| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infunsdom | Structured version Visualization version GIF version | ||
| Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.) |
| Ref | Expression |
|---|---|
| infunsdom | ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom 8928 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | infunsdom1 10141 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) | |
| 3 | 2 | anass1rs 655 | . . . 4 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐵 ≺ 𝑋) ∧ 𝐴 ≼ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 4 | 3 | adantlrl 720 | . . 3 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐴 ≼ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 5 | 1, 4 | sylan2 593 | . 2 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐴 ≺ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 6 | simpll 766 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝑋 ∈ dom card) | |
| 7 | sdomdom 8928 | . . . . . . 7 ⊢ (𝐵 ≺ 𝑋 → 𝐵 ≼ 𝑋) | |
| 8 | 7 | ad2antll 729 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐵 ≼ 𝑋) |
| 9 | numdom 9967 | . . . . . 6 ⊢ ((𝑋 ∈ dom card ∧ 𝐵 ≼ 𝑋) → 𝐵 ∈ dom card) | |
| 10 | 6, 8, 9 | syl2anc 584 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐵 ∈ dom card) |
| 11 | sdomdom 8928 | . . . . . . 7 ⊢ (𝐴 ≺ 𝑋 → 𝐴 ≼ 𝑋) | |
| 12 | 11 | ad2antrl 728 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐴 ≼ 𝑋) |
| 13 | numdom 9967 | . . . . . 6 ⊢ ((𝑋 ∈ dom card ∧ 𝐴 ≼ 𝑋) → 𝐴 ∈ dom card) | |
| 14 | 6, 12, 13 | syl2anc 584 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → 𝐴 ∈ dom card) |
| 15 | domtri2 9918 | . . . . 5 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) | |
| 16 | 10, 14, 15 | syl2anc 584 | . . . 4 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) |
| 17 | 16 | biimpar 477 | . . 3 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ ¬ 𝐴 ≺ 𝐵) → 𝐵 ≼ 𝐴) |
| 18 | uncom 4117 | . . . . . 6 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 19 | infunsdom1 10141 | . . . . . 6 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵 ≼ 𝐴 ∧ 𝐴 ≺ 𝑋)) → (𝐵 ∪ 𝐴) ≺ 𝑋) | |
| 20 | 18, 19 | eqbrtrid 5137 | . . . . 5 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵 ≼ 𝐴 ∧ 𝐴 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 21 | 20 | anass1rs 655 | . . . 4 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐴 ≺ 𝑋) ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 22 | 21 | adantlrr 721 | . . 3 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 23 | 17, 22 | syldan 591 | . 2 ⊢ ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) ∧ ¬ 𝐴 ≺ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 24 | 5, 23 | pm2.61dan 812 | 1 ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∪ cun 3909 class class class wbr 5102 dom cdm 5631 ωcom 7822 ≼ cdom 8893 ≺ csdm 8894 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-dju 9830 df-card 9868 |
| This theorem is referenced by: csdfil 23757 |
| Copyright terms: Public domain | W3C validator |