![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 680 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: 1stconst 8086 omlimcl 8578 odi 8579 oelim2 8595 mapxpen 9143 unwdomg 9579 dfac12lem2 10139 infunsdom 10209 fin1a2s 10409 ccatpfx 14651 frlmup1 21353 fbasrn 23388 lmmbr 24775 grporcan 29771 unoplin 31173 hmoplin 31195 superpos 31607 ccatf1 32115 subfacp1lem5 34175 matunitlindflem1 36484 poimirlem4 36492 itg2addnclem 36539 ftc1anclem6 36566 fdc 36613 ismtyres 36676 isdrngo2 36826 rngohomco 36842 rngoisocnv 36849 dssmapnvod 42771 climxrrelem 44465 dvdsn1add 44655 dvnprodlem1 44662 stoweidlem27 44743 fourierdlem97 44919 qndenserrnbllem 45010 sge0iunmptlemfi 45129 |
Copyright terms: Public domain | W3C validator |