MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem3 Structured version   Visualization version   GIF version

Theorem psgnunilem3 19433
Description: Lemma for psgnuni 19436. Any nonempty representation of the identity can be incrementally transformed into a representation two shorter. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem3.g 𝐺 = (SymGrp‘𝐷)
psgnunilem3.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem3.d (𝜑𝐷𝑉)
psgnunilem3.w1 (𝜑𝑊 ∈ Word 𝑇)
psgnunilem3.l (𝜑 → (♯‘𝑊) = 𝐿)
psgnunilem3.w2 (𝜑 → (♯‘𝑊) ∈ ℕ)
psgnunilem3.w3 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
psgnunilem3.in (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
Assertion
Ref Expression
psgnunilem3 ¬ 𝜑
Distinct variable groups:   𝑥,𝐷   𝑥,𝐺   𝑥,𝐿   𝑥,𝑇   𝑥,𝑊   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem psgnunilem3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem3.l . . . 4 (𝜑 → (♯‘𝑊) = 𝐿)
2 psgnunilem3.w2 . . . 4 (𝜑 → (♯‘𝑊) ∈ ℕ)
31, 2eqeltrrd 2830 . . 3 (𝜑𝐿 ∈ ℕ)
43nnnn0d 12510 . 2 (𝜑𝐿 ∈ ℕ0)
5 psgnunilem3.w1 . . . . . . 7 (𝜑𝑊 ∈ Word 𝑇)
6 wrdf 14490 . . . . . . 7 (𝑊 ∈ Word 𝑇𝑊:(0..^(♯‘𝑊))⟶𝑇)
75, 6syl 17 . . . . . 6 (𝜑𝑊:(0..^(♯‘𝑊))⟶𝑇)
8 0nn0 12464 . . . . . . . . 9 0 ∈ ℕ0
98a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℕ0)
103nngt0d 12242 . . . . . . . 8 (𝜑 → 0 < 𝐿)
11 elfzo0 13668 . . . . . . . 8 (0 ∈ (0..^𝐿) ↔ (0 ∈ ℕ0𝐿 ∈ ℕ ∧ 0 < 𝐿))
129, 3, 10, 11syl3anbrc 1344 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝐿))
131oveq2d 7406 . . . . . . 7 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝐿))
1412, 13eleqtrrd 2832 . . . . . 6 (𝜑 → 0 ∈ (0..^(♯‘𝑊)))
157, 14ffvelcdmd 7060 . . . . 5 (𝜑 → (𝑊‘0) ∈ 𝑇)
16 eqid 2730 . . . . . 6 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
17 psgnunilem3.t . . . . . 6 𝑇 = ran (pmTrsp‘𝐷)
1816, 17pmtrfmvdn0 19399 . . . . 5 ((𝑊‘0) ∈ 𝑇 → dom ((𝑊‘0) ∖ I ) ≠ ∅)
1915, 18syl 17 . . . 4 (𝜑 → dom ((𝑊‘0) ∖ I ) ≠ ∅)
20 n0 4319 . . . 4 (dom ((𝑊‘0) ∖ I ) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ dom ((𝑊‘0) ∖ I ))
2119, 20sylib 218 . . 3 (𝜑 → ∃𝑒 𝑒 ∈ dom ((𝑊‘0) ∖ I ))
22 fzonel 13641 . . . . . . . 8 ¬ 𝐿 ∈ (0..^𝐿)
23 simpr1 1195 . . . . . . . 8 ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) → 𝐿 ∈ (0..^𝐿))
2422, 23mto 197 . . . . . . 7 ¬ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
2524a1i 11 . . . . . 6 (𝑤 ∈ Word 𝑇 → ¬ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
2625nrex 3058 . . . . 5 ¬ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
27 eleq1 2817 . . . . . . . . . 10 (𝑎 = 0 → (𝑎 ∈ (0..^𝐿) ↔ 0 ∈ (0..^𝐿)))
28 fveq2 6861 . . . . . . . . . . . . 13 (𝑎 = 0 → (𝑤𝑎) = (𝑤‘0))
2928difeq1d 4091 . . . . . . . . . . . 12 (𝑎 = 0 → ((𝑤𝑎) ∖ I ) = ((𝑤‘0) ∖ I ))
3029dmeqd 5872 . . . . . . . . . . 11 (𝑎 = 0 → dom ((𝑤𝑎) ∖ I ) = dom ((𝑤‘0) ∖ I ))
3130eleq2d 2815 . . . . . . . . . 10 (𝑎 = 0 → (𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤‘0) ∖ I )))
32 oveq2 7398 . . . . . . . . . . 11 (𝑎 = 0 → (0..^𝑎) = (0..^0))
3332raleqdv 3301 . . . . . . . . . 10 (𝑎 = 0 → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
3427, 31, 333anbi123d 1438 . . . . . . . . 9 (𝑎 = 0 → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
3534anbi2d 630 . . . . . . . 8 (𝑎 = 0 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
3635rexbidv 3158 . . . . . . 7 (𝑎 = 0 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
3736imbi2d 340 . . . . . 6 (𝑎 = 0 → (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))) ↔ ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))))
38 eleq1 2817 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 ∈ (0..^𝐿) ↔ 𝑏 ∈ (0..^𝐿)))
39 fveq2 6861 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑤𝑎) = (𝑤𝑏))
4039difeq1d 4091 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → ((𝑤𝑎) ∖ I ) = ((𝑤𝑏) ∖ I ))
4140dmeqd 5872 . . . . . . . . . . . 12 (𝑎 = 𝑏 → dom ((𝑤𝑎) ∖ I ) = dom ((𝑤𝑏) ∖ I ))
