MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantlrl Structured version   Visualization version   GIF version

Theorem adantlrl 716
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantl2.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
adantlrl (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)

Proof of Theorem adantlrl
StepHypRef Expression
1 simpr 483 . 2 ((𝜏𝜓) → 𝜓)
2 adantl2.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylanl2 677 1 (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  1stconst  8088  omlimcl  8580  odi  8581  oelim2  8597  mapxpen  9145  unwdomg  9581  dfac12lem2  10141  infunsdom  10211  fin1a2s  10411  ccatpfx  14655  frlmup1  21572  fbasrn  23608  lmmbr  25006  grporcan  30038  unoplin  31440  hmoplin  31462  superpos  31874  ccatf1  32382  subfacp1lem5  34473  matunitlindflem1  36787  poimirlem4  36795  itg2addnclem  36842  ftc1anclem6  36869  fdc  36916  ismtyres  36979  isdrngo2  37129  rngohomco  37145  rngoisocnv  37152  dssmapnvod  43073  climxrrelem  44763  dvdsn1add  44953  dvnprodlem1  44960  stoweidlem27  45041  fourierdlem97  45217  qndenserrnbllem  45308  sge0iunmptlemfi  45427
  Copyright terms: Public domain W3C validator