Step | Hyp | Ref
| Expression |
1 | | psgnunilem3.l |
. . . 4
⊢ (𝜑 → (♯‘𝑊) = 𝐿) |
2 | | psgnunilem3.w2 |
. . . 4
⊢ (𝜑 → (♯‘𝑊) ∈
ℕ) |
3 | 1, 2 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → 𝐿 ∈ ℕ) |
4 | 3 | nnnn0d 12223 |
. 2
⊢ (𝜑 → 𝐿 ∈
ℕ0) |
5 | | psgnunilem3.w1 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Word 𝑇) |
6 | | wrdf 14150 |
. . . . . . 7
⊢ (𝑊 ∈ Word 𝑇 → 𝑊:(0..^(♯‘𝑊))⟶𝑇) |
7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑊:(0..^(♯‘𝑊))⟶𝑇) |
8 | | 0nn0 12178 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
9 | 8 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℕ0) |
10 | 3 | nngt0d 11952 |
. . . . . . . 8
⊢ (𝜑 → 0 < 𝐿) |
11 | | elfzo0 13356 |
. . . . . . . 8
⊢ (0 ∈
(0..^𝐿) ↔ (0 ∈
ℕ0 ∧ 𝐿
∈ ℕ ∧ 0 < 𝐿)) |
12 | 9, 3, 10, 11 | syl3anbrc 1341 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ (0..^𝐿)) |
13 | 1 | oveq2d 7271 |
. . . . . . 7
⊢ (𝜑 → (0..^(♯‘𝑊)) = (0..^𝐿)) |
14 | 12, 13 | eleqtrrd 2842 |
. . . . . 6
⊢ (𝜑 → 0 ∈
(0..^(♯‘𝑊))) |
15 | 7, 14 | ffvelrnd 6944 |
. . . . 5
⊢ (𝜑 → (𝑊‘0) ∈ 𝑇) |
16 | | eqid 2738 |
. . . . . 6
⊢
(pmTrsp‘𝐷) =
(pmTrsp‘𝐷) |
17 | | psgnunilem3.t |
. . . . . 6
⊢ 𝑇 = ran (pmTrsp‘𝐷) |
18 | 16, 17 | pmtrfmvdn0 18985 |
. . . . 5
⊢ ((𝑊‘0) ∈ 𝑇 → dom ((𝑊‘0) ∖ I ) ≠
∅) |
19 | 15, 18 | syl 17 |
. . . 4
⊢ (𝜑 → dom ((𝑊‘0) ∖ I ) ≠
∅) |
20 | | n0 4277 |
. . . 4
⊢ (dom
((𝑊‘0) ∖ I )
≠ ∅ ↔ ∃𝑒 𝑒 ∈ dom ((𝑊‘0) ∖ I )) |
21 | 19, 20 | sylib 217 |
. . 3
⊢ (𝜑 → ∃𝑒 𝑒 ∈ dom ((𝑊‘0) ∖ I )) |
22 | | fzonel 13329 |
. . . . . . . 8
⊢ ¬
𝐿 ∈ (0..^𝐿) |
23 | | simpr1 1192 |
. . . . . . . 8
⊢ ((((𝐺 Σg
𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) → 𝐿 ∈ (0..^𝐿)) |
24 | 22, 23 | mto 196 |
. . . . . . 7
⊢ ¬
(((𝐺
Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) |
25 | 24 | a1i 11 |
. . . . . 6
⊢ (𝑤 ∈ Word 𝑇 → ¬ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) |
26 | 25 | nrex 3196 |
. . . . 5
⊢ ¬
∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) |
27 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑎 = 0 → (𝑎 ∈ (0..^𝐿) ↔ 0 ∈ (0..^𝐿))) |
28 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 0 → (𝑤‘𝑎) = (𝑤‘0)) |
29 | 28 | difeq1d 4052 |
. . . . . . . . . . . 12
⊢ (𝑎 = 0 → ((𝑤‘𝑎) ∖ I ) = ((𝑤‘0) ∖ I )) |
30 | 29 | dmeqd 5803 |
. . . . . . . . . . 11
⊢ (𝑎 = 0 → dom ((𝑤‘𝑎) ∖ I ) = dom ((𝑤‘0) ∖ I )) |
31 | 30 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑎 = 0 → (𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤‘0) ∖ I ))) |
32 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑎 = 0 → (0..^𝑎) = (0..^0)) |
33 | 32 | raleqdv 3339 |
. . . . . . . . . 10
⊢ (𝑎 = 0 → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) |
34 | 27, 31, 33 | 3anbi123d 1434 |
. . . . . . . . 9
⊢ (𝑎 = 0 → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )) ↔ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) |
35 | 34 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑎 = 0 → ((((𝐺 Σg
𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
36 | 35 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑎 = 0 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
37 | 36 | imbi2d 340 |
. . . . . 6
⊢ (𝑎 = 0 → (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) ↔ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))))) |
38 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (𝑎 ∈ (0..^𝐿) ↔ 𝑏 ∈ (0..^𝐿))) |
39 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (𝑤‘𝑎) = (𝑤‘𝑏)) |
40 | 39 | difeq1d 4052 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → ((𝑤‘𝑎) ∖ I ) = ((𝑤‘𝑏) ∖ I )) |
41 | 40 | dmeqd 5803 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → dom ((𝑤‘𝑎) ∖ I ) = dom ((𝑤‘𝑏) ∖ I )) |
42 | 41 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤‘𝑏) ∖ I ))) |
43 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (0..^𝑎) = (0..^𝑏)) |
44 | 43 | raleqdv 3339 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) |
45 | 38, 42, 44 | 3anbi123d 1434 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )) ↔ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) |
46 | 45 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
47 | 46 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
