Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 678 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: 1stconst 7940 omlimcl 8409 odi 8410 oelim2 8426 mapxpen 8930 unwdomg 9343 dfac12lem2 9900 infunsdom 9970 fin1a2s 10170 ccatpfx 14414 frlmup1 21005 fbasrn 23035 lmmbr 24422 grporcan 28880 unoplin 30282 hmoplin 30304 superpos 30716 ccatf1 31223 subfacp1lem5 33146 matunitlindflem1 35773 poimirlem4 35781 itg2addnclem 35828 ftc1anclem6 35855 fdc 35903 ismtyres 35966 isdrngo2 36116 rngohomco 36132 rngoisocnv 36139 dssmapnvod 41628 climxrrelem 43290 dvdsn1add 43480 dvnprodlem1 43487 stoweidlem27 43568 fourierdlem97 43744 qndenserrnbllem 43835 sge0iunmptlemfi 43951 |
Copyright terms: Public domain | W3C validator |