Step | Hyp | Ref
| Expression |
1 | | qndenserrnbllem.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ Fin) |
2 | | inss1 4159 |
. . . . . 6
⊢ (ℚ
∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆
ℚ |
3 | | qex 12630 |
. . . . . 6
⊢ ℚ
∈ V |
4 | | ssexg 5242 |
. . . . . 6
⊢
(((ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ ∧
ℚ ∈ V) → (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈
V) |
5 | 2, 3, 4 | mp2an 688 |
. . . . 5
⊢ (ℚ
∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V |
6 | 5 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈
V) |
7 | | qndenserrnbllem.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) |
8 | | elmapi 8595 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ (ℝ
↑m 𝐼)
→ 𝑋:𝐼⟶ℝ) |
9 | 7, 8 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋:𝐼⟶ℝ) |
10 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑋:𝐼⟶ℝ) |
11 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ 𝐼) |
12 | 10, 11 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑋‘𝑘) ∈ ℝ) |
13 | 12 | rexrd 10956 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑋‘𝑘) ∈
ℝ*) |
14 | | qndenserrnbllem.e |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
15 | 14 | rpred 12701 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ ℝ) |
16 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐸 ∈ ℝ) |
17 | | ne0i 4265 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐼 → 𝐼 ≠ ∅) |
18 | 17 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐼 ≠ ∅) |
19 | | hashnncl 14009 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ Fin →
((♯‘𝐼) ∈
ℕ ↔ 𝐼 ≠
∅)) |
20 | 1, 19 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅)) |
21 | 20 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅)) |
22 | 18, 21 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (♯‘𝐼) ∈ ℕ) |
23 | 22 | nnred 11918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (♯‘𝐼) ∈ ℝ) |
24 | | 0red 10909 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 0 ∈ ℝ) |
25 | 22 | nngt0d 11952 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 0 < (♯‘𝐼)) |
26 | 24, 23, 25 | ltled 11053 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 0 ≤ (♯‘𝐼)) |
27 | 23, 26 | resqrtcld 15057 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (√‘(♯‘𝐼)) ∈
ℝ) |
28 | 23, 25 | elrpd 12698 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (♯‘𝐼) ∈
ℝ+) |
29 | 28 | sqrtgt0d 15052 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 0 <
(√‘(♯‘𝐼))) |
30 | 24, 29 | gtned 11040 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (√‘(♯‘𝐼)) ≠ 0) |
31 | 16, 27, 30 | redivcld 11733 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈
ℝ) |
32 | 12, 31 | readdcld 10935 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈
ℝ) |
33 | 32 | rexrd 10956 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈
ℝ*) |
34 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐸 ∈
ℝ+) |
35 | 27, 29 | elrpd 12698 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (√‘(♯‘𝐼)) ∈
ℝ+) |
36 | 34, 35 | rpdivcld 12718 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈
ℝ+) |
37 | 12, 36 | ltaddrpd 12734 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑋‘𝑘) < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))) |
38 | | qbtwnxr 12863 |
. . . . . . . 8
⊢ (((𝑋‘𝑘) ∈ ℝ* ∧ ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*
∧ (𝑋‘𝑘) < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))) → ∃𝑞 ∈ ℚ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) |
39 | 13, 33, 37, 38 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ∃𝑞 ∈ ℚ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) |
40 | | df-rex 3069 |
. . . . . . 7
⊢
(∃𝑞 ∈
ℚ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))) ↔ ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) |
41 | 39, 40 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) |
42 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈
ℚ) |
43 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑋‘𝑘) ∈
ℝ*) |
44 | 33 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈
ℝ*) |
45 | | qre 12622 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ ℚ → 𝑞 ∈
ℝ) |
46 | 45 | ad2antrl 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈
ℝ) |
47 | | simprrl 777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑋‘𝑘) < 𝑞) |
