MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom Structured version   Visualization version   GIF version

Theorem infunsdom 10157
Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)

Proof of Theorem infunsdom
StepHypRef Expression
1 sdomdom 8927 . . 3 (𝐴𝐵𝐴𝐵)
2 infunsdom1 10156 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
32anass1rs 654 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐵𝑋) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
43adantlrl 719 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
51, 4sylan2 594 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
6 simpll 766 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝑋 ∈ dom card)
7 sdomdom 8927 . . . . . . 7 (𝐵𝑋𝐵𝑋)
87ad2antll 728 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
9 numdom 9981 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐵𝑋) → 𝐵 ∈ dom card)
106, 8, 9syl2anc 585 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵 ∈ dom card)
11 sdomdom 8927 . . . . . . 7 (𝐴𝑋𝐴𝑋)
1211ad2antrl 727 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
13 numdom 9981 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐴𝑋) → 𝐴 ∈ dom card)
146, 12, 13syl2anc 585 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴 ∈ dom card)
15 domtri2 9932 . . . . 5 ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1610, 14, 15syl2anc 585 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1716biimpar 479 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
18 uncom 4118 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
19 infunsdom1 10156 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵𝐴𝐴𝑋)) → (𝐵𝐴) ≺ 𝑋)
2018, 19eqbrtrid 5145 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵𝐴𝐴𝑋)) → (𝐴𝐵) ≺ 𝑋)
2120anass1rs 654 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐴𝑋) ∧ 𝐵𝐴) → (𝐴𝐵) ≺ 𝑋)
2221adantlrr 720 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐵𝐴) → (𝐴𝐵) ≺ 𝑋)
2317, 22syldan 592 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
245, 23pm2.61dan 812 1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  cun 3913   class class class wbr 5110  dom cdm 5638  ωcom 7807  cdom 8888  csdm 8889  cardccrd 9878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-oi 9453  df-dju 9844  df-card 9882
This theorem is referenced by:  csdfil  23261
  Copyright terms: Public domain W3C validator