MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom Structured version   Visualization version   GIF version

Theorem infunsdom 10251
Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)

Proof of Theorem infunsdom
StepHypRef Expression
1 sdomdom 9019 . . 3 (𝐴𝐵𝐴𝐵)
2 infunsdom1 10250 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
32anass1rs 655 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐵𝑋) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
43adantlrl 720 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
51, 4sylan2 593 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
6 simpll 767 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝑋 ∈ dom card)
7 sdomdom 9019 . . . . . . 7 (𝐵𝑋𝐵𝑋)
87ad2antll 729 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
9 numdom 10076 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐵𝑋) → 𝐵 ∈ dom card)
106, 8, 9syl2anc 584 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵 ∈ dom card)
11 sdomdom 9019 . . . . . . 7 (𝐴𝑋𝐴𝑋)
1211ad2antrl 728 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
13 numdom 10076 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐴𝑋) → 𝐴 ∈ dom card)
146, 12, 13syl2anc 584 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴 ∈ dom card)
15 domtri2 10027 . . . . 5 ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1610, 14, 15syl2anc 584 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1716biimpar 477 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
18 uncom 4168 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
19 infunsdom1 10250 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵𝐴𝐴𝑋)) → (𝐵𝐴) ≺ 𝑋)
2018, 19eqbrtrid 5183 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵𝐴𝐴𝑋)) → (𝐴𝐵) ≺ 𝑋)
2120anass1rs 655 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐴𝑋) ∧ 𝐵𝐴) → (𝐴𝐵) ≺ 𝑋)
2221adantlrr 721 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐵𝐴) → (𝐴𝐵) ≺ 𝑋)
2317, 22syldan 591 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
245, 23pm2.61dan 813 1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2106  cun 3961   class class class wbr 5148  dom cdm 5689  ωcom 7887  cdom 8982  csdm 8983  cardccrd 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-oi 9548  df-dju 9939  df-card 9977
This theorem is referenced by:  csdfil  23918
  Copyright terms: Public domain W3C validator