lvecmulcan.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
11 | lvecmulcan.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
12 | eqid 2737 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
13 | eqid 2737 | . . . 4 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
14 | 11, 12, 13 | lmodsubeq0 20945 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋(-g‘𝑊)𝑌) = (0g‘𝑊) ↔ 𝑋 = 𝑌)) |
15 | 8, 9, 10, 14 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝑋(-g‘𝑊)𝑌) = (0g‘𝑊) ↔ 𝑋 = 𝑌)) |
16 | lvecmulcan.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
17 | lvecmulcan.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
18 | lvecmulcan.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
19 | lvecmulcan.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
20 | 11, 16, 17, 18, 13, 8, 19, 9, 10 | lmodsubdi 20943 | . . . 4 ⊢ (𝜑 → (𝐴 · (𝑋(-g‘𝑊)𝑌)) = ((𝐴 · 𝑋)(-g‘𝑊)(𝐴 · 𝑌))) |
21 | 20 | eqeq1d 2739 | . . 3 ⊢ (𝜑 → ((𝐴 · (𝑋(-g‘𝑊)𝑌)) = (0g‘𝑊) ↔ ((𝐴 · 𝑋)(-g‘𝑊)(𝐴 · 𝑌)) = (0g‘𝑊))) |
22 | lvecmulcan.o | . . . 4 ⊢ 0 = (0g‘𝐹) | |
23 | 11, 13 | lmodvsubcl 20931 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋(-g‘𝑊)𝑌) ∈ 𝑉) |
24 | 8, 9, 10, 23 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝑋(-g‘𝑊)𝑌) ∈ 𝑉) |
25 | 11, 16, 17, 18, 22, 12, 6, 19, 24 | lvecvs0or 21137 | . . 3 ⊢ (𝜑 → ((𝐴 · (𝑋(-g‘𝑊)𝑌)) = (0g‘𝑊) ↔ (𝐴 = 0 ∨ (𝑋(-g‘𝑊)𝑌) = (0g‘𝑊)))) |
26 | 11, 17, 16, 18 | lmodvscl 20902 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
27 | 8, 19, 9, 26 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
28 | 11, 17, 16, 18 | lmodvscl 20902 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) |
29 | 8, 19, 10, 28 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) |
30 | 11, 12, 13 | lmodsubeq0 20945 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (((𝐴 · 𝑋)(-g‘𝑊)(𝐴 · 𝑌)) = (0g‘𝑊) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌))) |
31 | 8, 27, 29, 30 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝑋)(-g‘𝑊)(𝐴 · 𝑌)) = (0g‘𝑊) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌))) |
32 | 21, 25, 31 | 3bitr3d 309 | . 2 ⊢ (𝜑 → ((𝐴 = 0 ∨ (𝑋(-g‘𝑊)𝑌) = (0g‘𝑊)) ↔ (𝐴 · 𝑋) = (𝐴 · 𝑌))) |
33 | 5, 15, 32 | 3bitr3rd 310 | 1 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Scalarcsca 17310 ·𝑠 cvsca 17311 0gc0g 17495 -gcsg 18975 LModclmod 20884 LVecclvec 21128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20757 df-lmod 20886 df-lvec 21129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |