Proof of Theorem 1259lem3
Step | Hyp | Ref
| Expression |
1 | | 1259prm.1 |
. . 3
⊢ 𝑁 = ;;;1259 |
2 | | 1nn0 12179 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
3 | | 2nn0 12180 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
4 | 2, 3 | deccl 12381 |
. . . . 5
⊢ ;12 ∈
ℕ0 |
5 | | 5nn0 12183 |
. . . . 5
⊢ 5 ∈
ℕ0 |
6 | 4, 5 | deccl 12381 |
. . . 4
⊢ ;;125 ∈ ℕ0 |
7 | | 9nn 12001 |
. . . 4
⊢ 9 ∈
ℕ |
8 | 6, 7 | decnncl 12386 |
. . 3
⊢ ;;;1259
∈ ℕ |
9 | 1, 8 | eqeltri 2835 |
. 2
⊢ 𝑁 ∈ ℕ |
10 | | 2nn 11976 |
. 2
⊢ 2 ∈
ℕ |
11 | | 3nn0 12181 |
. . 3
⊢ 3 ∈
ℕ0 |
12 | | 8nn0 12186 |
. . 3
⊢ 8 ∈
ℕ0 |
13 | 11, 12 | deccl 12381 |
. 2
⊢ ;38 ∈
ℕ0 |
14 | | 4z 12284 |
. 2
⊢ 4 ∈
ℤ |
15 | | 7nn0 12185 |
. . 3
⊢ 7 ∈
ℕ0 |
16 | 15, 2 | deccl 12381 |
. 2
⊢ ;71 ∈
ℕ0 |
17 | | 4nn0 12182 |
. . . 4
⊢ 4 ∈
ℕ0 |
18 | 11, 17 | deccl 12381 |
. . 3
⊢ ;34 ∈
ℕ0 |
19 | 2, 2 | deccl 12381 |
. . . 4
⊢ ;11 ∈
ℕ0 |
20 | 19 | nn0zi 12275 |
. . 3
⊢ ;11 ∈ ℤ |
21 | 12, 15 | deccl 12381 |
. . . 4
⊢ ;87 ∈
ℕ0 |
22 | | 0nn0 12178 |
. . . 4
⊢ 0 ∈
ℕ0 |
23 | 21, 22 | deccl 12381 |
. . 3
⊢ ;;870 ∈ ℕ0 |
24 | | 6nn0 12184 |
. . . 4
⊢ 6 ∈
ℕ0 |
25 | 2, 24 | deccl 12381 |
. . 3
⊢ ;16 ∈
ℕ0 |
26 | 1 | 1259lem2 16761 |
. . 3
⊢
((2↑;34) mod 𝑁) = (;;870
mod 𝑁) |
27 | | 2exp4 16714 |
. . . 4
⊢
(2↑4) = ;16 |
28 | 27 | oveq1i 7265 |
. . 3
⊢
((2↑4) mod 𝑁) =
(;16 mod 𝑁) |
29 | | eqid 2738 |
. . . 4
⊢ ;34 = ;34 |
30 | | 4p4e8 12058 |
. . . 4
⊢ (4 + 4) =
8 |
31 | 11, 17, 17, 29, 30 | decaddi 12426 |
. . 3
⊢ (;34 + 4) = ;38 |
32 | | 9nn0 12187 |
. . . . 5
⊢ 9 ∈
ℕ0 |
33 | | eqid 2738 |
. . . . 5
⊢ ;71 = ;71 |
34 | | 10nn0 12384 |
. . . . 5
⊢ ;10 ∈
ℕ0 |
35 | | eqid 2738 |
. . . . . 6
⊢ ;11 = ;11 |
36 | 34 | nn0cni 12175 |
. . . . . . 7
⊢ ;10 ∈ ℂ |
37 | | 7cn 11997 |
. . . . . . 7
⊢ 7 ∈
ℂ |
38 | | dec10p 12409 |
. . . . . . 7
⊢ (;10 + 7) = ;17 |
39 | 36, 37, 38 | addcomli 11097 |
. . . . . 6
⊢ (7 +
;10) = ;17 |
40 | 2, 11 | deccl 12381 |
. . . . . 6
⊢ ;13 ∈
ℕ0 |
41 | 6 | nn0cni 12175 |
. . . . . . . 8
⊢ ;;125 ∈ ℂ |
42 | 41 | mulid2i 10911 |
. . . . . . 7
⊢ (1
· ;;125) = ;;125 |
43 | 2 | dec0h 12388 |
. . . . . . . 8
⊢ 1 = ;01 |
44 | | eqid 2738 |
. . . . . . . 8
⊢ ;13 = ;13 |
45 | | 0p1e1 12025 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
46 | | 3cn 11984 |
. . . . . . . . 9
⊢ 3 ∈
ℂ |