48 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥)) |
49 | 48 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) |
50 | | fveqeq2 6765 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → ((♯‘𝑤) = 𝐿 ↔ (♯‘𝑥) = 𝐿)) |
51 | 49, 50 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ↔ ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿))) |
52 | | fveq1 6755 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝑤‘𝑏) = (𝑥‘𝑏)) |
53 | 52 | difeq1d 4052 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → ((𝑤‘𝑏) ∖ I ) = ((𝑥‘𝑏) ∖ I )) |
54 | 53 | dmeqd 5803 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → dom ((𝑤‘𝑏) ∖ I ) = dom ((𝑥‘𝑏) ∖ I )) |
55 | 54 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝑒 ∈ dom ((𝑤‘𝑏) ∖ I ) ↔ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ))) |
56 | | fveq1 6755 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑥 → (𝑤‘𝑐) = (𝑥‘𝑐)) |
57 | 56 | difeq1d 4052 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑥 → ((𝑤‘𝑐) ∖ I ) = ((𝑥‘𝑐) ∖ I )) |
58 | 57 | dmeqd 5803 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑥 → dom ((𝑤‘𝑐) ∖ I ) = dom ((𝑥‘𝑐) ∖ I )) |
59 | 58 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ 𝑒 ∈ dom ((𝑥‘𝑐) ∖ I ))) |
60 | 59 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ ¬ 𝑒 ∈ dom ((𝑥‘𝑐) ∖ I ))) |
61 | 60 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑐) ∖ I ))) |
62 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = 𝑑 → (𝑥‘𝑐) = (𝑥‘𝑑)) |
63 | 62 | difeq1d 4052 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑑 → ((𝑥‘𝑐) ∖ I ) = ((𝑥‘𝑑) ∖ I )) |
64 | 63 | dmeqd 5803 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑑 → dom ((𝑥‘𝑐) ∖ I ) = dom ((𝑥‘𝑑) ∖ I )) |
65 | 64 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑑 → (𝑒 ∈ dom ((𝑥‘𝑐) ∖ I ) ↔ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))) |
66 | 65 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑑 → (¬ 𝑒 ∈ dom ((𝑥‘𝑐) ∖ I ) ↔ ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))) |
67 | 66 | cbvralvw 3372 |
. . . . . . . . . . . 12
⊢
(∀𝑐 ∈
(0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑐) ∖ I ) ↔ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I )) |
68 | 61, 67 | bitrdi 286 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))) |
69 | 55, 68 | 3anbi23d 1437 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → ((𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )) ↔ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I )))) |
70 | 51, 69 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) |
71 | 70 | cbvrexvw 3373 |
. . . . . . . 8
⊢
(∃𝑤 ∈
Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I )))) |
72 | 47, 71 | bitrdi 286 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) |
73 | 72 | imbi2d 340 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) ↔ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I )))))) |
74 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑏 + 1) → (𝑎 ∈ (0..^𝐿) ↔ (𝑏 + 1) ∈ (0..^𝐿))) |
75 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑏 + 1) → (𝑤‘𝑎) = (𝑤‘(𝑏 + 1))) |
76 | 75 | difeq1d 4052 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑏 + 1) → ((𝑤‘𝑎) ∖ I ) = ((𝑤‘(𝑏 + 1)) ∖ I )) |
77 | 76 | dmeqd 5803 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑏 + 1) → dom ((𝑤‘𝑎) ∖ I ) = dom ((𝑤‘(𝑏 + 1)) ∖ I )) |
78 | 77 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑏 + 1) → (𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ))) |
79 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑏 + 1) → (0..^𝑎) = (0..^(𝑏 + 1))) |
80 | 79 | raleqdv 3339 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑏 + 1) → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) |
81 | 74, 78, 80 | 3anbi123d 1434 |
. . . . . . . . 9
⊢ (𝑎 = (𝑏 + 1) → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )) ↔ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) |
82 | 81 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑎 = (𝑏 + 1) → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
83 | 82 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑎 = (𝑏 + 1) → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
