![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 1stconst 8124 omlimcl 8615 odi 8616 oelim2 8632 mapxpen 9182 unwdomg 9622 dfac12lem2 10183 infunsdom 10251 fin1a2s 10452 ccatpfx 14736 frlmup1 21836 fbasrn 23908 lmmbr 25306 grporcan 30547 unoplin 31949 hmoplin 31971 superpos 32383 ccatf1 32918 subfacp1lem5 35169 matunitlindflem1 37603 poimirlem4 37611 itg2addnclem 37658 ftc1anclem6 37685 fdc 37732 ismtyres 37795 isdrngo2 37945 rngohomco 37961 rngoisocnv 37968 dssmapnvod 44010 climxrrelem 45705 dvdsn1add 45895 dvnprodlem1 45902 stoweidlem27 45983 fourierdlem97 46159 qndenserrnbllem 46250 sge0iunmptlemfi 46369 |
Copyright terms: Public domain | W3C validator |