| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isismty 37808 | . . . . . 6
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) | 
| 2 | 1 | simprbda 498 | . . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → 𝐹:𝑋–1-1-onto→𝑌) | 
| 3 | 2 | adantrr 717 | . . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝐹:𝑋–1-1-onto→𝑌) | 
| 4 |  | f1of1 6847 | . . . 4
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–1-1→𝑌) | 
| 5 | 3, 4 | syl 17 | . . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝐹:𝑋–1-1→𝑌) | 
| 6 |  | simprr 773 | . . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝐴 ⊆ 𝑋) | 
| 7 |  | f1ores 6862 | . . 3
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴)) | 
| 8 | 5, 6, 7 | syl2anc 584 | . 2
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴)) | 
| 9 | 1 | biimpa 476 | . . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) | 
| 10 | 9 | adantrr 717 | . . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) | 
| 11 |  | ssel 3977 | . . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑋 → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑋)) | 
| 12 |  | ssel 3977 | . . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑋 → (𝑣 ∈ 𝐴 → 𝑣 ∈ 𝑋)) | 
| 13 | 11, 12 | anim12d 609 | . . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝑋 → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋))) | 
| 14 | 13 | imp 406 | . . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) | 
| 15 |  | oveq1 7438 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (𝑥𝑀𝑦) = (𝑢𝑀𝑦)) | 
| 16 |  | fveq2 6906 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → (𝐹‘𝑥) = (𝐹‘𝑢)) | 
| 17 | 16 | oveq1d 7446 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑦))) | 
| 18 | 15, 17 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → ((𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) ↔ (𝑢𝑀𝑦) = ((𝐹‘𝑢)𝑁(𝐹‘𝑦)))) | 
| 19 |  | oveq2 7439 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑣 → (𝑢𝑀𝑦) = (𝑢𝑀𝑣)) | 
| 20 |  | fveq2 6906 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑣 → (𝐹‘𝑦) = (𝐹‘𝑣)) | 
| 21 | 20 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑢)𝑁(𝐹‘𝑦)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) | 
| 22 | 19, 21 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑣 → ((𝑢𝑀𝑦) = ((𝐹‘𝑢)𝑁(𝐹‘𝑦)) ↔ (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣)))) | 
| 23 | 18, 22 | rspc2v 3633 | . . . . . . . . . . 11
⊢ ((𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣)))) | 
| 24 | 14, 23 | syl 17 | . . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣)))) | 
| 25 | 24 | imp 406 | . . . . . . . . 9
⊢ (((𝐴 ⊆ 𝑋 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) | 
| 26 | 25 | an32s 652 | . . . . . . . 8
⊢ (((𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) | 
| 27 | 26 | adantlrl 720 | . . . . . . 7
⊢ (((𝐴 ⊆ 𝑋 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) | 
| 28 | 27 | adantlll 718 | . . . . . 6
⊢
(((((𝑀 ∈
(∞Met‘𝑋) ∧
𝑁 ∈
(∞Met‘𝑌)) ∧
𝐴 ⊆ 𝑋) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢𝑀𝑣) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) | 
| 29 |  | ismtyres.3 | . . . . . . . . 9
⊢ 𝑆 = (𝑀 ↾ (𝐴 × 𝐴)) | 
| 30 | 29 | oveqi 7444 | . . . . . . . 8
⊢ (𝑢𝑆𝑣) = (𝑢(𝑀 ↾ (𝐴 × 𝐴))𝑣) | 
| 31 |  | ovres 7599 | . . . . . . . 8
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢(𝑀 ↾ (𝐴 × 𝐴))𝑣) = (𝑢𝑀𝑣)) | 
| 32 | 30, 31 | eqtrid 2789 | . . . . . . 7
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢𝑆𝑣) = (𝑢𝑀𝑣)) | 
| 33 | 32 | adantl 481 | . . . . . 6
⊢
(((((𝑀 ∈
(∞Met‘𝑋) ∧
𝑁 ∈
(∞Met‘𝑌)) ∧
𝐴 ⊆ 𝑋) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢𝑆𝑣) = (𝑢𝑀𝑣)) | 
| 34 |  | fvres 6925 | . . . . . . . . . . 11
⊢ (𝑢 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑢) = (𝐹‘𝑢)) | 
| 35 | 34 | ad2antrl 728 | . . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝑢) = (𝐹‘𝑢)) | 
| 36 |  | fvres 6925 | . . . . . . . . . . 11
⊢ (𝑣 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑣) = (𝐹‘𝑣)) | 
| 37 | 36 | ad2antll 729 | . . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝑣) = (𝐹‘𝑣)) | 
| 38 | 35, 37 | oveq12d 7449 | . . . . . . . . 9
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣)) = ((𝐹‘𝑢)𝑇(𝐹‘𝑣))) | 
| 39 |  | ismtyres.4 | . . . . . . . . . . 11
⊢ 𝑇 = (𝑁 ↾ (𝐵 × 𝐵)) | 
| 40 | 39 | oveqi 7444 | . . . . . . . . . 10
⊢ ((𝐹‘𝑢)𝑇(𝐹‘𝑣)) = ((𝐹‘𝑢)(𝑁 ↾ (𝐵 × 𝐵))(𝐹‘𝑣)) | 
| 41 |  | f1ofun 6850 | . . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑋–1-1-onto→𝑌 → Fun 𝐹) | 
| 42 | 41 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) → Fun 𝐹) | 
| 43 |  | f1odm 6852 | . . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑋–1-1-onto→𝑌 → dom 𝐹 = 𝑋) | 
| 44 | 43 | sseq2d 4016 | . . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑋–1-1-onto→𝑌 → (𝐴 ⊆ dom 𝐹 ↔ 𝐴 ⊆ 𝑋)) | 
| 45 | 44 | biimparc 479 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) → 𝐴 ⊆ dom 𝐹) | 
| 46 |  | funfvima2 7251 | . . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑢 ∈ 𝐴 → (𝐹‘𝑢) ∈ (𝐹 “ 𝐴))) | 
| 47 | 42, 45, 46 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) → (𝑢 ∈ 𝐴 → (𝐹‘𝑢) ∈ (𝐹 “ 𝐴))) | 
| 48 | 47 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ 𝑢 ∈ 𝐴) → (𝐹‘𝑢) ∈ (𝐹 “ 𝐴)) | 
| 49 |  | ismtyres.2 | . . . . . . . . . . . . 13
⊢ 𝐵 = (𝐹 “ 𝐴) | 
| 50 | 48, 49 | eleqtrrdi 2852 | . . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ 𝑢 ∈ 𝐴) → (𝐹‘𝑢) ∈ 𝐵) | 
| 51 | 50 | adantrr 717 | . . . . . . . . . . 11
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝐹‘𝑢) ∈ 𝐵) | 
| 52 |  | funfvima2 7251 | . . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑣 ∈ 𝐴 → (𝐹‘𝑣) ∈ (𝐹 “ 𝐴))) | 
| 53 | 42, 45, 52 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) → (𝑣 ∈ 𝐴 → (𝐹‘𝑣) ∈ (𝐹 “ 𝐴))) | 
| 54 | 53 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) ∈ (𝐹 “ 𝐴)) | 
| 55 | 54, 49 | eleqtrrdi 2852 | . . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) ∈ 𝐵) | 
| 56 | 55 | adantrl 716 | . . . . . . . . . . 11
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝐹‘𝑣) ∈ 𝐵) | 
| 57 | 51, 56 | ovresd 7600 | . . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((𝐹‘𝑢)(𝑁 ↾ (𝐵 × 𝐵))(𝐹‘𝑣)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) | 
| 58 | 40, 57 | eqtrid 2789 | . . . . . . . . 9
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((𝐹‘𝑢)𝑇(𝐹‘𝑣)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) | 
| 59 | 38, 58 | eqtrd 2777 | . . . . . . . 8
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝐹:𝑋–1-1-onto→𝑌) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) | 
| 60 | 59 | adantlrr 721 | . . . . . . 7
⊢ (((𝐴 ⊆ 𝑋 ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) | 
| 61 | 60 | adantlll 718 | . . . . . 6
⊢
(((((𝑀 ∈
(∞Met‘𝑋) ∧
𝑁 ∈
(∞Met‘𝑌)) ∧
𝐴 ⊆ 𝑋) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣)) = ((𝐹‘𝑢)𝑁(𝐹‘𝑣))) | 
| 62 | 28, 33, 61 | 3eqtr4d 2787 | . . . . 5
⊢
(((((𝑀 ∈
(∞Met‘𝑋) ∧
𝑁 ∈
(∞Met‘𝑌)) ∧
𝐴 ⊆ 𝑋) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))) | 
| 63 | 62 | ralrimivva 3202 | . . . 4
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝐴 ⊆ 𝑋) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))) | 
| 64 | 63 | adantlrl 720 | . . 3
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) ∧ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))) | 
| 65 | 10, 64 | mpdan 687 | . 2
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))) | 
| 66 |  | xmetres2 24371 | . . . . 5
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑀 ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴)) | 
| 67 | 29, 66 | eqeltrid 2845 | . . . 4
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑆 ∈ (∞Met‘𝐴)) | 
| 68 | 67 | ad2ant2rl 749 | . . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝑆 ∈ (∞Met‘𝐴)) | 
| 69 |  | simplr 769 | . . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝑁 ∈ (∞Met‘𝑌)) | 
| 70 |  | imassrn 6089 | . . . . . . . 8
⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | 
| 71 | 49, 70 | eqsstri 4030 | . . . . . . 7
⊢ 𝐵 ⊆ ran 𝐹 | 
| 72 |  | f1ofo 6855 | . . . . . . . 8
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–onto→𝑌) | 
| 73 |  | forn 6823 | . . . . . . . 8
⊢ (𝐹:𝑋–onto→𝑌 → ran 𝐹 = 𝑌) | 
| 74 | 3, 72, 73 | 3syl 18 | . . . . . . 7
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → ran 𝐹 = 𝑌) | 
| 75 | 71, 74 | sseqtrid 4026 | . . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝐵 ⊆ 𝑌) | 
| 76 |  | xmetres2 24371 | . . . . . 6
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐵 ⊆ 𝑌) → (𝑁 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵)) | 
| 77 | 69, 75, 76 | syl2anc 584 | . . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → (𝑁 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵)) | 
| 78 | 39, 77 | eqeltrid 2845 | . . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝑇 ∈ (∞Met‘𝐵)) | 
| 79 | 49 | fveq2i 6909 | . . . 4
⊢
(∞Met‘𝐵)
= (∞Met‘(𝐹
“ 𝐴)) | 
| 80 | 78, 79 | eleqtrdi 2851 | . . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → 𝑇 ∈ (∞Met‘(𝐹 “ 𝐴))) | 
| 81 |  | isismty 37808 | . . 3
⊢ ((𝑆 ∈ (∞Met‘𝐴) ∧ 𝑇 ∈ (∞Met‘(𝐹 “ 𝐴))) → ((𝐹 ↾ 𝐴) ∈ (𝑆 Ismty 𝑇) ↔ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))))) | 
| 82 | 68, 80, 81 | syl2anc 584 | . 2
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → ((𝐹 ↾ 𝐴) ∈ (𝑆 Ismty 𝑇) ↔ ((𝐹 ↾ 𝐴):𝐴–1-1-onto→(𝐹 “ 𝐴) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢𝑆𝑣) = (((𝐹 ↾ 𝐴)‘𝑢)𝑇((𝐹 ↾ 𝐴)‘𝑣))))) | 
| 83 | 8, 65, 82 | mpbir2and 713 | 1
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → (𝐹 ↾ 𝐴) ∈ (𝑆 Ismty 𝑇)) |