48 | | simprrr 778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))) |
49 | 43, 44, 46, 47, 48 | eliood 42926 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) |
50 | 42, 49 | elind 4124 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) |
51 | 50 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ((𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → 𝑞 ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) |
52 | 51 | eximdv 1921 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋‘𝑘) < 𝑞 ∧ 𝑞 < ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) |
53 | 41, 52 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) |
54 | | n0 4277 |
. . . . 5
⊢ ((ℚ
∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ≠ ∅ ↔
∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) |
55 | 53, 54 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ≠
∅) |
56 | 1, 6, 55 | choicefi 42629 |
. . 3
⊢ (𝜑 → ∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) |
57 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑦 Fn 𝐼 → (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆
ℚ) |
58 | 57 | sseld 3916 |
. . . . . . . . . . 11
⊢ (𝑦 Fn 𝐼 → ((𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦‘𝑘) ∈ ℚ)) |
59 | 58 | ralimdv 3103 |
. . . . . . . . . 10
⊢ (𝑦 Fn 𝐼 → (∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ ℚ)) |
60 | 59 | imdistani 568 |
. . . . . . . . 9
⊢ ((𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ ℚ)) |
61 | | ffnfv 6974 |
. . . . . . . . 9
⊢ (𝑦:𝐼⟶ℚ ↔ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ ℚ)) |
62 | 60, 61 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑦:𝐼⟶ℚ) |
63 | 62 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦:𝐼⟶ℚ) |
64 | 3 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℚ ∈
V) |
65 | | elmapg 8586 |
. . . . . . . . 9
⊢ ((ℚ
∈ V ∧ 𝐼 ∈
Fin) → (𝑦 ∈
(ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ)) |
66 | 64, 1, 65 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ)) |
67 | 66 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℚ
↑m 𝐼)
↔ 𝑦:𝐼⟶ℚ)) |
68 | 63, 67 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (ℚ
↑m 𝐼)) |
69 | | reex 10893 |
. . . . . . . . . . 11
⊢ ℝ
∈ V |
70 | 45 | ssriv 3921 |
. . . . . . . . . . 11
⊢ ℚ
⊆ ℝ |
71 | | mapss 8635 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m
𝐼) ⊆ (ℝ
↑m 𝐼)) |
72 | 69, 70, 71 | mp2an 688 |
. . . . . . . . . 10
⊢ (ℚ
↑m 𝐼)
⊆ (ℝ ↑m 𝐼) |
73 | 72 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (ℚ
↑m 𝐼)
⊆ (ℝ ↑m 𝐼)) |
74 | 73, 68 | sseldd 3918 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (ℝ
↑m 𝐼)) |
75 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐼 ∈ Fin) |
76 | | qndenserrnbllem.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ≠ ∅) |
77 | 76 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐼 ≠ ∅) |
78 | | eqid 2738 |
. . . . . . . . . 10
⊢
(♯‘𝐼) =
(♯‘𝐼) |
79 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑋 ∈ (ℝ
↑m 𝐼)) |
80 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖 ∈ 𝐼) → 𝜑) |
81 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → (𝑦‘𝑘) = (𝑦‘𝑖)) |
82 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑖 → (𝑋‘𝑘) = (𝑋‘𝑖)) |
83 | 82 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑖 → ((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))) = ((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) |
84 | 82, 83 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑖 → ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))) = ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) |
85 | 84 | ineq2d 4143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) = (ℚ ∩ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))))) |
86 | 81, 85 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → ((𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ↔ (𝑦‘𝑖) ∈ (ℚ ∩ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))) |
87 | 86 | cbvralvw 3372 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ↔ ∀𝑖 ∈ 𝐼 (𝑦‘𝑖) ∈ (ℚ ∩ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))))) |
88 | 87 | biimpi 215 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∀𝑖 ∈ 𝐼 (𝑦‘𝑖) ∈ (ℚ ∩ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))))) |
