Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyres Structured version   Visualization version   GIF version

Theorem ismtyres 37802
Description: A restriction of an isometry is an isometry. The condition 𝐴𝑋 is not necessary but makes the proof easier. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyres.2 𝐵 = (𝐹𝐴)
ismtyres.3 𝑆 = (𝑀 ↾ (𝐴 × 𝐴))
ismtyres.4 𝑇 = (𝑁 ↾ (𝐵 × 𝐵))
Assertion
Ref Expression
ismtyres (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → (𝐹𝐴) ∈ (𝑆 Ismty 𝑇))

Proof of Theorem ismtyres
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isismty 37795 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
21simprbda 498 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑋1-1-onto𝑌)
32adantrr 717 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝐹:𝑋1-1-onto𝑌)
4 f1of1 6799 . . . 4 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
53, 4syl 17 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝐹:𝑋1-1𝑌)
6 simprr 772 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝐴𝑋)
7 f1ores 6814 . . 3 ((𝐹:𝑋1-1𝑌𝐴𝑋) → (𝐹𝐴):𝐴1-1-onto→(𝐹𝐴))
85, 6, 7syl2anc 584 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → (𝐹𝐴):𝐴1-1-onto→(𝐹𝐴))
91biimpa 476 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
109adantrr 717 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
11 ssel 3940 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝑢𝐴𝑢𝑋))
12 ssel 3940 . . . . . . . . . . . . 13 (𝐴𝑋 → (𝑣𝐴𝑣𝑋))
1311, 12anim12d 609 . . . . . . . . . . . 12 (𝐴𝑋 → ((𝑢𝐴𝑣𝐴) → (𝑢𝑋𝑣𝑋)))
1413imp 406 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑋𝑣𝑋))
15 oveq1 7394 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥𝑀𝑦) = (𝑢𝑀𝑦))
16 fveq2 6858 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
1716oveq1d 7402 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → ((𝐹𝑥)𝑁(𝐹𝑦)) = ((𝐹𝑢)𝑁(𝐹𝑦)))
1815, 17eqeq12d 2745 . . . . . . . . . . . 12 (𝑥 = 𝑢 → ((𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) ↔ (𝑢𝑀𝑦) = ((𝐹𝑢)𝑁(𝐹𝑦))))
19 oveq2 7395 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑢𝑀𝑦) = (𝑢𝑀𝑣))
20 fveq2 6858 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
2120oveq2d 7403 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → ((𝐹𝑢)𝑁(𝐹𝑦)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
2219, 21eqeq12d 2745 . . . . . . . . . . . 12 (𝑦 = 𝑣 → ((𝑢𝑀𝑦) = ((𝐹𝑢)𝑁(𝐹𝑦)) ↔ (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣))))
2318, 22rspc2v 3599 . . . . . . . . . . 11 ((𝑢𝑋𝑣𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣))))
2414, 23syl 17 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑢𝐴𝑣𝐴)) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣))))
2524imp 406 . . . . . . . . 9 (((𝐴𝑋 ∧ (𝑢𝐴𝑣𝐴)) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣)))
2625an32s 652 . . . . . . . 8 (((𝐴𝑋 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣)))
2726adantlrl 720 . . . . . . 7 (((𝐴𝑋 ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣)))
2827adantlll 718 . . . . . 6 (((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴𝑋) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑀𝑣) = ((𝐹𝑢)𝑁(𝐹𝑣)))
29 ismtyres.3 . . . . . . . . 9 𝑆 = (𝑀 ↾ (𝐴 × 𝐴))
3029oveqi 7400 . . . . . . . 8 (𝑢𝑆𝑣) = (𝑢(𝑀 ↾ (𝐴 × 𝐴))𝑣)
31 ovres 7555 . . . . . . . 8 ((𝑢𝐴𝑣𝐴) → (𝑢(𝑀 ↾ (𝐴 × 𝐴))𝑣) = (𝑢𝑀𝑣))
3230, 31eqtrid 2776 . . . . . . 7 ((𝑢𝐴𝑣𝐴) → (𝑢𝑆𝑣) = (𝑢𝑀𝑣))
3332adantl 481 . . . . . 6 (((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴𝑋) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑆𝑣) = (𝑢𝑀𝑣))
34 fvres 6877 . . . . . . . . . . 11 (𝑢𝐴 → ((𝐹𝐴)‘𝑢) = (𝐹𝑢))
3534ad2antrl 728 . . . . . . . . . 10 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝐴)‘𝑢) = (𝐹𝑢))
36 fvres 6877 . . . . . . . . . . 11 (𝑣𝐴 → ((𝐹𝐴)‘𝑣) = (𝐹𝑣))
3736ad2antll 729 . . . . . . . . . 10 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝐴)‘𝑣) = (𝐹𝑣))
3835, 37oveq12d 7405 . . . . . . . . 9 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)) = ((𝐹𝑢)𝑇(𝐹𝑣)))
39 ismtyres.4 . . . . . . . . . . 11 𝑇 = (𝑁 ↾ (𝐵 × 𝐵))
4039oveqi 7400 . . . . . . . . . 10 ((𝐹𝑢)𝑇(𝐹𝑣)) = ((𝐹𝑢)(𝑁 ↾ (𝐵 × 𝐵))(𝐹𝑣))
41 f1ofun 6802 . . . . . . . . . . . . . . . 16 (𝐹:𝑋1-1-onto𝑌 → Fun 𝐹)
4241adantl 481 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝐹:𝑋1-1-onto𝑌) → Fun 𝐹)
43 f1odm 6804 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋1-1-onto𝑌 → dom 𝐹 = 𝑋)
4443sseq2d 3979 . . . . . . . . . . . . . . . 16 (𝐹:𝑋1-1-onto𝑌 → (𝐴 ⊆ dom 𝐹𝐴𝑋))
4544biimparc 479 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝐹:𝑋1-1-onto𝑌) → 𝐴 ⊆ dom 𝐹)
46 funfvima2 7205 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑢𝐴 → (𝐹𝑢) ∈ (𝐹𝐴)))
4742, 45, 46syl2anc 584 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐹:𝑋1-1-onto𝑌) → (𝑢𝐴 → (𝐹𝑢) ∈ (𝐹𝐴)))
4847imp 406 . . . . . . . . . . . . 13 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ 𝑢𝐴) → (𝐹𝑢) ∈ (𝐹𝐴))
49 ismtyres.2 . . . . . . . . . . . . 13 𝐵 = (𝐹𝐴)
5048, 49eleqtrrdi 2839 . . . . . . . . . . . 12 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ 𝑢𝐴) → (𝐹𝑢) ∈ 𝐵)
5150adantrr 717 . . . . . . . . . . 11 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → (𝐹𝑢) ∈ 𝐵)
52 funfvima2 7205 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑣𝐴 → (𝐹𝑣) ∈ (𝐹𝐴)))
5342, 45, 52syl2anc 584 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐹:𝑋1-1-onto𝑌) → (𝑣𝐴 → (𝐹𝑣) ∈ (𝐹𝐴)))
5453imp 406 . . . . . . . . . . . . 13 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ (𝐹𝐴))
5554, 49eleqtrrdi 2839 . . . . . . . . . . . 12 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ 𝑣𝐴) → (𝐹𝑣) ∈ 𝐵)
5655adantrl 716 . . . . . . . . . . 11 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → (𝐹𝑣) ∈ 𝐵)
5751, 56ovresd 7556 . . . . . . . . . 10 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝑢)(𝑁 ↾ (𝐵 × 𝐵))(𝐹𝑣)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
5840, 57eqtrid 2776 . . . . . . . . 9 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → ((𝐹𝑢)𝑇(𝐹𝑣)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
5938, 58eqtrd 2764 . . . . . . . 8 (((𝐴𝑋𝐹:𝑋1-1-onto𝑌) ∧ (𝑢𝐴𝑣𝐴)) → (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
6059adantlrr 721 . . . . . . 7 (((𝐴𝑋 ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
6160adantlll 718 . . . . . 6 (((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴𝑋) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)) = ((𝐹𝑢)𝑁(𝐹𝑣)))
6228, 33, 613eqtr4d 2774 . . . . 5 (((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴𝑋) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))
6362ralrimivva 3180 . . . 4 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴𝑋) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) → ∀𝑢𝐴𝑣𝐴 (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))
6463adantlrl 720 . . 3 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) ∧ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))) → ∀𝑢𝐴𝑣𝐴 (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))
6510, 64mpdan 687 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → ∀𝑢𝐴𝑣𝐴 (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))
66 xmetres2 24249 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝑀 ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
6729, 66eqeltrid 2832 . . . 4 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → 𝑆 ∈ (∞Met‘𝐴))
6867ad2ant2rl 749 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝑆 ∈ (∞Met‘𝐴))
69 simplr 768 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝑁 ∈ (∞Met‘𝑌))
70 imassrn 6042 . . . . . . . 8 (𝐹𝐴) ⊆ ran 𝐹
7149, 70eqsstri 3993 . . . . . . 7 𝐵 ⊆ ran 𝐹
72 f1ofo 6807 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
73 forn 6775 . . . . . . . 8 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
743, 72, 733syl 18 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → ran 𝐹 = 𝑌)
7571, 74sseqtrid 3989 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝐵𝑌)
76 xmetres2 24249 . . . . . 6 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌) → (𝑁 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
7769, 75, 76syl2anc 584 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → (𝑁 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
7839, 77eqeltrid 2832 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝑇 ∈ (∞Met‘𝐵))
7949fveq2i 6861 . . . 4 (∞Met‘𝐵) = (∞Met‘(𝐹𝐴))
8078, 79eleqtrdi 2838 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → 𝑇 ∈ (∞Met‘(𝐹𝐴)))
81 isismty 37795 . . 3 ((𝑆 ∈ (∞Met‘𝐴) ∧ 𝑇 ∈ (∞Met‘(𝐹𝐴))) → ((𝐹𝐴) ∈ (𝑆 Ismty 𝑇) ↔ ((𝐹𝐴):𝐴1-1-onto→(𝐹𝐴) ∧ ∀𝑢𝐴𝑣𝐴 (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))))
8268, 80, 81syl2anc 584 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → ((𝐹𝐴) ∈ (𝑆 Ismty 𝑇) ↔ ((𝐹𝐴):𝐴1-1-onto→(𝐹𝐴) ∧ ∀𝑢𝐴𝑣𝐴 (𝑢𝑆𝑣) = (((𝐹𝐴)‘𝑢)𝑇((𝐹𝐴)‘𝑣)))))
838, 65, 82mpbir2and 713 1 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴𝑋)) → (𝐹𝐴) ∈ (𝑆 Ismty 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914   × cxp 5636  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  ∞Metcxmet 21249   Ismty cismty 37792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-xr 11212  df-xmet 21257  df-ismty 37793
This theorem is referenced by:  reheibor  37833
  Copyright terms: Public domain W3C validator