Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnbllem Structured version   Visualization version   GIF version

Theorem qndenserrnbllem 43348
 Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnbllem.i (𝜑𝐼 ∈ Fin)
qndenserrnbllem.n (𝜑𝐼 ≠ ∅)
qndenserrnbllem.x (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
qndenserrnbllem.d 𝐷 = (dist‘(ℝ^‘𝐼))
qndenserrnbllem.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
qndenserrnbllem (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐼   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝐷(𝑦)

Proof of Theorem qndenserrnbllem
Dummy variables 𝑖 𝑘 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qndenserrnbllem.i . . . 4 (𝜑𝐼 ∈ Fin)
2 inss1 4136 . . . . . 6 (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ
3 qex 12415 . . . . . 6 ℚ ∈ V
4 ssexg 5198 . . . . . 6 (((ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ ∧ ℚ ∈ V) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V)
52, 3, 4mp2an 691 . . . . 5 (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V
65a1i 11 . . . 4 ((𝜑𝑘𝐼) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∈ V)
7 qndenserrnbllem.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
8 elmapi 8445 . . . . . . . . . . . 12 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋:𝐼⟶ℝ)
97, 8syl 17 . . . . . . . . . . 11 (𝜑𝑋:𝐼⟶ℝ)
109adantr 484 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝑋:𝐼⟶ℝ)
11 simpr 488 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝑘𝐼)
1210, 11ffvelrnd 6850 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑋𝑘) ∈ ℝ)
1312rexrd 10743 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑋𝑘) ∈ ℝ*)
14 qndenserrnbllem.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
1514rpred 12486 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
1615adantr 484 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → 𝐸 ∈ ℝ)
17 ne0i 4236 . . . . . . . . . . . . . . 15 (𝑘𝐼𝐼 ≠ ∅)
1817adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → 𝐼 ≠ ∅)
19 hashnncl 13791 . . . . . . . . . . . . . . . 16 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
201, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
2120adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
2218, 21mpbird 260 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℕ)
2322nnred 11703 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℝ)
24 0red 10696 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → 0 ∈ ℝ)
2522nngt0d 11737 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → 0 < (♯‘𝐼))
2624, 23, 25ltled 10840 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 0 ≤ (♯‘𝐼))
2723, 26resqrtcld 14839 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ∈ ℝ)
2823, 25elrpd 12483 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (♯‘𝐼) ∈ ℝ+)
2928sqrtgt0d 14834 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 0 < (√‘(♯‘𝐼)))
3024, 29gtned 10827 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ≠ 0)
3116, 27, 30redivcld 11520 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
3212, 31readdcld 10722 . . . . . . . . 9 ((𝜑𝑘𝐼) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
3332rexrd 10743 . . . . . . . 8 ((𝜑𝑘𝐼) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
3414adantr 484 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝐸 ∈ ℝ+)
3527, 29elrpd 12483 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (√‘(♯‘𝐼)) ∈ ℝ+)
3634, 35rpdivcld 12503 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ+)
3712, 36ltaddrpd 12519 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑋𝑘) < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))
38 qbtwnxr 12648 . . . . . . . 8 (((𝑋𝑘) ∈ ℝ* ∧ ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑋𝑘) < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) → ∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
3913, 33, 37, 38syl3anc 1369 . . . . . . 7 ((𝜑𝑘𝐼) → ∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
40 df-rex 3077 . . . . . . 7 (∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) ↔ ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
4139, 40sylib 221 . . . . . 6 ((𝜑𝑘𝐼) → ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
42 simprl 770 . . . . . . . . 9 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ℚ)
4313adantr 484 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑋𝑘) ∈ ℝ*)
4433adantr 484 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
45 qre 12407 . . . . . . . . . . 11 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
4645ad2antrl 727 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ℝ)
47 simprrl 780 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑋𝑘) < 𝑞)
48 simprrr 781 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))
4943, 44, 46, 47, 48eliood 42547 . . . . . . . . 9 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))
5042, 49elind 4102 . . . . . . . 8 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
5150ex 416 . . . . . . 7 ((𝜑𝑘𝐼) → ((𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
5251eximdv 1919 . . . . . 6 ((𝜑𝑘𝐼) → (∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
5341, 52mpd 15 . . . . 5 ((𝜑𝑘𝐼) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
54 n0 4248 . . . . 5 ((ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))
5553, 54sylibr 237 . . . 4 ((𝜑𝑘𝐼) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ≠ ∅)
561, 6, 55choicefi 42245 . . 3 (𝜑 → ∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))))
