![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl2 668 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 |
This theorem is referenced by: 1stconst 7603 omlimcl 8005 odi 8006 oelim2 8022 mapxpen 8479 unwdomg 8843 dfac12lem2 9364 infunsdom 9434 fin1a2s 9634 frlmup1 20644 fbasrn 22196 lmmbr 23564 grporcan 28072 unoplin 29478 hmoplin 29500 superpos 29912 subfacp1lem5 32022 matunitlindflem1 34335 poimirlem4 34343 itg2addnclem 34390 ftc1anclem6 34419 fdc 34468 ismtyres 34534 isdrngo2 34684 rngohomco 34700 rngoisocnv 34707 dssmapnvod 39735 climxrrelem 41467 dvdsn1add 41660 dvnprodlem1 41667 stoweidlem27 41749 fourierdlem97 41925 qndenserrnbllem 42016 sge0iunmptlemfi 42132 |
Copyright terms: Public domain | W3C validator |