MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantlrl Structured version   Visualization version   GIF version

Theorem adantlrl 720
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantl2.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
adantlrl (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)

Proof of Theorem adantlrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜓) → 𝜓)
2 adantl2.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylanl2 681 1 (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  1stconst  8040  omlimcl  8503  odi  8504  oelim2  8520  mapxpen  9067  unwdomg  9495  dfac12lem2  10058  infunsdom  10126  fin1a2s  10327  ccatpfx  14625  frlmup1  21723  fbasrn  23787  lmmbr  25174  grporcan  30480  unoplin  31882  hmoplin  31904  superpos  32316  ccatf1  32903  subfacp1lem5  35156  matunitlindflem1  37595  poimirlem4  37603  itg2addnclem  37650  ftc1anclem6  37677  fdc  37724  ismtyres  37787  isdrngo2  37937  rngohomco  37953  rngoisocnv  37960  dssmapnvod  43993  climxrrelem  45731  dvdsn1add  45921  dvnprodlem1  45928  stoweidlem27  46009  fourierdlem97  46185  qndenserrnbllem  46276  sge0iunmptlemfi  46395
  Copyright terms: Public domain W3C validator