![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 680 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 1stconst 8141 omlimcl 8634 odi 8635 oelim2 8651 mapxpen 9209 unwdomg 9653 dfac12lem2 10214 infunsdom 10282 fin1a2s 10483 ccatpfx 14749 frlmup1 21841 fbasrn 23913 lmmbr 25311 grporcan 30550 unoplin 31952 hmoplin 31974 superpos 32386 ccatf1 32915 subfacp1lem5 35152 matunitlindflem1 37576 poimirlem4 37584 itg2addnclem 37631 ftc1anclem6 37658 fdc 37705 ismtyres 37768 isdrngo2 37918 rngohomco 37934 rngoisocnv 37941 dssmapnvod 43982 climxrrelem 45670 dvdsn1add 45860 dvnprodlem1 45867 stoweidlem27 45948 fourierdlem97 46124 qndenserrnbllem 46215 sge0iunmptlemfi 46334 |
Copyright terms: Public domain | W3C validator |