Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnbllem Structured version   Visualization version   GIF version

Theorem qndenserrnbllem 45321
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnbllem.i (𝜑𝐼 ∈ Fin)
qndenserrnbllem.n (𝜑𝐼 ≠ ∅)
qndenserrnbllem.x (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
qndenserrnbllem.d 𝐷 = (dist‘(ℝ^‘𝐼))
qndenserrnbllem.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
qndenserrnbllem (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐼   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝐷(𝑦)

Proof of Theorem qndenserrnbllem
Dummy variables 𝑖 𝑘 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qndenserrnbllem.i . . . 4 (𝜑𝐼 ∈ Fin)
2 inss1 4228 . . . . . 6 (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ
3 qex 12952 . . . . . 6 ℚ ∈ V
4 ssexg 5323 . . . . . 6 (((ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ ∧ ℚ ∈ V) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V)
52, 3, 4mp2an 689 . . . . 5 (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V
65a1i 11 . . . 4 ((𝜑𝑘𝐼) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V)
7 qndenserrnbllem.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
8 elmapi 8849 . . . . . . . . . . . 12 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋:𝐼⟶ℝ)
97, 8syl 17 . . . . . . . . . . 11 (𝜑𝑋:𝐼⟶ℝ)
109adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝑋:𝐼⟶ℝ)
11 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝑘𝐼)
1210, 11ffvelcdmd 7087 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑋𝑘) ∈ ℝ)
1312rexrd 11271 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑋𝑘) ∈ ℝ*)
14 qndenserrnbllem.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
1514rpred 13023 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → 𝐸 ∈ ℝ)
17 ne0i 4334 . . . . . . . . . . . . . . 15 (𝑘𝐼𝐼 ≠ ∅)
1817adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → 𝐼 ≠ ∅)
19 hashnncl 14333 . . . . . . . . . . . . . . . 16 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
201, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
2120adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
2218, 21mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℕ)
2322nnred 12234 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℝ)
24 0red 11224 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → 0 ∈ ℝ)
2522nngt0d 12268 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → 0 < (♯‘𝐼))
2624, 23, 25ltled 11369 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 0 ≤ (♯‘𝐼))
2723, 26resqrtcld 15371 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ∈ ℝ)
2823, 25elrpd 13020 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℝ+)
2928sqrtgt0d 15366 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 0 < (√‘(♯‘𝐼)))
3024, 29gtned 11356 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ≠ 0)
3116, 27, 30redivcld 12049 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
3212, 31readdcld 11250 . . . . . . . . 9 ((𝜑𝑘𝐼) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
3332rexrd 11271 . . . . . . . 8 ((𝜑𝑘𝐼) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
3414adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝐸 ∈ ℝ+)
3527, 29elrpd 13020 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ∈ ℝ+)
3634, 35rpdivcld 13040 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ+)
3712, 36ltaddrpd 13056 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑋𝑘) < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))
38 qbtwnxr 13186 . . . . . . . 8 (((𝑋𝑘) ∈ ℝ* ∧ ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑋𝑘) < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) → ∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
3913, 33, 37, 38syl3anc 1370 . . . . . . 7 ((𝜑𝑘𝐼) → ∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
40 df-rex 3070 . . . . . . 7 (∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) ↔ ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
4139, 40sylib 217 . . . . . 6 ((𝜑𝑘𝐼) → ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
42 simprl 768 . . . . . . . . 9 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ℚ)
4313adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑋𝑘) ∈ ℝ*)
4433adantr 480 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
45 qre 12944 . . . . . . . . . . 11 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
4645ad2antrl 725 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ℝ)
47 simprrl 778 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑋𝑘) < 𝑞)
48 simprrr 779 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))
4943, 44, 46, 47, 48eliood 44522 . . . . . . . . 9 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
5042, 49elind 4194 . . . . . . . 8 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
5150ex 412 . . . . . . 7 ((𝜑𝑘𝐼) → ((𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
5251eximdv 1919 . . . . . 6 ((𝜑𝑘𝐼) → (∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
5341, 52mpd 15 . . . . 5 ((𝜑𝑘𝐼) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
54 n0 4346 . . . . 5 ((ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
5553, 54sylibr 233 . . . 4 ((𝜑𝑘𝐼) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ≠ ∅)
561, 6, 55choicefi 44210 . . 3 (𝜑 → ∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
572a1i 11 . . . . . . . . . . . 12 (𝑦 Fn 𝐼 → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ)
5857sseld 3981 . . . . . . . . . . 11 (𝑦 Fn 𝐼 → ((𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑘) ∈ ℚ))
5958ralimdv 3168 . . . . . . . . . 10 (𝑦 Fn 𝐼 → (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
6059imdistani 568 . . . . . . . . 9 ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
61 ffnfv 7120 . . . . . . . . 9 (𝑦:𝐼⟶ℚ ↔ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
6260, 61sylibr 233 . . . . . . . 8 ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑦:𝐼⟶ℚ)
6362adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦:𝐼⟶ℚ)
643a1i 11 . . . . . . . . 9 (𝜑 → ℚ ∈ V)
65 elmapg 8839 . . . . . . . . 9 ((ℚ ∈ V ∧ 𝐼 ∈ Fin) → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6664, 1, 65syl2anc 583 . . . . . . . 8 (𝜑 → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6766adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6863, 67mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (ℚ ↑m 𝐼))
69 reex 11207 . . . . . . . . . . 11 ℝ ∈ V
7045ssriv 3986 . . . . . . . . . . 11 ℚ ⊆ ℝ
71 mapss 8889 . . . . . . . . . . 11 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼))
7269, 70, 71mp2an 689 . . . . . . . . . 10 (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)
7372a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼))
7473, 68sseldd 3983 . . . . . . . 8 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (ℝ ↑m 𝐼))
751adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐼 ∈ Fin)
76 qndenserrnbllem.n . . . . . . . . . . 11 (𝜑𝐼 ≠ ∅)
7776adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐼 ≠ ∅)
78 eqid 2731 . . . . . . . . . 10 (♯‘𝐼) = (♯‘𝐼)
797adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑋 ∈ (ℝ ↑m 𝐼))
80 simpll 764 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → 𝜑)
81 fveq2 6891 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝑦𝑘) = (𝑦𝑖))
82 fveq2 6891 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
8382oveq1d 7427 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) = ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
8482, 83oveq12d 7430 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) = ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
8584ineq2d 4212 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) = (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8681, 85eleq12d 2826 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → ((𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ↔ (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))))
8786cbvralvw 3233 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ↔ ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8887biimpi 215 . . . . . . . . . . . . . . . 16 (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8988adantr 480 . . . . . . . . . . . . . . 15 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
90 simpr 484 . . . . . . . . . . . . . . 15 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → 𝑖𝐼)
91 rspa 3244 . . . . . . . . . . . . . . 15 ((∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
9289, 90, 91syl2anc 583 . . . . . . . . . . . . . 14 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
9392adantll 711 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
94 elinel2 4196 . . . . . . . . . . . . 13 ((𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
9593, 94syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
96 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → 𝑖𝐼)
979ffvelcdmda 7086 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
98973adant2 1130 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
99 simp2 1136 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
10099elioored 44573 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ℝ)
10198rexrd 11271 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℝ*)
10215adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ)
10376, 20mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (♯‘𝐼) ∈ ℕ)
104103nnred 12234 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘𝐼) ∈ ℝ)
105104adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐼) → (♯‘𝐼) ∈ ℝ)
106 0red 11224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ ℝ)
107103nngt0d 12268 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 < (♯‘𝐼))
108106, 104, 107ltled 11369 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 ≤ (♯‘𝐼))
109108adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐼) → 0 ≤ (♯‘𝐼))
110105, 109resqrtcld 15371 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → (√‘(♯‘𝐼)) ∈ ℝ)
111 sqrtgt0 15212 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐼) ∈ ℝ ∧ 0 < (♯‘𝐼)) → 0 < (√‘(♯‘𝐼)))
112104, 107, 111syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 < (√‘(♯‘𝐼)))
113106, 112gtned 11356 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (√‘(♯‘𝐼)) ≠ 0)
114113adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → (√‘(♯‘𝐼)) ≠ 0)
115102, 110, 114redivcld 12049 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
11697, 115readdcld 11250 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
117116rexrd 11271 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
1181173adant2 1130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
119 ioogtlb 44519 . . . . . . . . . . . . . . . 16 (((𝑋𝑖) ∈ ℝ* ∧ ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑋𝑖) < (𝑦𝑖))
120101, 118, 99, 119syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) < (𝑦𝑖))
12198, 100, 120ltled 11369 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ≤ (𝑦𝑖))
12298, 100, 121abssuble0d 15386 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) = ((𝑦𝑖) − (𝑋𝑖)))
1231163adant2 1130 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
124 iooltub 44534 . . . . . . . . . . . . . . . 16 (((𝑋𝑖) ∈ ℝ* ∧ ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑖) < ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
125101, 118, 99, 124syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) < ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
126100, 123, 98, 125ltsub1dd 11833 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑦𝑖) − (𝑋𝑖)) < (((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) − (𝑋𝑖)))
12798recnd 11249 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℂ)
128104, 108resqrtcld 15371 . . . . . . . . . . . . . . . . . 18 (𝜑 → (√‘(♯‘𝐼)) ∈ ℝ)
12915, 128, 113redivcld 12049 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
130129recnd 11249 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 / (√‘(♯‘𝐼))) ∈ ℂ)
1311303ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℂ)
132127, 131pncan2d 11580 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) − (𝑋𝑖)) = (𝐸 / (√‘(♯‘𝐼))))
133126, 132breqtrd 5174 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑦𝑖) − (𝑋𝑖)) < (𝐸 / (√‘(♯‘𝐼))))
134122, 133eqbrtrd 5170 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
13580, 95, 96, 134syl3anc 1370 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
136135adantlrl 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
13714adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐸 ∈ ℝ+)
138104, 107elrpd 13020 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐼) ∈ ℝ+)
139138adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (♯‘𝐼) ∈ ℝ+)
140139rpsqrtcld 15365 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ∈ ℝ+)
141137, 140rpdivcld 13040 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ+)
142 qndenserrnbllem.d . . . . . . . . . 10 𝐷 = (dist‘(ℝ^‘𝐼))
14375, 77, 78, 79, 74, 136, 141, 142rrndistlt 45317 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑋𝐷𝑦) < ((√‘(♯‘𝐼)) · (𝐸 / (√‘(♯‘𝐼)))))
144137rpcnd 13025 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐸 ∈ ℂ)
145139rpcnd 13025 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (♯‘𝐼) ∈ ℂ)
146145sqrtcld 15391 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ∈ ℂ)
147140rpne0d 13028 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ≠ 0)
148144, 146, 147divcan2d 11999 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → ((√‘(♯‘𝐼)) · (𝐸 / (√‘(♯‘𝐼)))) = 𝐸)
149143, 148breqtrd 5174 . . . . . . . 8 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑋𝐷𝑦) < 𝐸)
15074, 149jca 511 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸))
151142rrxmetfi 25173 . . . . . . . . . . 11 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
1521, 151syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
153 metxmet 24073 . . . . . . . . . 10 (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
154152, 153syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
15515rexrd 11271 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ*)
156 elbl 24127 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ 𝑋 ∈ (ℝ ↑m 𝐼) ∧ 𝐸 ∈ ℝ*) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
157154, 7, 155, 156syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
158157adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
159150, 158mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
16068, 159jca 511 . . . . 5 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
161160ex 412 . . . 4 (𝜑 → ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))))
162161eximdv 1919 . . 3 (𝜑 → (∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))))
16356, 162mpd 15 . 2 (𝜑 → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
164 df-rex 3070 . 2 (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
165163, 164sylibr 233 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wne 2939  wral 3060  wrex 3069  Vcvv 3473  cin 3947  wss 3948  c0 4322   class class class wbr 5148   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  m cmap 8826  Fincfn 8945  cc 11114  cr 11115  0cc0 11116   + caddc 11119   · cmul 11121  *cxr 11254   < clt 11255  cle 11256  cmin 11451   / cdiv 11878  cn 12219  cq 12939  +crp 12981  (,)cioo 13331  chash 14297  csqrt 15187  abscabs 15188  distcds 17213  ∞Metcxmet 21133  Metcmet 21134  ballcbl 21135  ℝ^crrx 25144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xadd 13100  df-ioo 13335  df-ico 13337  df-fz 13492  df-fzo 13635  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-sum 15640  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-grp 18861  df-minusg 18862  df-sbg 18863  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-cring 20134  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-invr 20283  df-dvr 20296  df-rhm 20367  df-subrng 20438  df-subrg 20463  df-drng 20506  df-field 20507  df-staf 20600  df-srng 20601  df-lmod 20620  df-lss 20691  df-sra 20934  df-rgmod 20935  df-psmet 21140  df-xmet 21141  df-met 21142  df-bl 21143  df-cnfld 21149  df-refld 21381  df-dsmm 21510  df-frlm 21525  df-nm 24324  df-tng 24326  df-tcph 24930  df-rrx 25146
This theorem is referenced by:  qndenserrnbl  45322
  Copyright terms: Public domain W3C validator