| Step | Hyp | Ref
| Expression |
| 1 | | isismty 37830 |
. . . . . 6
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) |
| 2 | 1 | simprbda 498 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑋–1-1-onto→𝑌) |
| 3 | 2 | adantrr 717 |
. . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝐹:𝑋–1-1-onto→𝑌) |
| 4 | | f1of1 6822 |
. . . 4
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–1-1→𝑌) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝐹:𝑋–1-1→𝑌) |
| 6 | | simprr 772 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝐴 ⊆ 𝑋) |
| 7 | | f1ores 6837 |
. . 3
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴)) |
| 8 | 5, 6, 7 | syl2anc 584 |
. 2
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴)) |
| 9 | 1 | biimpa 476 |
. . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) |
| 10 | 9 | adantrr 717 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) |
| 11 | | ssel 3957 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑋 → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑋)) |
| 12 | | ssel 3957 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑋 → (𝑣 ∈ 𝐴 → 𝑣 ∈ 𝑋)) |
| 13 | 11, 12 | anim12d 609 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝑋 → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋))) |
| 14 | 13 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) |
| 15 | | oveq1 7417 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (𝑥𝑀𝑦) = (𝑢𝑀𝑦)) |
| 16 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → (𝐹‘𝑥) = (𝐹‘𝑢)) |
| 17 | 16 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑦))) |
| 18 | 15, 17 | eqeq12d 2752 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → ((𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) ↔ (𝑢𝑀𝑦) = ((𝐹‘𝑢)𝑁(𝐹‘𝑦)))) |
| 19 | | oveq2 7418 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑣 → (𝑢𝑀𝑦) = (𝑢𝑀𝑣)) |
| 20 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑣 → (𝐹‘𝑦) = (𝐹‘𝑣)) |
| 21 | 20 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑢)𝑁(𝐹‘𝑦)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) |
| 22 | 19, 21 | eqeq12d 2752 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑣 → ((𝑢𝑀𝑦) = ((𝐹‘𝑢)𝑁(𝐹‘𝑦)) ↔ (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣)))) |
| 23 | 18, 22 | rspc2v 3617 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣)))) |
| 24 | 14, 23 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣)))) |
| 25 | 24 | imp 406 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ 𝑋 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) |
| 26 | 25 | an32s 652 |
. . . . . . . 8
⊢ (((𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) |
| 27 | 26 | adantlrl 720 |
. . . . . . 7
⊢ (((𝐴 ⊆ 𝑋 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) |
| 28 | 27 | adantlll 718 |
. . . . . 6
⊢
(((((𝑀 ∈
(∞Met‘𝑋) ∧
𝑁 ∈
(∞Met‘𝑌)) ∧
𝐴 ⊆ 𝑋) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) |
| 29 | | ismtyres.3 |
. . . . . . . . 9
⊢ 𝑆 = (𝑀 ↾ (𝐴 × 𝐴)) |
| 30 | 29 | oveqi 7423 |
. . . . . . . 8
⊢ (𝑢𝑆𝑣) = (𝑢(𝑀 ↾ (𝐴 × 𝐴))𝑣) |
| 31 | | ovres 7578 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢(𝑀 ↾ (𝐴 × 𝐴))𝑣) = (𝑢𝑀𝑣)) |
| 32 | 30, 31 | eqtrid 2783 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢𝑆𝑣) = (𝑢𝑀𝑣)) |
| 33 | 32 | adantl 481 |
. . . . . 6
⊢
(((((𝑀 ∈
(∞Met‘𝑋) ∧
𝑁 ∈
(∞Met‘𝑌)) ∧
𝐴 ⊆ 𝑋) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢𝑆𝑣) = (𝑢𝑀𝑣)) |
| 34 | | fvres 6900 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑢) = (𝐹‘𝑢)) |
| 35 | 34 | ad2antrl 728 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝑢) = (𝐹‘𝑢)) |
| 36 | | fvres 6900 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑣) = (𝐹‘𝑣)) |
| 37 | 36 | ad2antll 729 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝑣) = (𝐹‘𝑣)) |
| 38 | 35, 37 | oveq12d 7428 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣)) = ((𝐹‘𝑢)𝑇(𝐹‘𝑣))) |
| 39 | | ismtyres.4 |
. . . . . . . . . . 11
⊢ 𝑇 = (𝑁 ↾ (𝐵 × 𝐵)) |
| 40 | 39 | oveqi 7423 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑢)𝑇(𝐹‘𝑣)) = ((𝐹‘𝑢)(𝑁 ↾ (𝐵 × 𝐵))(𝐹‘𝑣)) |
| 41 | | f1ofun 6825 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑋–1-1-onto→𝑌 → Fun 𝐹) |
| 42 | 41 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) → Fun 𝐹) |
| 43 | | f1odm 6827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑋–1-1-onto→𝑌 → dom 𝐹 = 𝑋) |
| 44 | 43 | sseq2d 3996 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑋–1-1-onto→𝑌 → (𝐴 ⊆ dom 𝐹 ↔ 𝐴 ⊆ 𝑋)) |
