MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom Structured version   Visualization version   GIF version

Theorem infunsdom 10232
Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)

Proof of Theorem infunsdom
StepHypRef Expression
1 sdomdom 8999 . . 3 (𝐴𝐵𝐴𝐵)
2 infunsdom1 10231 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
32anass1rs 655 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐵𝑋) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
43adantlrl 720 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
51, 4sylan2 593 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
6 simpll 766 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝑋 ∈ dom card)
7 sdomdom 8999 . . . . . . 7 (𝐵𝑋𝐵𝑋)
87ad2antll 729 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
9 numdom 10057 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐵𝑋) → 𝐵 ∈ dom card)
106, 8, 9syl2anc 584 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵 ∈ dom card)
11 sdomdom 8999 . . . . . . 7 (𝐴𝑋𝐴𝑋)
1211ad2antrl 728 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
13 numdom 10057 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐴𝑋) → 𝐴 ∈ dom card)
146, 12, 13syl2anc 584 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴 ∈ dom card)
15 domtri2 10008 . . . . 5 ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1610, 14, 15syl2anc 584 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1716biimpar 477 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
18 uncom 4138 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
19 infunsdom1 10231 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵𝐴𝐴𝑋)) → (𝐵𝐴) ≺ 𝑋)
2018, 19eqbrtrid 5159 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵𝐴𝐴𝑋)) → (𝐴𝐵) ≺ 𝑋)
2120anass1rs 655 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐴𝑋) ∧ 𝐵𝐴) → (𝐴𝐵) ≺ 𝑋)
2221adantlrr 721 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐵𝐴) → (𝐴𝐵) ≺ 𝑋)
2317, 22syldan 591 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
245, 23pm2.61dan 812 1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  cun 3929   class class class wbr 5124  dom cdm 5659  ωcom 7866  cdom 8962  csdm 8963  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-dju 9920  df-card 9958
This theorem is referenced by:  csdfil  23837
  Copyright terms: Public domain W3C validator