| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 1stconst 8099 omlimcl 8590 odi 8591 oelim2 8607 mapxpen 9157 unwdomg 9598 dfac12lem2 10159 infunsdom 10227 fin1a2s 10428 ccatpfx 14719 frlmup1 21758 fbasrn 23822 lmmbr 25210 grporcan 30499 unoplin 31901 hmoplin 31923 superpos 32335 ccatf1 32924 subfacp1lem5 35206 matunitlindflem1 37640 poimirlem4 37648 itg2addnclem 37695 ftc1anclem6 37722 fdc 37769 ismtyres 37832 isdrngo2 37982 rngohomco 37998 rngoisocnv 38005 dssmapnvod 44044 climxrrelem 45778 dvdsn1add 45968 dvnprodlem1 45975 stoweidlem27 46056 fourierdlem97 46232 qndenserrnbllem 46323 sge0iunmptlemfi 46442 |
| Copyright terms: Public domain | W3C validator |