Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 677 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 1stconst 7911 omlimcl 8371 odi 8372 oelim2 8388 mapxpen 8879 unwdomg 9273 dfac12lem2 9831 infunsdom 9901 fin1a2s 10101 ccatpfx 14342 frlmup1 20915 fbasrn 22943 lmmbr 24327 grporcan 28781 unoplin 30183 hmoplin 30205 superpos 30617 ccatf1 31125 subfacp1lem5 33046 matunitlindflem1 35700 poimirlem4 35708 itg2addnclem 35755 ftc1anclem6 35782 fdc 35830 ismtyres 35893 isdrngo2 36043 rngohomco 36059 rngoisocnv 36066 dssmapnvod 41517 climxrrelem 43180 dvdsn1add 43370 dvnprodlem1 43377 stoweidlem27 43458 fourierdlem97 43634 qndenserrnbllem 43725 sge0iunmptlemfi 43841 |
Copyright terms: Public domain | W3C validator |