4241eleq2d 2815 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤𝑏) ∖ I )))
43 oveq2 7398 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (0..^𝑎) = (0..^𝑏))
4443raleqdv 3301 . . . . . . . . . . 11 (𝑎 = 𝑏 → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
4538, 42, 443anbi123d 1438 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
4645anbi2d 630 . . . . . . . . 9 (𝑎 = 𝑏 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
4746rexbidv 3158 . . . . . . . 8 (𝑎 = 𝑏 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
48 oveq2 7398 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
4948eqeq1d 2732 . . . . . . . . . . 11 (𝑤 = 𝑥 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
50 fveqeq2 6870 . . . . . . . . . . 11 (𝑤 = 𝑥 → ((♯‘𝑤) = 𝐿 ↔ (♯‘𝑥) = 𝐿))
5149, 50anbi12d 632 . . . . . . . . . 10 (𝑤 = 𝑥 → (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ↔ ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿)))
52 fveq1 6860 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑤𝑏) = (𝑥𝑏))
5352difeq1d 4091 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → ((𝑤𝑏) ∖ I ) = ((𝑥𝑏) ∖ I ))
5453dmeqd 5872 . . . . . . . . . . . 12 (𝑤 = 𝑥 → dom ((𝑤𝑏) ∖ I ) = dom ((𝑥𝑏) ∖ I ))
5554eleq2d 2815 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ↔ 𝑒 ∈ dom ((𝑥𝑏) ∖ I )))
56 fveq1 6860 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (𝑤𝑐) = (𝑥𝑐))
5756difeq1d 4091 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → ((𝑤𝑐) ∖ I ) = ((𝑥𝑐) ∖ I ))
5857dmeqd 5872 . . . . . . . . . . . . . . 15 (𝑤 = 𝑥 → dom ((𝑤𝑐) ∖ I ) = dom ((𝑥𝑐) ∖ I ))
5958eleq2d 2815 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ 𝑒 ∈ dom ((𝑥𝑐) ∖ I )))
6059notbid 318 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ¬ 𝑒 ∈ dom ((𝑥𝑐) ∖ I )))
6160ralbidv 3157 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑐) ∖ I )))
62 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑑 → (𝑥𝑐) = (𝑥𝑑))
6362difeq1d 4091 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑑 → ((𝑥𝑐) ∖ I ) = ((𝑥𝑑) ∖ I ))
6463dmeqd 5872 . . . . . . . . . . . . . . 15 (𝑐 = 𝑑 → dom ((𝑥𝑐) ∖ I ) = dom ((𝑥𝑑) ∖ I ))
6564eleq2d 2815 . . . . . . . . . . . . . 14 (𝑐 = 𝑑 → (𝑒 ∈ dom ((𝑥𝑐) ∖ I ) ↔ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))
6665notbid 318 . . . . . . . . . . . . 13 (𝑐 = 𝑑 → (¬ 𝑒 ∈ dom ((𝑥𝑐) ∖ I ) ↔ ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))
6766cbvralvw 3216 . . . . . . . . . . . 12 (∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑐) ∖ I ) ↔ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))
6861, 67bitrdi 287 . . . . . . . . . . 11 (𝑤 = 𝑥 → (∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))
6955, 683anbi23d 1441 . . . . . . . . . 10 (𝑤 = 𝑥 → ((𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))
7051, 69anbi12d 632 . . . . . . . . 9 (𝑤 = 𝑥 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))))
7170cbvrexvw 3217 . . . . . . . 8 (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))
7247, 71bitrdi 287 . . . . . . 7 (𝑎 = 𝑏 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))))
7372imbi2d 340 . . . . . 6 (𝑎 = 𝑏 → (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))) ↔ ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))))
74 eleq1 2817 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → (𝑎 ∈ (0..^𝐿) ↔ (𝑏 + 1) ∈ (0..^𝐿)))
75 fveq2 6861 . . . . . . . . . . . . 13 (𝑎 = (𝑏 + 1) → (𝑤𝑎) = (𝑤‘(𝑏 + 1)))
7675difeq1d 4091 . . . . . . . . . . . 12 (𝑎 = (𝑏 + 1) → ((𝑤𝑎) ∖ I ) = ((𝑤‘(𝑏 + 1)) ∖ I ))
7776dmeqd 5872 . . . . . . . . . . 11 (𝑎 = (𝑏 + 1) → dom ((𝑤𝑎) ∖ I ) = dom ((𝑤‘(𝑏 + 1)) ∖ I ))
7877eleq2d 2815 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → (𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I )))
79 oveq2 7398 . . . . . . . . . . 11 (𝑎 = (𝑏 + 1) → (0..^𝑎) = (0..^(𝑏 + 1)))
8079raleqdv 3301 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
8174, 78, 803anbi123d 1438 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
8281anbi2d 630 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
8382rexbidv 3158 . . . . . . 7 (𝑎 = (𝑏 + 1) → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
8483imbi2d 340 . . . . . 6 (𝑎 = (𝑏 + 1) → (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))) ↔ ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))))
85 eleq1 2817 . . . . . . . . . 10 (𝑎 = 𝐿 → (𝑎 ∈ (0..^𝐿) ↔ 𝐿 ∈ (0..^𝐿)))
86 fveq2 6861 . . . . . . . . . . . . 13 (𝑎 = 𝐿 → (𝑤𝑎) = (𝑤𝐿))
8786difeq1d 4091 . . . . . . . . . . . 12 (𝑎 = 𝐿 → ((𝑤𝑎) ∖ I ) = ((𝑤𝐿) ∖ I ))
8887dmeqd 5872 . . . . . . . . . . 11 (𝑎 = 𝐿 → dom ((𝑤𝑎) ∖ I ) = dom ((𝑤𝐿) ∖ I ))
8988eleq2d 2815 . . . . . . . . . 10 (𝑎 = 𝐿 → (𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤𝐿) ∖ I )))
90 oveq2 7398 . . . . . . . . . . 11 (𝑎 = 𝐿 → (0..^𝑎) = (0..^𝐿))
9190raleqdv 3301 . . . . . . . . . 10 (𝑎 = 𝐿 → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
9285, 89, 913anbi123d 1438 . . . . . . . . 9 (𝑎 = 𝐿 → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
9392anbi2d 630 . . . . . . . 8 (𝑎 = 𝐿 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
9493rexbidv 3158 . . . . . . 7 (𝑎 = 𝐿 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
9594imbi2d 340 . . . . . 6 (𝑎 = 𝐿 → (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))) ↔ ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))))
965adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → 𝑊 ∈ Word 𝑇)
97 psgnunilem3.w3 . . . . . . . . 9 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
9897, 1jca 511 . . . . . . . 8 (𝜑 → ((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (♯‘𝑊) = 𝐿))
9998adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (♯‘𝑊) = 𝐿))
10012adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → 0 ∈ (0..^𝐿))
101 simpr 484 . . . . . . . 8 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → 𝑒 ∈ dom ((𝑊‘0) ∖ I ))
102 ral0 4479 . . . . . . . . . 10 𝑐 ∈ ∅ ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )
103 fzo0 13651 . . . . . . . . . . 11 (0..^0) = ∅
104103raleqi 3299 . . . . . . . . . 10 (∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I ) ↔ ∀𝑐 ∈ ∅ ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I ))
105102, 104mpbir 231 . . . . . . . . 9 𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )
106105a1i 11 . . . . . . . 8 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I ))
107100, 101, 1063jca 1128 . . . . . . 7 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))
108 oveq2 7398 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊))
109108eqeq1d 2732 . . . . . . . . . 10 (𝑤 = 𝑊 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)))
110 fveqeq2 6870 . . . . . . . . . 10 (𝑤 = 𝑊 → ((♯‘𝑤) = 𝐿 ↔ (♯‘𝑊) = 𝐿))
111109, 110anbi12d 632 . . . . . . . . 9 (𝑤 = 𝑊 → (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ↔ ((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (♯‘𝑊) = 𝐿)))
112 fveq1 6860 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
113112difeq1d 4091 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ((𝑤‘0) ∖ I ) = ((𝑊‘0) ∖ I ))
114113dmeqd 5872 . . . . . . . . . . 11 (𝑤 = 𝑊 → dom ((𝑤‘0) ∖ I ) = dom ((𝑊‘0) ∖ I ))
115114eleq2d 2815 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑒 ∈ dom ((𝑤‘0) ∖ I ) ↔ 𝑒 ∈ dom ((𝑊‘0) ∖ I )))
116 fveq1 6860 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤𝑐) = (𝑊𝑐))
117116difeq1d 4091 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → ((𝑤𝑐) ∖ I ) = ((𝑊𝑐) ∖ I ))
118117dmeqd 5872 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → dom ((𝑤𝑐) ∖ I ) = dom ((𝑊𝑐) ∖ I ))
119118eleq2d 2815 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))
120119notbid 318 . . . . . . . . . . 11 (𝑤 = 𝑊 → (¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))
121120ralbidv 3157 . . . . . . . . . 10 (𝑤 = 𝑊 → (∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))
