Proof of Theorem 1259lem3
| Step | Hyp | Ref
| Expression |
| 1 | | 1259prm.1 |
. . 3
⊢ 𝑁 = ;;;1259 |
| 2 | | 1nn0 12517 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
| 3 | | 2nn0 12518 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
| 4 | 2, 3 | deccl 12723 |
. . . . 5
⊢ ;12 ∈
ℕ0 |
| 5 | | 5nn0 12521 |
. . . . 5
⊢ 5 ∈
ℕ0 |
| 6 | 4, 5 | deccl 12723 |
. . . 4
⊢ ;;125 ∈ ℕ0 |
| 7 | | 9nn 12338 |
. . . 4
⊢ 9 ∈
ℕ |
| 8 | 6, 7 | decnncl 12728 |
. . 3
⊢ ;;;1259
∈ ℕ |
| 9 | 1, 8 | eqeltri 2830 |
. 2
⊢ 𝑁 ∈ ℕ |
| 10 | | 2nn 12313 |
. 2
⊢ 2 ∈
ℕ |
| 11 | | 3nn0 12519 |
. . 3
⊢ 3 ∈
ℕ0 |
| 12 | | 8nn0 12524 |
. . 3
⊢ 8 ∈
ℕ0 |
| 13 | 11, 12 | deccl 12723 |
. 2
⊢ ;38 ∈
ℕ0 |
| 14 | | 4z 12626 |
. 2
⊢ 4 ∈
ℤ |
| 15 | | 7nn0 12523 |
. . 3
⊢ 7 ∈
ℕ0 |
| 16 | 15, 2 | deccl 12723 |
. 2
⊢ ;71 ∈
ℕ0 |
| 17 | | 4nn0 12520 |
. . . 4
⊢ 4 ∈
ℕ0 |
| 18 | 11, 17 | deccl 12723 |
. . 3
⊢ ;34 ∈
ℕ0 |
| 19 | 2, 2 | deccl 12723 |
. . . 4
⊢ ;11 ∈
ℕ0 |
| 20 | 19 | nn0zi 12617 |
. . 3
⊢ ;11 ∈ ℤ |
| 21 | 12, 15 | deccl 12723 |
. . . 4
⊢ ;87 ∈
ℕ0 |
| 22 | | 0nn0 12516 |
. . . 4
⊢ 0 ∈
ℕ0 |
| 23 | 21, 22 | deccl 12723 |
. . 3
⊢ ;;870 ∈ ℕ0 |
| 24 | | 6nn0 12522 |
. . . 4
⊢ 6 ∈
ℕ0 |
| 25 | 2, 24 | deccl 12723 |
. . 3
⊢ ;16 ∈
ℕ0 |
| 26 | 1 | 1259lem2 17151 |
. . 3
⊢
((2↑;34) mod 𝑁) = (;;870
mod 𝑁) |
| 27 | | 2exp4 17104 |
. . . 4
⊢
(2↑4) = ;16 |
| 28 | 27 | oveq1i 7415 |
. . 3
⊢
((2↑4) mod 𝑁) =
(;16 mod 𝑁) |
| 29 | | eqid 2735 |
. . . 4
⊢ ;34 = ;34 |
| 30 | | 4p4e8 12395 |
. . . 4
⊢ (4 + 4) =
8 |
| 31 | 11, 17, 17, 29, 30 | decaddi 12768 |
. . 3
⊢ (;34 + 4) = ;38 |
| 32 | | 9nn0 12525 |
. . . . 5
⊢ 9 ∈
ℕ0 |
| 33 | | eqid 2735 |
. . . . 5
⊢ ;71 = ;71 |
| 34 | | 10nn0 12726 |
. . . . 5
⊢ ;10 ∈
ℕ0 |
| 35 | | eqid 2735 |
. . . . . 6
⊢ ;11 = ;11 |
| 36 | 34 | nn0cni 12513 |
. . . . . . 7
⊢ ;10 ∈ ℂ |
| 37 | | 7cn 12334 |
. . . . . . 7
⊢ 7 ∈
ℂ |
| 38 | | dec10p 12751 |
. . . . . . 7
⊢ (;10 + 7) = ;17 |
| 39 | 36, 37, 38 | addcomli 11427 |
. . . . . 6
⊢ (7 +
;10) = ;17 |
| 40 | 2, 11 | deccl 12723 |
. . . . . 6
⊢ ;13 ∈
ℕ0 |
| 41 | 6 | nn0cni 12513 |
. . . . . . . 8
⊢ ;;125 ∈ ℂ |
| 42 | 41 | mullidi 11240 |
. . . . . . 7
⊢ (1
· ;;125) = ;;125 |
| 43 | 2 | dec0h 12730 |
. . . . . . . 8
⊢ 1 = ;01 |
| 44 | | eqid 2735 |
. . . . . . . 8
⊢ ;13 = ;13 |
| 45 | | 0p1e1 12362 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
| 46 | | 3cn 12321 |
. . . . . . . . 9
