![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4onn | Structured version Visualization version GIF version |
Description: The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
4onn | ⊢ 4o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4o 7846 | . 2 ⊢ 4o = suc 3o | |
2 | 3onn 8005 | . . 3 ⊢ 3o ∈ ω | |
3 | peano2 7364 | . . 3 ⊢ (3o ∈ ω → suc 3o ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc 3o ∈ ω |
5 | 1, 4 | eqeltri 2854 | 1 ⊢ 4o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 suc csuc 5978 ωcom 7343 3oc3o 7838 4oc4o 7839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-tr 4988 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-om 7344 df-1o 7843 df-2o 7844 df-3o 7845 df-4o 7846 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |