Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnbllem Structured version   Visualization version   GIF version

Theorem qndenserrnbllem 46332
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnbllem.i (𝜑𝐼 ∈ Fin)
qndenserrnbllem.n (𝜑𝐼 ≠ ∅)
qndenserrnbllem.x (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
qndenserrnbllem.d 𝐷 = (dist‘(ℝ^‘𝐼))
qndenserrnbllem.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
qndenserrnbllem (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐼   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝐷(𝑦)

Proof of Theorem qndenserrnbllem
Dummy variables 𝑖 𝑘 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qndenserrnbllem.i . . . 4 (𝜑𝐼 ∈ Fin)
2 inss1 4182 . . . . . 6 (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ
3 qex 12854 . . . . . 6 ℚ ∈ V
4 ssexg 5256 . . . . . 6 (((ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ ∧ ℚ ∈ V) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V)
52, 3, 4mp2an 692 . . . . 5 (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V
65a1i 11 . . . 4 ((𝜑𝑘𝐼) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V)
7 qndenserrnbllem.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
8 elmapi 8768 . . . . . . . . . . . 12 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋:𝐼⟶ℝ)
97, 8syl 17 . . . . . . . . . . 11 (𝜑𝑋:𝐼⟶ℝ)
109adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝑋:𝐼⟶ℝ)
11 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝑘𝐼)
1210, 11ffvelcdmd 7013 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑋𝑘) ∈ ℝ)
1312rexrd 11157 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑋𝑘) ∈ ℝ*)
14 qndenserrnbllem.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
1514rpred 12929 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → 𝐸 ∈ ℝ)
17 ne0i 4286 . . . . . . . . . . . . . . 15 (𝑘𝐼𝐼 ≠ ∅)
1817adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → 𝐼 ≠ ∅)
19 hashnncl 14268 . . . . . . . . . . . . . . . 16 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
201, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
2120adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
2218, 21mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℕ)
2322nnred 12135 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℝ)
24 0red 11110 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → 0 ∈ ℝ)
2522nngt0d 12169 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → 0 < (♯‘𝐼))
2624, 23, 25ltled 11256 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 0 ≤ (♯‘𝐼))
2723, 26resqrtcld 15320 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ∈ ℝ)
2823, 25elrpd 12926 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℝ+)
2928sqrtgt0d 15315 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 0 < (√‘(♯‘𝐼)))
3024, 29gtned 11243 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ≠ 0)
3116, 27, 30redivcld 11944 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
3212, 31readdcld 11136 . . . . . . . . 9 ((𝜑𝑘𝐼) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
3332rexrd 11157 . . . . . . . 8 ((𝜑𝑘𝐼) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
3414adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝐸 ∈ ℝ+)
3527, 29elrpd 12926 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ∈ ℝ+)
3634, 35rpdivcld 12946 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ+)
3712, 36ltaddrpd 12962 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑋𝑘) < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))
38 qbtwnxr 13094 . . . . . . . 8 (((𝑋𝑘) ∈ ℝ* ∧ ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑋𝑘) < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) → ∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
3913, 33, 37, 38syl3anc 1373 . . . . . . 7 ((𝜑𝑘𝐼) → ∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
40 df-rex 3057 . . . . . . 7 (∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) ↔ ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
4139, 40sylib 218 . . . . . 6 ((𝜑𝑘𝐼) → ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
42 simprl 770 . . . . . . . . 9 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ℚ)
4313adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑋𝑘) ∈ ℝ*)
4433adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
45 qre 12846 . . . . . . . . . . 11 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
4645ad2antrl 728 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ℝ)
47 simprrl 780 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑋𝑘) < 𝑞)
48 simprrr 781 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))
4943, 44, 46, 47, 48eliood 45538 . . . . . . . . 9 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
5042, 49elind 4145 . . . . . . . 8 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
5150ex 412 . . . . . . 7 ((𝜑𝑘𝐼) → ((𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
5251eximdv 1918 . . . . . 6 ((𝜑𝑘𝐼) → (∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
5341, 52mpd 15 . . . . 5 ((𝜑𝑘𝐼) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
54 n0 4298 . . . . 5 ((ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
5553, 54sylibr 234 . . . 4 ((𝜑𝑘𝐼) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ≠ ∅)
561, 6, 55choicefi 45237 . . 3 (𝜑 → ∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
572a1i 11 . . . . . . . . . . . 12 (𝑦 Fn 𝐼 → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ)
5857sseld 3928 . . . . . . . . . . 11 (𝑦 Fn 𝐼 → ((𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑘) ∈ ℚ))
5958ralimdv 3146 . . . . . . . . . 10 (𝑦 Fn 𝐼 → (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
6059imdistani 568 . . . . . . . . 9 ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
61 ffnfv 7047 . . . . . . . . 9 (𝑦:𝐼⟶ℚ ↔ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
6260, 61sylibr 234 . . . . . . . 8 ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑦:𝐼⟶ℚ)
6362adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦:𝐼⟶ℚ)
643a1i 11 . . . . . . . . 9 (𝜑 → ℚ ∈ V)
65 elmapg 8758 . . . . . . . . 9 ((ℚ ∈ V ∧ 𝐼 ∈ Fin) → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6664, 1, 65syl2anc 584 . . . . . . . 8 (𝜑 → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6766adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6863, 67mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (ℚ ↑m 𝐼))
69 reex 11092 . . . . . . . . . . 11 ℝ ∈ V
7045ssriv 3933 . . . . . . . . . . 11 ℚ ⊆ ℝ
71 mapss 8808 . . . . . . . . . . 11 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼))
7269, 70, 71mp2an 692 . . . . . . . . . 10 (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)
7372a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼))
7473, 68sseldd 3930 . . . . . . . 8 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (ℝ ↑m 𝐼))
751adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐼 ∈ Fin)
76 qndenserrnbllem.n . . . . . . . . . . 11 (𝜑𝐼 ≠ ∅)
7776adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐼 ≠ ∅)
78 eqid 2731 . . . . . . . . . 10 (♯‘𝐼) = (♯‘𝐼)
797adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑋 ∈ (ℝ ↑m 𝐼))
80 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → 𝜑)
81 fveq2 6817 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝑦𝑘) = (𝑦𝑖))
82 fveq2 6817 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
8382oveq1d 7356 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) = ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
8482, 83oveq12d 7359 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) = ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
8584ineq2d 4165 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) = (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8681, 85eleq12d 2825 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → ((𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ↔ (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))))
8786cbvralvw 3210 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ↔ ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8887biimpi 216 . . . . . . . . . . . . . . . 16 (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8988adantr 480 . . . . . . . . . . . . . . 15 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
90 simpr 484 . . . . . . . . . . . . . . 15 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → 𝑖𝐼)
91 rspa 3221 . . . . . . . . . . . . . . 15 ((∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
9289, 90, 91syl2anc 584 . . . . . . . . . . . . . 14 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
9392adantll 714 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
94 elinel2 4147 . . . . . . . . . . . . 13 ((𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
9593, 94syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
96 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → 𝑖𝐼)
979ffvelcdmda 7012 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
98973adant2 1131 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
99 simp2 1137 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
10099elioored 45589 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ℝ)
10198rexrd 11157 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℝ*)
10215adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ)
10376, 20mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (♯‘𝐼) ∈ ℕ)
104103nnred 12135 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘𝐼) ∈ ℝ)
105104adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐼) → (♯‘𝐼) ∈ ℝ)
106 0red 11110 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ ℝ)
107103nngt0d 12169 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 < (♯‘𝐼))
108106, 104, 107ltled 11256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 ≤ (♯‘𝐼))
109108adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐼) → 0 ≤ (♯‘𝐼))
110105, 109resqrtcld 15320 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → (√‘(♯‘𝐼)) ∈ ℝ)
111 sqrtgt0 15160 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐼) ∈ ℝ ∧ 0 < (♯‘𝐼)) → 0 < (√‘(♯‘𝐼)))
112104, 107, 111syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 < (√‘(♯‘𝐼)))
113106, 112gtned 11243 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (√‘(♯‘𝐼)) ≠ 0)
114113adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → (√‘(♯‘𝐼)) ≠ 0)
115102, 110, 114redivcld 11944 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
11697, 115readdcld 11136 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
117116rexrd 11157 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
1181173adant2 1131 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
