Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infunsdom | Structured version Visualization version GIF version |
Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
infunsdom | ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8555 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | infunsdom1 9673 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) | |
3 | 2 | anass1rs 654 | . . . 4 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐵 ≺ 𝑋) ∧ 𝐴 ≼ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
4 | 3 | adantlrl 719 | . . 3 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐴 ≼ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
5 | 1, 4 | sylan2 595 | . 2 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐴 ≺ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
6 | simpll 766 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝑋 ∈ dom card) | |
7 | sdomdom 8555 | . . . . . . 7 ⊢ (𝐵 ≺ 𝑋 → 𝐵 ≼ 𝑋) | |
8 | 7 | ad2antll 728 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐵 ≼ 𝑋) |
9 | numdom 9498 | . . . . . 6 ⊢ ((𝑋 ∈ dom card ∧ 𝐵 ≼ 𝑋) → 𝐵 ∈ dom card) | |
10 | 6, 8, 9 | syl2anc 587 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐵 ∈ dom card) |
11 | sdomdom 8555 | . . . . . . 7 ⊢ (𝐴 ≺ 𝑋 → 𝐴 ≼ 𝑋) | |
12 | 11 | ad2antrl 727 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐴 ≼ 𝑋) |
13 | numdom 9498 | . . . . . 6 ⊢ ((𝑋 ∈ dom card ∧ 𝐴 ≼ 𝑋) → 𝐴 ∈ dom card) | |
14 | 6, 12, 13 | syl2anc 587 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐴 ∈ dom card) |
15 | domtri2 9451 | . . . . 5 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) | |
16 | 10, 14, 15 | syl2anc 587 | . . . 4 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) |
17 | 16 | biimpar 481 | . . 3 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ ¬ 𝐴 ≺ 𝐵) → 𝐵 ≼ 𝐴) |
18 | uncom 4058 | . . . . . 6 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
19 | infunsdom1 9673 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵 ≼ 𝐴 ∧ 𝐴 ≺ 𝑋)) → (𝐵 ∪ 𝐴) ≺ 𝑋) | |
20 | 18, 19 | eqbrtrid 5067 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵 ≼ 𝐴 ∧ 𝐴 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
21 | 20 | anass1rs 654 | . . . 4 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐴 ≺ 𝑋) ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
22 | 21 | adantlrr 720 | . . 3 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
23 | 17, 22 | syldan 594 | . 2 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ ¬ 𝐴 ≺ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
24 | 5, 23 | pm2.61dan 812 | 1 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 ∪ cun 3856 class class class wbr 5032 dom cdm 5524 ωcom 7579 ≼ cdom 8525 ≺ csdm 8526 cardccrd 9397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-oi 9007 df-dju 9363 df-card 9401 |
This theorem is referenced by: csdfil 22594 |
Copyright terms: Public domain | W3C validator |