MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantlrl Structured version   Visualization version   GIF version

Theorem adantlrl 720
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantl2.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
adantlrl (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)

Proof of Theorem adantlrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜓) → 𝜓)
2 adantl2.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylanl2 681 1 (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  1stconst  8124  omlimcl  8615  odi  8616  oelim2  8632  mapxpen  9182  unwdomg  9622  dfac12lem2  10183  infunsdom  10251  fin1a2s  10452  ccatpfx  14736  frlmup1  21836  fbasrn  23908  lmmbr  25306  grporcan  30547  unoplin  31949  hmoplin  31971  superpos  32383  ccatf1  32918  subfacp1lem5  35169  matunitlindflem1  37603  poimirlem4  37611  itg2addnclem  37658  ftc1anclem6  37685  fdc  37732  ismtyres  37795  isdrngo2  37945  rngohomco  37961  rngoisocnv  37968  dssmapnvod  44010  climxrrelem  45705  dvdsn1add  45895  dvnprodlem1  45902  stoweidlem27  45983  fourierdlem97  46159  qndenserrnbllem  46250  sge0iunmptlemfi  46369
  Copyright terms: Public domain W3C validator