119 ioogtlb 45535 . . . . . . . . . . . . . . . 16 (((𝑋𝑖) ∈ ℝ* ∧ ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑋𝑖) < (𝑦𝑖))
120101, 118, 99, 119syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) < (𝑦𝑖))
12198, 100, 120ltled 11256 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ≤ (𝑦𝑖))
12298, 100, 121abssuble0d 15337 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) = ((𝑦𝑖) − (𝑋𝑖)))
1231163adant2 1131 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
124 iooltub 45550 . . . . . . . . . . . . . . . 16 (((𝑋𝑖) ∈ ℝ* ∧ ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑖) < ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
125101, 118, 99, 124syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) < ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
126100, 123, 98, 125ltsub1dd 11724 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑦𝑖) − (𝑋𝑖)) < (((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) − (𝑋𝑖)))
12798recnd 11135 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℂ)
128104, 108resqrtcld 15320 . . . . . . . . . . . . . . . . . 18 (𝜑 → (√‘(♯‘𝐼)) ∈ ℝ)
12915, 128, 113redivcld 11944 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
130129recnd 11135 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 / (√‘(♯‘𝐼))) ∈ ℂ)
1311303ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℂ)
132127, 131pncan2d 11469 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) − (𝑋𝑖)) = (𝐸 / (√‘(♯‘𝐼))))
133126, 132breqtrd 5112 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑦𝑖) − (𝑋𝑖)) < (𝐸 / (√‘(♯‘𝐼))))
134122, 133eqbrtrd 5108 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
13580, 95, 96, 134syl3anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
136135adantlrl 720 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
13714adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐸 ∈ ℝ+)
138104, 107elrpd 12926 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐼) ∈ ℝ+)
139138adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (♯‘𝐼) ∈ ℝ+)
140139rpsqrtcld 15314 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ∈ ℝ+)
141137, 140rpdivcld 12946 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ+)
142 qndenserrnbllem.d . . . . . . . . . 10 𝐷 = (dist‘(ℝ^‘𝐼))
14375, 77, 78, 79, 74, 136, 141, 142rrndistlt 46328 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑋𝐷𝑦) < ((√‘(♯‘𝐼)) · (𝐸 / (√‘(♯‘𝐼)))))
144137rpcnd 12931 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐸 ∈ ℂ)
145139rpcnd 12931 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (♯‘𝐼) ∈ ℂ)
146145sqrtcld 15342 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ∈ ℂ)
147140rpne0d 12934 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ≠ 0)
148144, 146, 147divcan2d 11894 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → ((√‘(♯‘𝐼)) · (𝐸 / (√‘(♯‘𝐼)))) = 𝐸)
149143, 148breqtrd 5112 . . . . . . . 8 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑋𝐷𝑦) < 𝐸)
15074, 149jca 511 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸))
151142rrxmetfi 25334 . . . . . . . . . . 11 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
1521, 151syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
153 metxmet 24244 . . . . . . . . . 10 (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
154152, 153syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
15515rexrd 11157 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ*)
156 elbl 24298 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ 𝑋 ∈ (ℝ ↑m 𝐼) ∧ 𝐸 ∈ ℝ*) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
157154, 7, 155, 156syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
158157adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
159150, 158mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
16068, 159jca 511 . . . . 5 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
161160ex 412 . . . 4 (𝜑 → ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))))
162161eximdv 1918 . . 3 (𝜑 → (∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))))
16356, 162mpd 15 . 2 (𝜑 → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
164 df-rex 3057 . 2 (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
165163, 164sylibr 234 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  c0 4278   class class class wbr 5086   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  m cmap 8745  Fincfn 8864  cc 10999  cr 11000  0cc0 11001   + caddc 11004   · cmul 11006  *cxr 11140   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  cn 12120  cq 12841  +crp 12885  (,)cioo 13240  chash 14232  csqrt 15135  abscabs 15136  distcds 17165  ∞Metcxmet 21271  Metcmet 21272  ballcbl 21273  ℝ^crrx 25305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xadd 13007  df-ioo 13244  df-ico 13246  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-rhm 20385  df-subrng 20456  df-subrg 20480  df-drng 20641  df-field 20642  df-staf 20749  df-srng 20750  df-lmod 20790  df-lss 20860  df-sra 21102  df-rgmod 21103  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-cnfld 21287  df-refld 21537  df-dsmm 21664  df-frlm 21679  df-nm 24492  df-tng 24494  df-tcph 25091  df-rrx 25307
This theorem is referenced by:  qndenserrnbl  46333
  Copyright terms: Public domain W3C validator