| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 1stconst 8030 omlimcl 8493 odi 8494 oelim2 8510 mapxpen 9056 unwdomg 9470 dfac12lem2 10033 infunsdom 10101 fin1a2s 10302 ccatpfx 14605 frlmup1 21733 fbasrn 23797 lmmbr 25183 grporcan 30493 unoplin 31895 hmoplin 31917 superpos 32329 ccatf1 32925 subfacp1lem5 35216 matunitlindflem1 37655 poimirlem4 37663 itg2addnclem 37710 ftc1anclem6 37737 fdc 37784 ismtyres 37847 isdrngo2 37997 rngohomco 38013 rngoisocnv 38020 dssmapnvod 44052 climxrrelem 45786 dvdsn1add 45976 dvnprodlem1 45983 stoweidlem27 46064 fourierdlem97 46240 qndenserrnbllem 46331 sge0iunmptlemfi 46450 |
| Copyright terms: Public domain | W3C validator |