![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 677 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: 1stconst 8088 omlimcl 8580 odi 8581 oelim2 8597 mapxpen 9145 unwdomg 9581 dfac12lem2 10141 infunsdom 10211 fin1a2s 10411 ccatpfx 14655 frlmup1 21572 fbasrn 23608 lmmbr 25006 grporcan 30038 unoplin 31440 hmoplin 31462 superpos 31874 ccatf1 32382 subfacp1lem5 34473 matunitlindflem1 36787 poimirlem4 36795 itg2addnclem 36842 ftc1anclem6 36869 fdc 36916 ismtyres 36979 isdrngo2 37129 rngohomco 37145 rngoisocnv 37152 dssmapnvod 43073 climxrrelem 44763 dvdsn1add 44953 dvnprodlem1 44960 stoweidlem27 45041 fourierdlem97 45217 qndenserrnbllem 45308 sge0iunmptlemfi 45427 |
Copyright terms: Public domain | W3C validator |