89 | 88 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑘 ∈
𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖 ∈ 𝐼) → ∀𝑖 ∈ 𝐼 (𝑦‘𝑖) ∈ (ℚ ∩ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))))) |
90 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑘 ∈
𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
91 | | rspa 3130 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑖 ∈
𝐼 (𝑦‘𝑖) ∈ (ℚ ∩ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖 ∈ 𝐼) → (𝑦‘𝑖) ∈ (ℚ ∩ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))))) |
92 | 89, 90, 91 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢
((∀𝑘 ∈
𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖 ∈ 𝐼) → (𝑦‘𝑖) ∈ (ℚ ∩ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))))) |
93 | 92 | adantll 710 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖 ∈ 𝐼) → (𝑦‘𝑖) ∈ (ℚ ∩ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))))) |
94 | | elinel2 4126 |
. . . . . . . . . . . . 13
⊢ ((𝑦‘𝑖) ∈ (ℚ ∩ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖 ∈ 𝐼) → (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) |
96 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
97 | 9 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑋‘𝑖) ∈ ℝ) |
98 | 97 | 3adant2 1129 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (𝑋‘𝑖) ∈ ℝ) |
99 | | simp2 1135 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) |
100 | 99 | elioored 42977 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (𝑦‘𝑖) ∈ ℝ) |
101 | 98 | rexrd 10956 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (𝑋‘𝑖) ∈
ℝ*) |
102 | 15 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐸 ∈ ℝ) |
103 | 76, 20 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (♯‘𝐼) ∈
ℕ) |
104 | 103 | nnred 11918 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (♯‘𝐼) ∈
ℝ) |
105 | 104 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (♯‘𝐼) ∈ ℝ) |
106 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 0 ∈
ℝ) |
107 | 103 | nngt0d 11952 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 0 <
(♯‘𝐼)) |
108 | 106, 104,
107 | ltled 11053 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 0 ≤
(♯‘𝐼)) |
109 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 0 ≤ (♯‘𝐼)) |
110 | 105, 109 | resqrtcld 15057 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (√‘(♯‘𝐼)) ∈
ℝ) |
111 | | sqrtgt0 14898 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((♯‘𝐼)
∈ ℝ ∧ 0 < (♯‘𝐼)) → 0 <
(√‘(♯‘𝐼))) |
112 | 104, 107,
111 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 0 <
(√‘(♯‘𝐼))) |
113 | 106, 112 | gtned 11040 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 →
(√‘(♯‘𝐼)) ≠ 0) |
114 | 113 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (√‘(♯‘𝐼)) ≠ 0) |
115 | 102, 110,
114 | redivcld 11733 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈
ℝ) |
116 | 97, 115 | readdcld 10935 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈
ℝ) |
117 | 116 | rexrd 10956 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈
ℝ*) |
118 | 117 | 3adant2 1129 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → ((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈
ℝ*) |
119 | | ioogtlb 42923 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋‘𝑖) ∈ ℝ* ∧ ((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*
∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑋‘𝑖) < (𝑦‘𝑖)) |
120 | 101, 118,
99, 119 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (𝑋‘𝑖) < (𝑦‘𝑖)) |
121 | 98, 100, 120 | ltled 11053 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (𝑋‘𝑖) ≤ (𝑦‘𝑖)) |
122 | 98, 100, 121 | abssuble0d 15072 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (abs‘((𝑋‘𝑖) − (𝑦‘𝑖))) = ((𝑦‘𝑖) − (𝑋‘𝑖))) |
123 | 116 | 3adant2 1129 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → ((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈
ℝ) |
124 | | iooltub 42938 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋‘𝑖) ∈ ℝ* ∧ ((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*
∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦‘𝑖) < ((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) |
125 | 101, 118,
99, 124 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (𝑦‘𝑖) < ((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) |
126 | 100, 123,