47 | | ax-1cn 10860 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
48 | | 3p1e4 12048 |
. . . . . . . . 9
⊢ (3 + 1) =
4 |
49 | 46, 47, 48 | addcomli 11097 |
. . . . . . . 8
⊢ (1 + 3) =
4 |
50 | 22, 2, 2, 11, 43, 44, 45, 49 | decadd 12420 |
. . . . . . 7
⊢ (1 +
;13) = ;14 |
51 | | 2p1e3 12045 |
. . . . . . . 8
⊢ (2 + 1) =
3 |
52 | | eqid 2738 |
. . . . . . . 8
⊢ ;12 = ;12 |
53 | 2, 3, 51, 52 | decsuc 12397 |
. . . . . . 7
⊢ (;12 + 1) = ;13 |
54 | | 5p4e9 12061 |
. . . . . . 7
⊢ (5 + 4) =
9 |
55 | 4, 5, 2, 17, 42, 50, 53, 54 | decadd 12420 |
. . . . . 6
⊢ ((1
· ;;125) + (1 + ;13)) = ;;139 |
56 | | 5cn 11991 |
. . . . . . . 8
⊢ 5 ∈
ℂ |
57 | | 7p5e12 12443 |
. . . . . . . 8
⊢ (7 + 5) =
;12 |
58 | 37, 56, 57 | addcomli 11097 |
. . . . . . 7
⊢ (5 + 7) =
;12 |
59 | 4, 5, 15, 42, 53, 3, 58 | decaddci 12427 |
. . . . . 6
⊢ ((1
· ;;125) + 7) = ;;132 |
60 | 2, 2, 2, 15, 35, 39, 6, 3, 40, 55, 59 | decmac 12418 |
. . . . 5
⊢ ((;11 · ;;125) +
(7 + ;10)) = ;;;1392 |
61 | | 9p1e10 12368 |
. . . . . 6
⊢ (9 + 1) =
;10 |
62 | | 9cn 12003 |
. . . . . . 7
⊢ 9 ∈
ℂ |
63 | 19 | nn0cni 12175 |
. . . . . . 7
⊢ ;11 ∈ ℂ |
64 | | 9t11e99 12496 |
. . . . . . 7
⊢ (9
· ;11) = ;99 |
65 | 62, 63, 64 | mulcomli 10915 |
. . . . . 6
⊢ (;11 · 9) = ;99 |
66 | 32, 61, 65 | decsucc 12407 |
. . . . 5
⊢ ((;11 · 9) + 1) = ;;100 |
67 | 6, 32, 15, 2, 1, 33, 19, 22, 34, 60, 66 | decma2c 12419 |
. . . 4
⊢ ((;11 · 𝑁) + ;71) = ;;;;13920 |
68 | | eqid 2738 |
. . . . 5
⊢ ;16 = ;16 |
69 | 5, 3 | deccl 12381 |
. . . . . 6
⊢ ;52 ∈
ℕ0 |
70 | 69, 3 | deccl 12381 |
. . . . 5
⊢ ;;522 ∈ ℕ0 |
71 | | eqid 2738 |
. . . . . 6
⊢ ;;870 = ;;870 |
72 | | eqid 2738 |
. . . . . 6
⊢ ;;522 = ;;522 |
73 | | eqid 2738 |
. . . . . . 7
⊢ ;87 = ;87 |
74 | 69 | nn0cni 12175 |
. . . . . . . 8
⊢ ;52 ∈ ℂ |
75 | 74 | addid1i 11092 |
. . . . . . 7
⊢ (;52 + 0) = ;52 |
76 | | 8cn 12000 |
. . . . . . . . . 10
⊢ 8 ∈
ℂ |
77 | 76 | mulid1i 10910 |
. . . . . . . . 9
⊢ (8
· 1) = 8 |
78 | 56 | addid1i 11092 |
. . . . . . . . 9
⊢ (5 + 0) =
5 |
79 | 77, 78 | oveq12i 7267 |
. . . . . . . 8
⊢ ((8
· 1) + (5 + 0)) = (8 + 5) |
80 | | 8p5e13 12449 |
. . . . . . . 8
⊢ (8 + 5) =
;13 |
81 | 79, 80 | eqtri 2766 |
. . . . . . 7
⊢ ((8
· 1) + (5 + 0)) = ;13 |
82 | 37 | mulid1i 10910 |
. . . . . . . . 9
⊢ (7
· 1) = 7 |
83 | 82 | oveq1i 7265 |