122115, 1213anbi23d 1441 . . . . . . . . 9 (𝑤 = 𝑊 → ((0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I ))))
123111, 122anbi12d 632 . . . . . . . 8 (𝑤 = 𝑊 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (♯‘𝑊) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))))
124123rspcev 3591 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (♯‘𝑊) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
12596, 99, 107, 124syl12anc 836 . . . . . 6 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
126 psgnunilem3.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
127 psgnunilem3.d . . . . . . . . . . 11 (𝜑𝐷𝑉)
128127ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → 𝐷𝑉)
129 simprl 770 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → 𝑥 ∈ Word 𝑇)
130 simpll 766 . . . . . . . . . . 11 ((((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷))
131130ad2antll 729 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷))
132 simplr 768 . . . . . . . . . . 11 ((((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → (♯‘𝑥) = 𝐿)
133132ad2antll 729 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → (♯‘𝑥) = 𝐿)
134 simpr1 1195 . . . . . . . . . . 11 ((((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → 𝑏 ∈ (0..^𝐿))
135134ad2antll 729 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → 𝑏 ∈ (0..^𝐿))
136 simpr2 1196 . . . . . . . . . . 11 ((((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → 𝑒 ∈ dom ((𝑥𝑏) ∖ I ))
137136ad2antll 729 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → 𝑒 ∈ dom ((𝑥𝑏) ∖ I ))
138 simpr3 1197 . . . . . . . . . . 11 ((((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))
139138ad2antll 729 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))
140 psgnunilem3.in . . . . . . . . . . . 12 (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
141 fveqeq2 6870 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((♯‘𝑥) = (𝐿 − 2) ↔ (♯‘𝑦) = (𝐿 − 2)))
142 oveq2 7398 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑦))
143142eqeq1d 2732 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
144141, 143anbi12d 632 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((♯‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))))
145144cbvrexvw 3217 . . . . . . . . . . . 12 (∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
146140, 145sylnib 328 . . . . . . . . . . 11 (𝜑 → ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
147146ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
148126, 17, 128, 129, 131, 133, 135, 137, 139, 147psgnunilem2 19432 . . . . . . . . 9 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
149148rexlimdvaa 3136 . . . . . . . 8 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → (∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
150149a2i 14 . . . . . . 7 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))) → ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
151150a1i 11 . . . . . 6 (𝑏 ∈ ℕ0 → (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))) → ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))))
15237, 73, 84, 95, 125, 151nn0ind 12636 . . . . 5 (𝐿 ∈ ℕ0 → ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
15326, 152mtoi 199 . . . 4 (𝐿 ∈ ℕ0 → ¬ (𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )))
154153con2i 139 . . 3 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ¬ 𝐿 ∈ ℕ0)
15521, 154exlimddv 1935 . 2 (𝜑 → ¬ 𝐿 ∈ ℕ0)
1564, 155pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  c0 4299   class class class wbr 5110   I cid 5535  dom cdm 5641  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cmin 11412  cn 12193  2c2 12248  0cn0 12449  ..^cfzo 13622  chash 14302  Word cword 14485   Σg cgsu 17410  SymGrpcsymg 19306  pmTrspcpmtr 19378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-subg 19062  df-symg 19307  df-pmtr 19379
This theorem is referenced by:  psgnunilem4  19434
  Copyright terms: Public domain W3C validator