Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyres Structured version   Visualization version   GIF version

Theorem ismtyres 35893
Description: A restriction of an isometry is an isometry. The condition 𝐴𝑋 is not necessary but makes the proof easier. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyres.2 𝐵 = (𝐹𝐴)
ismtyres.3 𝑆 = (𝑀 ↾ (𝐴 × 𝐴))
ismtyres.4 𝑇 = (𝑁 ↾ (𝐵 × 𝐵))
Assertion
Ref Expression
ismtyres (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → (𝐹𝐴) ∈ (𝑆 Ismty 𝑇))

Proof of Theorem ismtyres
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isismty 35886 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
21simprbda 498 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑋1-1-onto𝑌)
32adantrr 713 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝐹:𝑋1-1-onto𝑌)
4 f1of1 6699 . . . 4 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
53, 4syl 17 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝐹:𝑋1-1𝑌)
6 simprr 769 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝐴𝑋)
7 f1ores 6714 . . 3 ((𝐹:𝑋1-1𝑌𝐴𝑋) → (𝐹𝐴):𝐴1-1-onto→(𝐹𝐴))
85, 6, 7syl2anc 583 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → (𝐹𝐴):𝐴1-1-onto→(𝐹𝐴))
91biimpa 476 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
109adantrr 713 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
11 ssel 3910 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝑢𝐴𝑢𝑋))
12 ssel 3910 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝑣𝐴𝑣𝑋))
1311, 12anim12d 608 . . . . . . . . . . . 12 (𝐴𝑋 → ((𝑢𝐴𝑣𝐴) → (𝑢𝑋𝑣𝑋)))
1413imp 406 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑋𝑣𝑋))
15 oveq1 7262 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥𝑀𝑦) = (𝑢𝑀𝑦))
16 fveq2 6756 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
1716oveq1d 7270 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → ((𝐹𝑥)𝑁(𝐹𝑦)) = ((𝐹𝑢)𝑁(𝐹𝑦)))
1815, 17eqeq12d 2754 . . . . . . . . . . . 12 (𝑥 = 𝑢 → ((𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) ↔ (𝑢𝑀𝑦) = ((𝐹𝑢)𝑁(𝐹𝑦))))
19 oveq2 7263 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑢𝑀𝑦) = (𝑢𝑀𝑣))
20 fveq2 6756 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
2120oveq2d 7271 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → ((𝐹𝑢)𝑁(𝐹𝑦)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
2219, 21eqeq12d 2754 . . . . . . . . . . . 12 (𝑦 = 𝑣 → ((𝑢𝑀𝑦) = ((𝐹𝑢)𝑁(𝐹𝑦)) ↔ (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣))))
2318, 22rspc2v 3562 . . . . . . . . . . 11 ((𝑢𝑋𝑣𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣))))
2414, 23syl 17 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑢𝐴𝑣𝐴)) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣))))
2524imp 406 . . . . . . . . 9 (((𝐴𝑋 ∧ (𝑢𝐴𝑣𝐴)) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣)))
2625an32s 648 . . . . . . . 8 (((𝐴𝑋 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣)))
2726adantlrl 716 . . . . . . 7 (((𝐴𝑋 ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣)))
2827adantlll 714 . . . . . 6 (((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴𝑋) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣)))
29 ismtyres.3 . . . . . . . . 9 𝑆 = (𝑀 ↾ (𝐴 × 𝐴))
3029oveqi 7268 . . . . . . . 8 (𝑢𝑆𝑣) = (𝑢(𝑀 ↾ (𝐴 × 𝐴))𝑣)
31 ovres 7416 . . . . . . . 8 ((𝑢𝐴𝑣𝐴) → (𝑢(𝑀 ↾ (𝐴 × 𝐴))𝑣) = (𝑢𝑀𝑣))
3230, 31syl5eq 2791 . . . . . . 7 ((𝑢𝐴𝑣𝐴) → (𝑢𝑆𝑣) = (𝑢𝑀𝑣))
3332adantl 481 . . . . . 6 (((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴𝑋) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑆𝑣) = (𝑢𝑀𝑣))
34 fvres 6775 . . . . . . . . . . 11 (𝑢𝐴 → ((𝐹𝐴)‘𝑢) = (𝐹𝑢))
3534ad2antrl 724 . . . . . . . . . 10 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝐴)‘𝑢) = (𝐹𝑢))
36 fvres 6775 . . . . . . . . . . 11 (𝑣𝐴 → ((𝐹𝐴)‘𝑣) = (𝐹𝑣))
3736ad2antll 725 . . . . . . . . . 10 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝐴)‘𝑣) = (𝐹𝑣))
3835, 37oveq12d 7273 . . . . . . . . 9 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)) = ((𝐹𝑢)𝑇(𝐹𝑣)))
39 ismtyres.4 . . . . . . . . . . 11 𝑇 = (𝑁 ↾ (𝐵 × 𝐵))
4039oveqi 7268 . . . . . . . . . 10 ((𝐹𝑢)𝑇(𝐹𝑣)) = ((𝐹𝑢)(𝑁 ↾ (𝐵 × 𝐵))(𝐹𝑣))
41 f1ofun 6702 . . . . . . . . . . . . . . . 16 (𝐹:𝑋1-1-onto𝑌 → Fun 𝐹)
4241adantl 481 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝐹:𝑋1-1-onto𝑌) → Fun 𝐹)
43 f1odm 6704 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋1-1-onto𝑌 → dom 𝐹 = 𝑋)
4443sseq2d 3949 . . . . . . . . . . . . . . . 16 (𝐹:𝑋1-1-onto𝑌 → (𝐴 ⊆ dom 𝐹𝐴𝑋))
4544biimparc 479 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝐹:𝑋1-1-onto𝑌) → 𝐴 ⊆ dom 𝐹)