| 45 | 44 | biimparc 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) → 𝐴 ⊆ dom 𝐹) |
| 46 | | funfvima2 7228 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑢 ∈ 𝐴 → (𝐹‘𝑢) ∈ (𝐹 “ 𝐴))) |
| 47 | 42, 45, 46 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) → (𝑢 ∈ 𝐴 → (𝐹‘𝑢) ∈ (𝐹 “ 𝐴))) |
| 48 | 47 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ 𝑢 ∈ 𝐴) → (𝐹‘𝑢) ∈ (𝐹 “ 𝐴)) |
| 49 | | ismtyres.2 |
. . . . . . . . . . . . 13
⊢ 𝐵 = (𝐹 “ 𝐴) |
| 50 | 48, 49 | eleqtrrdi 2846 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ 𝑢 ∈ 𝐴) → (𝐹‘𝑢) ∈ 𝐵) |
| 51 | 50 | adantrr 717 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝐹‘𝑢) ∈ 𝐵) |
| 52 | | funfvima2 7228 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑣 ∈ 𝐴 → (𝐹‘𝑣) ∈ (𝐹 “ 𝐴))) |
| 53 | 42, 45, 52 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) → (𝑣 ∈ 𝐴 → (𝐹‘𝑣) ∈ (𝐹 “ 𝐴))) |
| 54 | 53 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) ∈ (𝐹 “ 𝐴)) |
| 55 | 54, 49 | eleqtrrdi 2846 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) ∈ 𝐵) |
| 56 | 55 | adantrl 716 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝐹‘𝑣) ∈ 𝐵) |
| 57 | 51, 56 | ovresd 7579 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((𝐹‘𝑢)(𝑁 ↾ (𝐵 × 𝐵))(𝐹‘𝑣)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) |
| 58 | 40, 57 | eqtrid 2783 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((𝐹‘𝑢)𝑇(𝐹‘𝑣)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) |
| 59 | 38, 58 | eqtrd 2771 |
. . . . . . . 8
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) |
| 60 | 59 | adantlrr 721 |
. . . . . . 7
⊢ (((𝐴 ⊆ 𝑋 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) |
| 61 | 60 | adantlll 718 |
. . . . . 6
⊢
(((((𝑀 ∈
(∞Met‘𝑋) ∧
𝑁 ∈
(∞Met‘𝑌)) ∧
𝐴 ⊆ 𝑋) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) |
| 62 | 28, 33, 61 | 3eqtr4d 2781 |
. . . . 5
⊢
(((((𝑀 ∈
(∞Met‘𝑋) ∧
𝑁 ∈
(∞Met‘𝑌)) ∧
𝐴 ⊆ 𝑋) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))) |
| 63 | 62 | ralrimivva 3188 |
. . . 4
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴 ⊆ 𝑋) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))) |
| 64 | 63 | adantlrl 720 |
. . 3
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))) |
| 65 | 10, 64 | mpdan 687 |
. 2
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))) |
| 66 | | xmetres2 24305 |
. . . . 5
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑀 ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴)) |
| 67 | 29, 66 | eqeltrid 2839 |
. . . 4
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑆 ∈ (∞Met‘𝐴)) |
| 68 | 67 | ad2ant2rl 749 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝑆 ∈ (∞Met‘𝐴)) |
| 69 | | simplr 768 |
. . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝑁 ∈ (∞Met‘𝑌)) |
| 70 | | imassrn 6063 |
. . . . . . . 8
⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 |
| 71 | 49, 70 | eqsstri 4010 |
. . . . . . 7
⊢ 𝐵 ⊆ ran 𝐹 |
| 72 | | f1ofo 6830 |
. . . . . . . 8
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–onto→𝑌) |
| 73 | | forn 6798 |
. . . . . . . 8
⊢ (𝐹:𝑋–onto→𝑌 → ran 𝐹 = 𝑌) |
| 74 | 3, 72, 73 | 3syl 18 |
. . . . . . 7
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → ran 𝐹 = 𝑌) |
| 75 | 71, 74 | sseqtrid 4006 |
. . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝐵 ⊆ 𝑌) |
| 76 | | xmetres2 24305 |
. . . . . 6
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵 ⊆ 𝑌) → (𝑁 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵)) |
| 77 | 69, 75, 76 | syl2anc 584 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → (𝑁 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵)) |
| 78 | 39, 77 | eqeltrid 2839 |
. . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝑇 ∈ (∞Met‘𝐵)) |
| 79 | 49 | fveq2i 6884 |
. . . 4
⊢
(∞Met‘𝐵)
= (∞Met‘(𝐹
“ 𝐴)) |
| 80 | 78, 79 | eleqtrdi 2845 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝑇 ∈ (∞Met‘(𝐹 “ 𝐴))) |
| 81 | | isismty 37830 |
. . 3
⊢ ((𝑆 ∈ (∞Met‘𝐴) ∧ 𝑇 ∈ (∞Met‘(𝐹 “ 𝐴))) → ((𝐹 ↾ 𝐴) ∈ (𝑆 Ismty 𝑇) ↔ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))))) |
| 82 | 68, 80, 81 | syl2anc 584 |
. 2
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → ((𝐹 ↾ 𝐴) ∈ (𝑆 Ismty 𝑇) ↔ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))))) |
| 83 | 8, 65, 82 | mpbir2and 713 |
1
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → (𝐹 ↾ 𝐴) ∈ (𝑆 Ismty 𝑇)) |