| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 1stconst 8040 omlimcl 8503 odi 8504 oelim2 8520 mapxpen 9067 unwdomg 9495 dfac12lem2 10058 infunsdom 10126 fin1a2s 10327 ccatpfx 14625 frlmup1 21723 fbasrn 23787 lmmbr 25174 grporcan 30480 unoplin 31882 hmoplin 31904 superpos 32316 ccatf1 32903 subfacp1lem5 35156 matunitlindflem1 37595 poimirlem4 37603 itg2addnclem 37650 ftc1anclem6 37677 fdc 37724 ismtyres 37787 isdrngo2 37937 rngohomco 37953 rngoisocnv 37960 dssmapnvod 43993 climxrrelem 45731 dvdsn1add 45921 dvnprodlem1 45928 stoweidlem27 46009 fourierdlem97 46185 qndenserrnbllem 46276 sge0iunmptlemfi 46395 |
| Copyright terms: Public domain | W3C validator |