| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlrl | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlrl | ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜓) → 𝜓) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ (𝜏 ∧ 𝜓)) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 1stconst 8079 omlimcl 8542 odi 8543 oelim2 8559 mapxpen 9107 unwdomg 9537 dfac12lem2 10098 infunsdom 10166 fin1a2s 10367 ccatpfx 14666 frlmup1 21707 fbasrn 23771 lmmbr 25158 grporcan 30447 unoplin 31849 hmoplin 31871 superpos 32283 ccatf1 32870 subfacp1lem5 35171 matunitlindflem1 37610 poimirlem4 37618 itg2addnclem 37665 ftc1anclem6 37692 fdc 37739 ismtyres 37802 isdrngo2 37952 rngohomco 37968 rngoisocnv 37975 dssmapnvod 44009 climxrrelem 45747 dvdsn1add 45937 dvnprodlem1 45944 stoweidlem27 46025 fourierdlem97 46201 qndenserrnbllem 46292 sge0iunmptlemfi 46411 |
| Copyright terms: Public domain | W3C validator |