| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4onn | Structured version Visualization version GIF version | ||
| Description: The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| 4onn | ⊢ 4o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4o 8488 | . 2 ⊢ 4o = suc 3o | |
| 2 | 3onn 8661 | . . 3 ⊢ 3o ∈ ω | |
| 3 | peano2 7891 | . . 3 ⊢ (3o ∈ ω → suc 3o ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 3o ∈ ω |
| 5 | 1, 4 | eqeltri 2831 | 1 ⊢ 4o ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 suc csuc 6359 ωcom 7866 3oc3o 8480 4oc4o 8481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-om 7867 df-1o 8485 df-2o 8486 df-3o 8487 df-4o 8488 |
| This theorem is referenced by: 4finon 43443 |
| Copyright terms: Public domain | W3C validator |