⊢ 3 ∈
ℂ |
| 47 | | ax-1cn 11187 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
| 48 | | 3p1e4 12385 |
. . . . . . . . 9
⊢ (3 + 1) =
4 |
| 49 | 46, 47, 48 | addcomli 11427 |
. . . . . . . 8
⊢ (1 + 3) =
4 |
| 50 | 22, 2, 2, 11, 43, 44, 45, 49 | decadd 12762 |
. . . . . . 7
⊢ (1 +
;13) = ;14 |
| 51 | | 2p1e3 12382 |
. . . . . . . 8
⊢ (2 + 1) =
3 |
| 52 | | eqid 2735 |
. . . . . . . 8
⊢ ;12 = ;12 |
| 53 | 2, 3, 51, 52 | decsuc 12739 |
. . . . . . 7
⊢ (;12 + 1) = ;13 |
| 54 | | 5p4e9 12398 |
. . . . . . 7
⊢ (5 + 4) =
9 |
| 55 | 4, 5, 2, 17, 42, 50, 53, 54 | decadd 12762 |
. . . . . 6
⊢ ((1
· ;;125) + (1 + ;13)) = ;;139 |
| 56 | | 5cn 12328 |
. . . . . . . 8
⊢ 5 ∈
ℂ |
| 57 | | 7p5e12 12785 |
. . . . . . . 8
⊢ (7 + 5) =
;12 |
| 58 | 37, 56, 57 | addcomli 11427 |
. . . . . . 7
⊢ (5 + 7) =
;12 |
| 59 | 4, 5, 15, 42, 53, 3, 58 | decaddci 12769 |
. . . . . 6
⊢ ((1
· ;;125) + 7) = ;;132 |
| 60 | 2, 2, 2, 15, 35, 39, 6, 3, 40, 55, 59 | decmac 12760 |
. . . . 5
⊢ ((;11 · ;;125) +
(7 + ;10)) = ;;;1392 |
| 61 | | 9p1e10 12710 |
. . . . . 6
⊢ (9 + 1) =
;10 |
| 62 | | 9cn 12340 |
. . . . . . 7
⊢ 9 ∈
ℂ |
| 63 | 19 | nn0cni 12513 |
. . . . . . 7
⊢ ;11 ∈ ℂ |
| 64 | | 9t11e99 12838 |
. . . . . . 7
⊢ (9
· ;11) = ;99 |
| 65 | 62, 63, 64 | mulcomli 11244 |
. . . . . 6
⊢ (;11 · 9) = ;99 |
| 66 | 32, 61, 65 | decsucc 12749 |
. . . . 5
⊢ ((;11 · 9) + 1) = ;;100 |
| 67 | 6, 32, 15, 2, 1, 33, 19, 22, 34, 60, 66 | decma2c 12761 |
. . . 4
⊢ ((;11 · 𝑁) + ;71) = ;;;;13920 |
| 68 | | eqid 2735 |
. . . . 5
⊢ ;16 = ;16 |
| 69 | 5, 3 | deccl 12723 |
. . . . . 6
⊢ ;52 ∈
ℕ0 |
| 70 | 69, 3 | deccl 12723 |
. . . . 5
⊢ ;;522 ∈ ℕ0 |
| 71 | | eqid 2735 |
. . . . . 6
⊢ ;;870 = ;;870 |
| 72 | | eqid 2735 |
. . . . . 6
⊢ ;;522 = ;;522 |
| 73 | | eqid 2735 |
. . . . . . 7
⊢ ;87 = ;87 |
| 74 | 69 | nn0cni 12513 |
. . . . . . . 8
⊢ ;52 ∈ ℂ |
| 75 | 74 | addridi 11422 |
. . . . . . 7
⊢ (;52 + 0) = ;52 |
| 76 | | 8cn 12337 |
. . . . . . . . . 10
⊢ 8 ∈
ℂ |
| 77 | 76 | mulridi 11239 |
. . . . . . . . 9
⊢ (8
· 1) = 8 |
| 78 | 56 | addridi 11422 |
. . . . . . . . 9
⊢ (5 + 0) =
5 |
| 79 | 77, 78 | oveq12i 7417 |
. . . . . . . 8
⊢ ((8
· 1) + (5 + 0)) = (8 + 5) |
| 80 | | 8p5e13 12791 |
. . . . . . . 8
⊢ (8 + 5) =
;13 |
| 81 | 79, 80 | eqtri 2758 |
. . . . . . 7
⊢ ((8
· 1) + (5 + 0)) = ;13 |
| 82 | 37 | mulridi 11239 |
. . . . . . . . 9
⊢ (7
· 1) = 7 |