98, 125 | ltsub1dd 11517 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → ((𝑦‘𝑖) − (𝑋‘𝑖)) < (((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))) − (𝑋‘𝑖))) |
127 | 98 | recnd 10934 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (𝑋‘𝑖) ∈ ℂ) |
128 | 104, 108 | resqrtcld 15057 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(√‘(♯‘𝐼)) ∈ ℝ) |
129 | 15, 128, 113 | redivcld 11733 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐸 / (√‘(♯‘𝐼))) ∈
ℝ) |
130 | 129 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐸 / (√‘(♯‘𝐼))) ∈
ℂ) |
131 | 130 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈
ℂ) |
132 | 127, 131 | pncan2d 11264 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼)))) − (𝑋‘𝑖)) = (𝐸 / (√‘(♯‘𝐼)))) |
133 | 126, 132 | breqtrd 5096 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → ((𝑦‘𝑖) − (𝑋‘𝑖)) < (𝐸 / (√‘(♯‘𝐼)))) |
134 | 122, 133 | eqbrtrd 5092 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦‘𝑖) ∈ ((𝑋‘𝑖)(,)((𝑋‘𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖 ∈ 𝐼) → (abs‘((𝑋‘𝑖) − (𝑦‘𝑖))) < (𝐸 / (√‘(♯‘𝐼)))) |
135 | 80, 95, 96, 134 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖 ∈ 𝐼) → (abs‘((𝑋‘𝑖) − (𝑦‘𝑖))) < (𝐸 / (√‘(♯‘𝐼)))) |
136 | 135 | adantlrl 716 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) ∧ 𝑖 ∈ 𝐼) → (abs‘((𝑋‘𝑖) − (𝑦‘𝑖))) < (𝐸 / (√‘(♯‘𝐼)))) |
137 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐸 ∈
ℝ+) |
138 | 104, 107 | elrpd 12698 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘𝐼) ∈
ℝ+) |
139 | 138 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) →
(♯‘𝐼) ∈
ℝ+) |
140 | 139 | rpsqrtcld 15051 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) →
(√‘(♯‘𝐼)) ∈
ℝ+) |
141 | 137, 140 | rpdivcld 12718 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝐸 /
(√‘(♯‘𝐼))) ∈
ℝ+) |
142 | | qndenserrnbllem.d |
. . . . . . . . . 10
⊢ 𝐷 =
(dist‘(ℝ^‘𝐼)) |
143 | 75, 77, 78, 79, 74, 136, 141, 142 | rrndistlt 43721 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑋𝐷𝑦) < ((√‘(♯‘𝐼)) · (𝐸 / (√‘(♯‘𝐼))))) |
144 | 137 | rpcnd 12703 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐸 ∈
ℂ) |
145 | 139 | rpcnd 12703 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) →
(♯‘𝐼) ∈
ℂ) |
146 | 145 | sqrtcld 15077 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) →
(√‘(♯‘𝐼)) ∈ ℂ) |
147 | 140 | rpne0d 12706 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) →
(√‘(♯‘𝐼)) ≠ 0) |
148 | 144, 146,
147 | divcan2d 11683 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) →
((√‘(♯‘𝐼)) · (𝐸 / (√‘(♯‘𝐼)))) = 𝐸) |
149 | 143, 148 | breqtrd 5096 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑋𝐷𝑦) < 𝐸) |
150 | 74, 149 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℝ
↑m 𝐼) ∧
(𝑋𝐷𝑦) < 𝐸)) |
151 | 142 | rrxmetfi 24481 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ
↑m 𝐼))) |
152 | 1, 151 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (Met‘(ℝ
↑m 𝐼))) |
153 | | metxmet 23395 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (Met‘(ℝ
↑m 𝐼))
→ 𝐷 ∈
(∞Met‘(ℝ ↑m 𝐼))) |
154 | 152, 153 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ (∞Met‘(ℝ
↑m 𝐼))) |
155 | 15 | rexrd 10956 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈
ℝ*) |
156 | | elbl 23449 |
. . . . . . . . 9
⊢ ((𝐷 ∈
(∞Met‘(ℝ ↑m 𝐼)) ∧ 𝑋 ∈ (ℝ ↑m 𝐼) ∧ 𝐸 ∈ ℝ*) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸))) |
157 | 154, 7, 155, 156 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸))) |
158 | 157 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸))) |
159 | 150, 158 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
160 | 68, 159 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℚ
↑m 𝐼) ∧
𝑦 ∈ (𝑋(ball‘𝐷)𝐸))) |
161 | 160 | ex 412 |
. . . 4
⊢ (𝜑 → ((𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑦 ∈ (ℚ
↑m 𝐼) ∧
𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))) |
162 | 161 | eximdv 1921 |
. . 3
⊢ (𝜑 → (∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑦‘𝑘) ∈ (ℚ ∩ ((𝑋‘𝑘)(,)((𝑋‘𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))) |
163 | 56, 162 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))) |
164 | | df-rex 3069 |
. 2
⊢
(∃𝑦 ∈
(ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))) |
165 | 163, 164 | sylibr 233 |
1
⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |