MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom Structured version   Visualization version   GIF version

Theorem infunsdom 10209
Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)

Proof of Theorem infunsdom
StepHypRef Expression
1 sdomdom 8976 . . 3 (𝐴𝐵𝐴𝐵)
2 infunsdom1 10208 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
32anass1rs 654 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐵𝑋) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
43adantlrl 719 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
51, 4sylan2 594 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
6 simpll 766 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝑋 ∈ dom card)
7 sdomdom 8976 . . . . . . 7 (𝐵𝑋𝐵𝑋)
87ad2antll 728 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
9 numdom 10033 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐵𝑋) → 𝐵 ∈ dom card)
106, 8, 9syl2anc 585 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵 ∈ dom card)
11 sdomdom 8976 . . . . . . 7 (𝐴𝑋𝐴𝑋)
1211ad2antrl 727 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
13 numdom 10033 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐴𝑋) → 𝐴 ∈ dom card)
146, 12, 13syl2anc 585 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴 ∈ dom card)
15 domtri2 9984 . . . . 5 ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1610, 14, 15syl2anc 585 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1716biimpar 479 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
18 uncom 4154 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
19 infunsdom1 10208 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵𝐴𝐴𝑋)) → (𝐵𝐴) ≺ 𝑋)
2018, 19eqbrtrid 5184 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵𝐴𝐴𝑋)) → (𝐴𝐵) ≺ 𝑋)
2120anass1rs 654 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐴𝑋) ∧ 𝐵𝐴) → (𝐴𝐵) ≺ 𝑋)
2221adantlrr 720 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐵𝐴) → (𝐴𝐵) ≺ 𝑋)
2317, 22syldan 592 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
245, 23pm2.61dan 812 1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  cun 3947   class class class wbr 5149  dom cdm 5677  ωcom 7855  cdom 8937  csdm 8938  cardccrd 9930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-oi 9505  df-dju 9896  df-card 9934
This theorem is referenced by:  csdfil  23398
  Copyright terms: Public domain W3C validator