84 | 83 | imbi2d 340 |
. . . . . 6
⊢ (𝑎 = (𝑏 + 1) → (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) ↔ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))))) |
85 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐿 → (𝑎 ∈ (0..^𝐿) ↔ 𝐿 ∈ (0..^𝐿))) |
86 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐿 → (𝑤‘𝑎) = (𝑤‘𝐿)) |
87 | 86 | difeq1d 4052 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐿 → ((𝑤‘𝑎) ∖ I ) = ((𝑤‘𝐿) ∖ I )) |
88 | 87 | dmeqd 5803 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐿 → dom ((𝑤‘𝑎) ∖ I ) = dom ((𝑤‘𝐿) ∖ I )) |
89 | 88 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐿 → (𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤‘𝐿) ∖ I ))) |
90 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐿 → (0..^𝑎) = (0..^𝐿)) |
91 | 90 | raleqdv 3339 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐿 → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) |
92 | 85, 89, 91 | 3anbi123d 1434 |
. . . . . . . . 9
⊢ (𝑎 = 𝐿 → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )) ↔ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) |
93 | 92 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑎 = 𝐿 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
94 | 93 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑎 = 𝐿 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
95 | 94 | imbi2d 340 |
. . . . . 6
⊢ (𝑎 = 𝐿 → (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) ↔ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))))) |
96 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → 𝑊 ∈ Word 𝑇) |
97 | | psgnunilem3.w3 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) |
98 | 97, 1 | jca 511 |
. . . . . . . 8
⊢ (𝜑 → ((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (♯‘𝑊) = 𝐿)) |
99 | 98 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ((𝐺 Σg
𝑊) = ( I ↾ 𝐷) ∧ (♯‘𝑊) = 𝐿)) |
100 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → 0 ∈
(0..^𝐿)) |
101 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → 𝑒 ∈ dom ((𝑊‘0) ∖ I )) |
102 | | ral0 4440 |
. . . . . . . . . 10
⊢
∀𝑐 ∈
∅ ¬ 𝑒 ∈ dom
((𝑊‘𝑐) ∖ I ) |
103 | | fzo0 13339 |
. . . . . . . . . . 11
⊢ (0..^0) =
∅ |
104 | 103 | raleqi 3337 |
. . . . . . . . . 10
⊢
(∀𝑐 ∈
(0..^0) ¬ 𝑒 ∈ dom
((𝑊‘𝑐) ∖ I ) ↔
∀𝑐 ∈ ∅
¬ 𝑒 ∈ dom ((𝑊‘𝑐) ∖ I )) |
105 | 102, 104 | mpbir 230 |
. . . . . . . . 9
⊢
∀𝑐 ∈
(0..^0) ¬ 𝑒 ∈ dom
((𝑊‘𝑐) ∖ I ) |
106 | 105 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊‘𝑐) ∖ I )) |
107 | 100, 101,
106 | 3jca 1126 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → (0 ∈
(0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊‘𝑐) ∖ I ))) |
108 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊)) |
109 | 108 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑊) = ( I ↾ 𝐷))) |
110 | | fveqeq2 6765 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ((♯‘𝑤) = 𝐿 ↔ (♯‘𝑊) = 𝐿)) |
111 | 109, 110 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ↔ ((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (♯‘𝑊) = 𝐿))) |
112 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0)) |
113 | 112 | difeq1d 4052 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → ((𝑤‘0) ∖ I ) = ((𝑊‘0) ∖ I )) |
114 | 113 | dmeqd 5803 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → dom ((𝑤‘0) ∖ I ) = dom ((𝑊‘0) ∖ I
)) |
115 | 114 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (𝑒 ∈ dom ((𝑤‘0) ∖ I ) ↔ 𝑒 ∈ dom ((𝑊‘0) ∖ I ))) |
116 | | fveq1 6755 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑊 → (𝑤‘𝑐) = (𝑊‘𝑐)) |
117 | 116 | difeq1d 4052 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑊 → ((𝑤‘𝑐) ∖ I ) = ((𝑊‘𝑐) ∖ I )) |
118 | 117 | dmeqd 5803 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑊 → dom ((𝑤‘𝑐) ∖ I ) = dom ((𝑊‘𝑐) ∖ I )) |
119 | 118 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → (𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ 𝑒 ∈ dom ((𝑊‘𝑐) ∖ I ))) |
120 | 119 | notbid 317 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ ¬ 𝑒 ∈ dom ((𝑊‘𝑐) ∖ I ))) |
121 | 120 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊‘𝑐) ∖ I ))) |