| 83 | 82 | oveq1i 7415 |
. . . . . . . 8
⊢ ((7
· 1) + 2) = (7 + 2) |
| 84 | | 7p2e9 12401 |
. . . . . . . 8
⊢ (7 + 2) =
9 |
| 85 | 32 | dec0h 12730 |
. . . . . . . 8
⊢ 9 = ;09 |
| 86 | 83, 84, 85 | 3eqtri 2762 |
. . . . . . 7
⊢ ((7
· 1) + 2) = ;09 |
| 87 | 12, 15, 5, 3, 73, 75, 2, 32, 22, 81, 86 | decmac 12760 |
. . . . . 6
⊢ ((;87 · 1) + (;52 + 0)) = ;;139 |
| 88 | 47 | mul02i 11424 |
. . . . . . . 8
⊢ (0
· 1) = 0 |
| 89 | 88 | oveq1i 7415 |
. . . . . . 7
⊢ ((0
· 1) + 2) = (0 + 2) |
| 90 | | 2cn 12315 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
| 91 | 90 | addlidi 11423 |
. . . . . . 7
⊢ (0 + 2) =
2 |
| 92 | 3 | dec0h 12730 |
. . . . . . 7
⊢ 2 = ;02 |
| 93 | 89, 91, 92 | 3eqtri 2762 |
. . . . . 6
⊢ ((0
· 1) + 2) = ;02 |
| 94 | 21, 22, 69, 3, 71, 72, 2, 3, 22, 87, 93 | decmac 12760 |
. . . . 5
⊢ ((;;870 · 1) + ;;522) =
;;;1392 |
| 95 | | 8t6e48 12827 |
. . . . . . . 8
⊢ (8
· 6) = ;48 |
| 96 | | 4p1e5 12386 |
. . . . . . . 8
⊢ (4 + 1) =
5 |
| 97 | | 8p4e12 12790 |
. . . . . . . 8
⊢ (8 + 4) =
;12 |
| 98 | 17, 12, 17, 95, 96, 3, 97 | decaddci 12769 |
. . . . . . 7
⊢ ((8
· 6) + 4) = ;52 |
| 99 | | 7t6e42 12821 |
. . . . . . 7
⊢ (7
· 6) = ;42 |
| 100 | 24, 12, 15, 73, 3, 17, 98, 99 | decmul1c 12773 |
. . . . . 6
⊢ (;87 · 6) = ;;522 |
| 101 | | 6cn 12331 |
. . . . . . 7
⊢ 6 ∈
ℂ |
| 102 | 101 | mul02i 11424 |
. . . . . 6
⊢ (0
· 6) = 0 |
| 103 | 24, 21, 22, 71, 100, 102 | decmul1 12772 |
. . . . 5
⊢ (;;870 · 6) = ;;;5220 |
| 104 | 23, 2, 24, 68, 22, 70, 94, 103 | decmul2c 12774 |
. . . 4
⊢ (;;870 · ;16) = ;;;;13920 |
| 105 | 67, 104 | eqtr4i 2761 |
. . 3
⊢ ((;11 · 𝑁) + ;71) = (;;870
· ;16) |
| 106 | 9, 10, 18, 20, 23, 16, 17, 25, 26, 28, 31, 105 | modxai 17088 |
. 2
⊢
((2↑;38) mod 𝑁) = (;71 mod 𝑁) |
| 107 | | eqid 2735 |
. . 3
⊢ ;38 = ;38 |
| 108 | | 3t2e6 12406 |
. . . . . 6
⊢ (3
· 2) = 6 |
| 109 | 46, 90, 108 | mulcomli 11244 |
. . . . 5
⊢ (2
· 3) = 6 |
| 110 | 109 | oveq1i 7415 |
. . . 4
⊢ ((2
· 3) + 1) = (6 + 1) |
| 111 | | 6p1e7 12388 |
. . . 4
⊢ (6 + 1) =
7 |
| 112 | 110, 111 | eqtri 2758 |
. . 3
⊢ ((2
· 3) + 1) = 7 |
| 113 | | 8t2e16 12823 |
. . . 4
⊢ (8
· 2) = ;16 |
| 114 | 76, 90, 113 | mulcomli 11244 |
. . 3
⊢ (2
· 8) = ;16 |
| 115 | 3, 11, 12, 107, 24, 2, 112, 114 | decmul2c 12774 |
. 2
⊢ (2
· ;38) = ;76 |
| 116 | 5 | dec0h 12730 |
. . . 4
⊢ 5 = ;05 |
| 117 | | eqid 2735 |
. . . . 5
⊢ ;;125 = ;;125 |
| 118 | | 4cn 12325 |
