| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 1stconst 8036 omlimcl 8499 odi 8500 oelim2 8516 mapxpen 9063 unwdomg 9477 dfac12lem2 10043 infunsdom 10111 fin1a2s 10312 ccatpfx 14610 frlmup1 21737 fbasrn 23800 lmmbr 25186 grporcan 30500 unoplin 31902 hmoplin 31924 superpos 32336 ccatf1 32937 subfacp1lem5 35249 matunitlindflem1 37676 poimirlem4 37684 itg2addnclem 37731 ftc1anclem6 37758 fdc 37805 ismtyres 37868 isdrngo2 38018 rngohomco 38034 rngoisocnv 38041 dssmapnvod 44137 climxrrelem 45871 dvdsn1add 46061 dvnprodlem1 46068 stoweidlem27 46149 fourierdlem97 46325 qndenserrnbllem 46416 sge0iunmptlemfi 46535 |
| Copyright terms: Public domain | W3C validator |