MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantlrl Structured version   Visualization version   GIF version

Theorem adantlrl 720
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantl2.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
adantlrl (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)

Proof of Theorem adantlrl
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜓) → 𝜓)
2 adantl2.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylanl2 681 1 (((𝜑 ∧ (𝜏𝜓)) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  1stconst  8030  omlimcl  8493  odi  8494  oelim2  8510  mapxpen  9056  unwdomg  9470  dfac12lem2  10033  infunsdom  10101  fin1a2s  10302  ccatpfx  14605  frlmup1  21733  fbasrn  23797  lmmbr  25183  grporcan  30493  unoplin  31895  hmoplin  31917  superpos  32329  ccatf1  32925  subfacp1lem5  35216  matunitlindflem1  37655  poimirlem4  37663  itg2addnclem  37710  ftc1anclem6  37737  fdc  37784  ismtyres  37847  isdrngo2  37997  rngohomco  38013  rngoisocnv  38020  dssmapnvod  44052  climxrrelem  45786  dvdsn1add  45976  dvnprodlem1  45983  stoweidlem27  46064  fourierdlem97  46240  qndenserrnbllem  46331  sge0iunmptlemfi  46450
  Copyright terms: Public domain W3C validator