MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantlrl Structured version   Visualization version   GIF version

Theorem adantlrl 720
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantl2.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
adantlrl (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)

Proof of Theorem adantlrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜓) → 𝜓)
2 adantl2.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylanl2 681 1 (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  1stconst  8082  omlimcl  8545  odi  8546  oelim2  8562  mapxpen  9113  unwdomg  9544  dfac12lem2  10105  infunsdom  10173  fin1a2s  10374  ccatpfx  14673  frlmup1  21714  fbasrn  23778  lmmbr  25165  grporcan  30454  unoplin  31856  hmoplin  31878  superpos  32290  ccatf1  32877  subfacp1lem5  35178  matunitlindflem1  37617  poimirlem4  37625  itg2addnclem  37672  ftc1anclem6  37699  fdc  37746  ismtyres  37809  isdrngo2  37959  rngohomco  37975  rngoisocnv  37982  dssmapnvod  44016  climxrrelem  45754  dvdsn1add  45944  dvnprodlem1  45951  stoweidlem27  46032  fourierdlem97  46208  qndenserrnbllem  46299  sge0iunmptlemfi  46418
  Copyright terms: Public domain W3C validator