. . . . . . . 8
⊢ ((7
· 1) + 2) = (7 + 2) |
84 | | 7p2e9 12064 |
. . . . . . . 8
⊢ (7 + 2) =
9 |
85 | 32 | dec0h 12388 |
. . . . . . . 8
⊢ 9 = ;09 |
86 | 83, 84, 85 | 3eqtri 2770 |
. . . . . . 7
⊢ ((7
· 1) + 2) = ;09 |
87 | 12, 15, 5, 3, 73, 75, 2, 32, 22, 81, 86 | decmac 12418 |
. . . . . 6
⊢ ((;87 · 1) + (;52 + 0)) = ;;139 |
88 | 47 | mul02i 11094 |
. . . . . . . 8
⊢ (0
· 1) = 0 |
89 | 88 | oveq1i 7265 |
. . . . . . 7
⊢ ((0
· 1) + 2) = (0 + 2) |
90 | | 2cn 11978 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
91 | 90 | addid2i 11093 |
. . . . . . 7
⊢ (0 + 2) =
2 |
92 | 3 | dec0h 12388 |
. . . . . . 7
⊢ 2 = ;02 |
93 | 89, 91, 92 | 3eqtri 2770 |
. . . . . 6
⊢ ((0
· 1) + 2) = ;02 |
94 | 21, 22, 69, 3, 71, 72, 2, 3, 22, 87, 93 | decmac 12418 |
. . . . 5
⊢ ((;;870 · 1) + ;;522) =
;;;1392 |
95 | | 8t6e48 12485 |
. . . . . . . 8
⊢ (8
· 6) = ;48 |
96 | | 4p1e5 12049 |
. . . . . . . 8
⊢ (4 + 1) =
5 |
97 | | 8p4e12 12448 |
. . . . . . . 8
⊢ (8 + 4) =
;12 |
98 | 17, 12, 17, 95, 96, 3, 97 | decaddci 12427 |
. . . . . . 7
⊢ ((8
· 6) + 4) = ;52 |
99 | | 7t6e42 12479 |
. . . . . . 7
⊢ (7
· 6) = ;42 |
100 | 24, 12, 15, 73, 3, 17, 98, 99 | decmul1c 12431 |
. . . . . 6
⊢ (;87 · 6) = ;;522 |
101 | | 6cn 11994 |
. . . . . . 7
⊢ 6 ∈
ℂ |
102 | 101 | mul02i 11094 |
. . . . . 6
⊢ (0
· 6) = 0 |
103 | 24, 21, 22, 71, 100, 102 | decmul1 12430 |
. . . . 5
⊢ (;;870 · 6) = ;;;5220 |
104 | 23, 2, 24, 68, 22, 70, 94, 103 | decmul2c 12432 |
. . . 4
⊢ (;;870 · ;16) = ;;;;13920 |
105 | 67, 104 | eqtr4i 2769 |
. . 3
⊢ ((;11 · 𝑁) + ;71) = (;;870
· ;16) |
106 | 9, 10, 18, 20, 23, 16, 17, 25, 26, 28, 31, 105 | modxai 16697 |
. 2
⊢
((2↑;38) mod 𝑁) = (;71 mod 𝑁) |
107 | | eqid 2738 |
. . 3
⊢ ;38 = ;38 |
108 | | 3t2e6 12069 |
. . . . . 6
⊢ (3
· 2) = 6 |
109 | 46, 90, 108 | mulcomli 10915 |
. . . . 5
⊢ (2
· 3) = 6 |
110 | 109 | oveq1i 7265 |
. . . 4
⊢ ((2
· 3) + 1) = (6 + 1) |
111 | | 6p1e7 12051 |
. . . 4
⊢ (6 + 1) =
7 |
112 | 110, 111 | eqtri 2766 |
. . 3
⊢ ((2
· 3) + 1) = 7 |
113 | | 8t2e16 12481 |
. . . 4
⊢ (8
· 2) = ;16 |
114 | 76, 90, 113 | mulcomli 10915 |
. . 3
⊢ (2
· 8) = ;16 |
115 | 3, 11, 12, 107, 24, 2, 112, 114 | decmul2c 12432 |
. 2
⊢ (2
· ;38) = ;76 |
116 | 5 | dec0h 12388 |
. . . 4
⊢ 5 = ;05 |
117 | | eqid 2738 |
. . . . 5
⊢ ;;125 = ;;125 |
118 | | 4cn 11988 |