122 | 115, 121 | 3anbi23d 1437 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )) ↔ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊‘𝑐) ∖ I )))) |
123 | 111, 122 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (♯‘𝑊) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊‘𝑐) ∖ I ))))) |
124 | 123 | rspcev 3552 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (♯‘𝑊) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊‘𝑐) ∖ I )))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) |
125 | 96, 99, 107, 124 | syl12anc 833 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) |
126 | | psgnunilem3.g |
. . . . . . . . . 10
⊢ 𝐺 = (SymGrp‘𝐷) |
127 | | psgnunilem3.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
128 | 127 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) → 𝐷 ∈ 𝑉) |
129 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) → 𝑥 ∈ Word 𝑇) |
130 | | simpll 763 |
. . . . . . . . . . 11
⊢ ((((𝐺 Σg
𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) |
131 | 130 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) |
132 | | simplr 765 |
. . . . . . . . . . 11
⊢ ((((𝐺 Σg
𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))) → (♯‘𝑥) = 𝐿) |
133 | 132 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) → (♯‘𝑥) = 𝐿) |
134 | | simpr1 1192 |
. . . . . . . . . . 11
⊢ ((((𝐺 Σg
𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))) → 𝑏 ∈ (0..^𝐿)) |
135 | 134 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) → 𝑏 ∈ (0..^𝐿)) |
136 | | simpr2 1193 |
. . . . . . . . . . 11
⊢ ((((𝐺 Σg
𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))) → 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I )) |
137 | 136 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) → 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I )) |
138 | | simpr3 1194 |
. . . . . . . . . . 11
⊢ ((((𝐺 Σg
𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))) → ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I )) |
139 | 138 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) → ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I )) |
140 | | psgnunilem3.in |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) |
141 | | fveqeq2 6765 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((♯‘𝑥) = (𝐿 − 2) ↔ (♯‘𝑦) = (𝐿 − 2))) |
142 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑦)) |
143 | 142 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))) |
144 | 141, 143 | anbi12d 630 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((♯‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))) |
145 | 144 | cbvrexvw 3373 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
Word 𝑇((♯‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))) |
146 | 140, 145 | sylnib 327 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))) |
147 | 146 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) → ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))) |
148 | 126, 17, 128, 129, 131, 133, 135, 137, 139, 147 | psgnunilem2 19018 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))) |
149 | 148 | rexlimdvaa 3213 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → (∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I ))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
150 | 149 | a2i 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I )))) → ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
151 | 150 | a1i 11 |
. . . . . 6
⊢ (𝑏 ∈ ℕ0
→ (((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (♯‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥‘𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥‘𝑑) ∖ I )))) → ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I )))))) |
152 | 37, 73, 84, 95, 125, 151 | nn0ind 12345 |
. . . . 5
⊢ (𝐿 ∈ ℕ0
→ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (♯‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤‘𝑐) ∖ I ))))) |
153 | 26, 152 | mtoi 198 |
. . . 4
⊢ (𝐿 ∈ ℕ0
→ ¬ (𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ))) |
154 | 153 | con2i 139 |
. . 3
⊢ ((𝜑 ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ¬ 𝐿 ∈
ℕ0) |
155 | 21, 154 | exlimddv 1939 |
. 2
⊢ (𝜑 → ¬ 𝐿 ∈
ℕ0) |
156 | 4, 155 | pm2.65i 193 |
1
⊢ ¬
𝜑 |