. . . . . . 7
⊢ 4 ∈
ℂ |
| 119 | 118 | addlidi 11423 |
. . . . . 6
⊢ (0 + 4) =
4 |
| 120 | 17 | dec0h 12730 |
. . . . . 6
⊢ 4 = ;04 |
| 121 | 119, 120 | eqtri 2758 |
. . . . 5
⊢ (0 + 4) =
;04 |
| 122 | 91, 92 | eqtri 2758 |
. . . . . 6
⊢ (0 + 2) =
;02 |
| 123 | 118 | mulridi 11239 |
. . . . . . . 8
⊢ (4
· 1) = 4 |
| 124 | 123, 45 | oveq12i 7417 |
. . . . . . 7
⊢ ((4
· 1) + (0 + 1)) = (4 + 1) |
| 125 | 124, 96 | eqtri 2758 |
. . . . . 6
⊢ ((4
· 1) + (0 + 1)) = 5 |
| 126 | | 4t2e8 12408 |
. . . . . . . 8
⊢ (4
· 2) = 8 |
| 127 | 126 | oveq1i 7415 |
. . . . . . 7
⊢ ((4
· 2) + 2) = (8 + 2) |
| 128 | | 8p2e10 12788 |
. . . . . . 7
⊢ (8 + 2) =
;10 |
| 129 | 127, 128 | eqtri 2758 |
. . . . . 6
⊢ ((4
· 2) + 2) = ;10 |
| 130 | 2, 3, 22, 3, 52, 122, 17, 22, 2, 125, 129 | decma2c 12761 |
. . . . 5
⊢ ((4
· ;12) + (0 + 2)) = ;50 |
| 131 | | 5t4e20 12810 |
. . . . . . 7
⊢ (5
· 4) = ;20 |
| 132 | 56, 118, 131 | mulcomli 11244 |
. . . . . 6
⊢ (4
· 5) = ;20 |
| 133 | 3, 22, 17, 132, 119 | decaddi 12768 |
. . . . 5
⊢ ((4
· 5) + 4) = ;24 |
| 134 | 4, 5, 22, 17, 117, 121, 17, 17, 3, 130, 133 | decma2c 12761 |
. . . 4
⊢ ((4
· ;;125) + (0 + 4)) = ;;504 |
| 135 | | 9t4e36 12832 |
. . . . . 6
⊢ (9
· 4) = ;36 |
| 136 | 62, 118, 135 | mulcomli 11244 |
. . . . 5
⊢ (4
· 9) = ;36 |
| 137 | | 6p5e11 12781 |
. . . . 5
⊢ (6 + 5) =
;11 |
| 138 | 11, 24, 5, 136, 48, 2, 137 | decaddci 12769 |
. . . 4
⊢ ((4
· 9) + 5) = ;41 |
| 139 | 6, 32, 22, 5, 1, 116, 17, 2, 17, 134, 138 | decma2c 12761 |
. . 3
⊢ ((4
· 𝑁) + 5) = ;;;5041 |
| 140 | | 7t7e49 12822 |
. . . . . 6
⊢ (7
· 7) = ;49 |
| 141 | 17, 96, 140 | decsucc 12749 |
. . . . 5
⊢ ((7
· 7) + 1) = ;50 |
| 142 | 37 | mullidi 11240 |
. . . . . . 7
⊢ (1
· 7) = 7 |
| 143 | 142 | oveq1i 7415 |
. . . . . 6
⊢ ((1
· 7) + 7) = (7 + 7) |
| 144 | | 7p7e14 12787 |
. . . . . 6
⊢ (7 + 7) =
;14 |
| 145 | 143, 144 | eqtri 2758 |
. . . . 5
⊢ ((1
· 7) + 7) = ;14 |
| 146 | 15, 2, 15, 33, 15, 17, 2, 141, 145 | decrmac 12766 |
. . . 4
⊢ ((;71 · 7) + 7) = ;;504 |
| 147 | 16 | nn0cni 12513 |
. . . . 5
⊢ ;71 ∈ ℂ |
| 148 | 147 | mulridi 11239 |
. . . 4
⊢ (;71 · 1) = ;71 |
| 149 | 16, 15, 2, 33, 2, 15, 146, 148 | decmul2c 12774 |
. . 3
⊢ (;71 · ;71) = ;;;5041 |
| 150 | 139, 149 | eqtr4i 2761 |
. 2
⊢ ((4
· 𝑁) + 5) = (;71 · ;71) |
| 151 | 9, 10, 13, 14, 16, 5, 106, 115, 150 | mod2xi 17089 |
1
⊢
((2↑;76) mod 𝑁) = (5 mod 𝑁) |