. . . . . . 7
⊢ 4 ∈
ℂ |
119 | 118 | addid2i 11093 |
. . . . . 6
⊢ (0 + 4) =
4 |
120 | 17 | dec0h 12388 |
. . . . . 6
⊢ 4 = ;04 |
121 | 119, 120 | eqtri 2766 |
. . . . 5
⊢ (0 + 4) =
;04 |
122 | 91, 92 | eqtri 2766 |
. . . . . 6
⊢ (0 + 2) =
;02 |
123 | 118 | mulid1i 10910 |
. . . . . . . 8
⊢ (4
· 1) = 4 |
124 | 123, 45 | oveq12i 7267 |
. . . . . . 7
⊢ ((4
· 1) + (0 + 1)) = (4 + 1) |
125 | 124, 96 | eqtri 2766 |
. . . . . 6
⊢ ((4
· 1) + (0 + 1)) = 5 |
126 | | 4t2e8 12071 |
. . . . . . . 8
⊢ (4
· 2) = 8 |
127 | 126 | oveq1i 7265 |
. . . . . . 7
⊢ ((4
· 2) + 2) = (8 + 2) |
128 | | 8p2e10 12446 |
. . . . . . 7
⊢ (8 + 2) =
;10 |
129 | 127, 128 | eqtri 2766 |
. . . . . 6
⊢ ((4
· 2) + 2) = ;10 |
130 | 2, 3, 22, 3, 52, 122, 17, 22, 2, 125, 129 | decma2c 12419 |
. . . . 5
⊢ ((4
· ;12) + (0 + 2)) = ;50 |
131 | | 5t4e20 12468 |
. . . . . . 7
⊢ (5
· 4) = ;20 |
132 | 56, 118, 131 | mulcomli 10915 |
. . . . . 6
⊢ (4
· 5) = ;20 |
133 | 3, 22, 17, 132, 119 | decaddi 12426 |
. . . . 5
⊢ ((4
· 5) + 4) = ;24 |
134 | 4, 5, 22, 17, 117, 121, 17, 17, 3, 130, 133 | decma2c 12419 |
. . . 4
⊢ ((4
· ;;125) + (0 + 4)) = ;;504 |
135 | | 9t4e36 12490 |
. . . . . 6
⊢ (9
· 4) = ;36 |
136 | 62, 118, 135 | mulcomli 10915 |
. . . . 5
⊢ (4
· 9) = ;36 |
137 | | 6p5e11 12439 |
. . . . 5
⊢ (6 + 5) =
;11 |
138 | 11, 24, 5, 136, 48, 2, 137 | decaddci 12427 |
. . . 4
⊢ ((4
· 9) + 5) = ;41 |
139 | 6, 32, 22, 5, 1, 116, 17, 2, 17, 134, 138 | decma2c 12419 |
. . 3
⊢ ((4
· 𝑁) + 5) = ;;;5041 |
140 | | 7t7e49 12480 |
. . . . . 6
⊢ (7
· 7) = ;49 |
141 | 17, 96, 140 | decsucc 12407 |
. . . . 5
⊢ ((7
· 7) + 1) = ;50 |
142 | 37 | mulid2i 10911 |
. . . . . . 7
⊢ (1
· 7) = 7 |
143 | 142 | oveq1i 7265 |
. . . . . 6
⊢ ((1
· 7) + 7) = (7 + 7) |
144 | | 7p7e14 12445 |
. . . . . 6
⊢ (7 + 7) =
;14 |
145 | 143, 144 | eqtri 2766 |
. . . . 5
⊢ ((1
· 7) + 7) = ;14 |
146 | 15, 2, 15, 33, 15, 17, 2, 141, 145 | decrmac 12424 |
. . . 4
⊢ ((;71 · 7) + 7) = ;;504 |
147 | 16 | nn0cni 12175 |
. . . . 5
⊢ ;71 ∈ ℂ |
148 | 147 | mulid1i 10910 |
. . . 4
⊢ (;71 · 1) = ;71 |
149 | 16, 15, 2, 33, 2, 15, 146, 148 | decmul2c 12432 |
. . 3
⊢ (;71 · ;71) = ;;;5041 |
150 | 139, 149 | eqtr4i 2769 |
. 2
⊢ ((4
· 𝑁) + 5) = (;71 · ;71) |
151 | 9, 10, 13, 14, 16, 5, 106, 115, 150 | mod2xi 16698 |
1
⊢
((2↑;76) mod 𝑁) = (5 mod 𝑁) |