MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom Structured version   Visualization version   GIF version

Theorem infunsdom 10104
Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)

Proof of Theorem infunsdom
StepHypRef Expression
1 sdomdom 8902 . . 3 (𝐴𝐵𝐴𝐵)
2 infunsdom1 10103 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
32anass1rs 655 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐵𝑋) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
43adantlrl 720 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
51, 4sylan2 593 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
6 simpll 766 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝑋 ∈ dom card)
7 sdomdom 8902 . . . . . . 7 (𝐵𝑋𝐵𝑋)
87ad2antll 729 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
9 numdom 9929 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐵𝑋) → 𝐵 ∈ dom card)
106, 8, 9syl2anc 584 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵 ∈ dom card)
11 sdomdom 8902 . . . . . . 7 (𝐴𝑋𝐴𝑋)
1211ad2antrl 728 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
13 numdom 9929 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐴𝑋) → 𝐴 ∈ dom card)
146, 12, 13syl2anc 584 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴 ∈ dom card)
15 domtri2 9882 . . . . 5 ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1610, 14, 15syl2anc 584 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1716biimpar 477 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
18 uncom 4105 . . . . . 6 (𝐴𝐵) = (𝐵𝐴)
19 infunsdom1 10103 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵𝐴𝐴𝑋)) → (𝐵𝐴) ≺ 𝑋)
2018, 19eqbrtrid 5124 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐵𝐴𝐴𝑋)) → (𝐴𝐵) ≺ 𝑋)
2120anass1rs 655 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ 𝐴𝑋) ∧ 𝐵𝐴) → (𝐴𝐵) ≺ 𝑋)
2221adantlrr 721 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐵𝐴) → (𝐴𝐵) ≺ 𝑋)
2317, 22syldan 591 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝐵) → (𝐴𝐵) ≺ 𝑋)
245, 23pm2.61dan 812 1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  cun 3895   class class class wbr 5089  dom cdm 5614  ωcom 7796  cdom 8867  csdm 8868  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-dju 9794  df-card 9832
This theorem is referenced by:  csdfil  23809
  Copyright terms: Public domain W3C validator