| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 1stconst 8082 omlimcl 8545 odi 8546 oelim2 8562 mapxpen 9113 unwdomg 9544 dfac12lem2 10105 infunsdom 10173 fin1a2s 10374 ccatpfx 14673 frlmup1 21714 fbasrn 23778 lmmbr 25165 grporcan 30454 unoplin 31856 hmoplin 31878 superpos 32290 ccatf1 32877 subfacp1lem5 35178 matunitlindflem1 37617 poimirlem4 37625 itg2addnclem 37672 ftc1anclem6 37699 fdc 37746 ismtyres 37809 isdrngo2 37959 rngohomco 37975 rngoisocnv 37982 dssmapnvod 44016 climxrrelem 45754 dvdsn1add 45944 dvnprodlem1 45951 stoweidlem27 46032 fourierdlem97 46208 qndenserrnbllem 46299 sge0iunmptlemfi 46418 |
| Copyright terms: Public domain | W3C validator |