46 funfvima2 7089 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑢𝐴 → (𝐹𝑢) ∈ (𝐹𝐴)))
4742, 45, 46syl2anc 583 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐹:𝑋1-1-onto𝑌) → (𝑢𝐴 → (𝐹𝑢) ∈ (𝐹𝐴)))
4847imp 406 . . . . . . . . . . . . 13 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ 𝑢𝐴) → (𝐹𝑢) ∈ (𝐹𝐴))
49 ismtyres.2 . . . . . . . . . . . . 13 𝐵 = (𝐹𝐴)
5048, 49eleqtrrdi 2850 . . . . . . . . . . . 12 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ 𝑢𝐴) → (𝐹𝑢) ∈ 𝐵)
5150adantrr 713 . . . . . . . . . . 11 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → (𝐹𝑢) ∈ 𝐵)
52 funfvima2 7089 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑣𝐴 → (𝐹𝑣) ∈ (𝐹𝐴)))
5342, 45, 52syl2anc 583 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐹:𝑋1-1-onto𝑌) → (𝑣𝐴 → (𝐹𝑣) ∈ (𝐹𝐴)))
5453imp 406 . . . . . . . . . . . . 13 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ (𝐹𝐴))
5554, 49eleqtrrdi 2850 . . . . . . . . . . . 12 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ 𝐵)
5655adantrl 712 . . . . . . . . . . 11 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → (𝐹𝑣) ∈ 𝐵)
5751, 56ovresd 7417 . . . . . . . . . 10 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝑢)(𝑁 ↾ (𝐵 × 𝐵))(𝐹𝑣)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
5840, 57syl5eq 2791 . . . . . . . . 9 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝑢)𝑇(𝐹𝑣)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
5938, 58eqtrd 2778 . . . . . . . 8 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
6059adantlrr 717 . . . . . . 7 (((𝐴𝑋 ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
6160adantlll 714 . . . . . 6 (((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴𝑋) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
6228, 33, 613eqtr4d 2788 . . . . 5 (((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴𝑋) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))
6362ralrimivva 3114 . . . 4 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴𝑋) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) → ∀𝑢𝐴𝑣𝐴 (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))
6463adantlrl 716 . . 3 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) → ∀𝑢𝐴𝑣𝐴 (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))
6510, 64mpdan 683 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → ∀𝑢𝐴𝑣𝐴 (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))
66 xmetres2 23422 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝑀 ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
6729, 66eqeltrid 2843 . . . 4 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → 𝑆 ∈ (∞Met‘𝐴))
6867ad2ant2rl 745 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝑆 ∈ (∞Met‘𝐴))
69 simplr 765 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝑁 ∈ (∞Met‘𝑌))
70 imassrn 5969 . . . . . . . 8 (𝐹𝐴) ⊆ ran 𝐹
7149, 70eqsstri 3951 . . . . . . 7 𝐵 ⊆ ran 𝐹
72 f1ofo 6707 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
73 forn 6675 . . . . . . . 8 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
743, 72, 733syl 18 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → ran 𝐹 = 𝑌)
7571, 74sseqtrid 3969 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝐵𝑌)
76 xmetres2 23422 . . . . . 6 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌) → (𝑁 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
7769, 75, 76syl2anc 583 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → (𝑁 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
7839, 77eqeltrid 2843 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝑇 ∈ (∞Met‘𝐵))
7949fveq2i 6759 . . . 4 (∞Met‘𝐵) = (∞Met‘(𝐹𝐴))
8078, 79eleqtrdi 2849 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝑇 ∈ (∞Met‘(𝐹𝐴)))
81 isismty 35886 . . 3 ((𝑆 ∈ (∞Met‘𝐴) ∧ 𝑇 ∈ (∞Met‘(𝐹𝐴))) → ((𝐹𝐴) ∈ (𝑆 Ismty 𝑇) ↔ ((𝐹𝐴):𝐴1-1-onto→(𝐹𝐴) ∧ ∀𝑢𝐴𝑣𝐴 (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))))
8268, 80, 81syl2anc 583 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → ((𝐹𝐴) ∈ (𝑆 Ismty 𝑇) ↔ ((𝐹𝐴):𝐴1-1-onto→(𝐹𝐴) ∧ ∀𝑢𝐴𝑣𝐴 (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))))
838, 65, 82mpbir2and 709 1 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → (𝐹𝐴) ∈ (𝑆 Ismty 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883   × cxp 5578  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  ∞Metcxmet 20495   Ismty cismty 35883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-xr 10944  df-xmet 20503  df-ismty 35884
This theorem is referenced by:  reheibor  35924
  Copyright terms: Public domain W3C validator