572a1i 11 . . . . . . . . . . . 12 (𝑦 Fn 𝐼 → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ⊆ ℚ)
5857sseld 3894 . . . . . . . . . . 11 (𝑦 Fn 𝐼 → ((𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑘) ∈ ℚ))
5958ralimdv 3110 . . . . . . . . . 10 (𝑦 Fn 𝐼 → (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
6059imdistani 572 . . . . . . . . 9 ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
61 ffnfv 6880 . . . . . . . . 9 (𝑦:𝐼⟶ℚ ↔ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
6260, 61sylibr 237 . . . . . . . 8 ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → 𝑦:𝐼⟶ℚ)
6362adantl 485 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦:𝐼⟶ℚ)
643a1i 11 . . . . . . . . 9 (𝜑 → ℚ ∈ V)
65 elmapg 8436 . . . . . . . . 9 ((ℚ ∈ V ∧ 𝐼 ∈ Fin) → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6664, 1, 65syl2anc 587 . . . . . . . 8 (𝜑 → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6766adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6863, 67mpbird 260 . . . . . 6 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (ℚ ↑m 𝐼))
69 reex 10680 . . . . . . . . . . 11 ℝ ∈ V
7045ssriv 3899 . . . . . . . . . . 11 ℚ ⊆ ℝ
71 mapss 8485 . . . . . . . . . . 11 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼))
7269, 70, 71mp2an 691 . . . . . . . . . 10 (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼)
7372a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (ℚ ↑m 𝐼) ⊆ (ℝ ↑m 𝐼))
7473, 68sseldd 3896 . . . . . . . 8 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (ℝ ↑m 𝐼))
751adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐼 ∈ Fin)
76 qndenserrnbllem.n . . . . . . . . . . 11 (𝜑𝐼 ≠ ∅)
7776adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐼 ≠ ∅)
78 eqid 2759 . . . . . . . . . 10 (♯‘𝐼) = (♯‘𝐼)
797adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑋 ∈ (ℝ ↑m 𝐼))
80 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → 𝜑)
81 fveq2 6664 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝑦𝑘) = (𝑦𝑖))
82 fveq2 6664 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
8382oveq1d 7172 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))) = ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
8482, 83oveq12d 7175 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))) = ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
8584ineq2d 4120 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) = (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8681, 85eleq12d 2847 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → ((𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ↔ (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))))
8786cbvralvw 3362 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ↔ ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8887biimpi 219 . . . . . . . . . . . . . . . 16 (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) → ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
8988adantr 484 . . . . . . . . . . . . . . 15 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
90 simpr 488 . . . . . . . . . . . . . . 15 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → 𝑖𝐼)
91 rspa 3136 . . . . . . . . . . . . . . 15 ((∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
9289, 90, 91syl2anc 587 . . . . . . . . . . . . . 14 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
9392adantll 713 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))))
94 elinel2 4104 . . . . . . . . . . . . 13 ((𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
9593, 94syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
96 simpr 488 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → 𝑖𝐼)
979ffvelrnda 6849 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
98973adant2 1129 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
99 simp2 1135 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))))
10099elioored 42598 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ℝ)
10198rexrd 10743 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℝ*)
10215adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ)
10376, 20mpbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (♯‘𝐼) ∈ ℕ)
104103nnred 11703 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘𝐼) ∈ ℝ)
105104adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐼) → (♯‘𝐼) ∈ ℝ)
106 0red 10696 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ ℝ)
107103nngt0d 11737 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 < (♯‘𝐼))
108106, 104, 107ltled 10840 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 ≤ (♯‘𝐼))
109108adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐼) → 0 ≤ (♯‘𝐼))
110105, 109resqrtcld 14839 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → (√‘(♯‘𝐼)) ∈ ℝ)
111 sqrtgt0 14680 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐼) ∈ ℝ ∧ 0 < (♯‘𝐼)) → 0 < (√‘(♯‘𝐼)))
112104, 107, 111syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 < (√‘(♯‘𝐼)))
113106, 112gtned 10827 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (√‘(♯‘𝐼)) ≠ 0)
114113adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → (√‘(♯‘𝐼)) ≠ 0)
115102, 110, 114redivcld 11520 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
11697, 115readdcld 10722 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
117116rexrd 10743 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
1181173adant2 1129 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ*)
119 ioogtlb 42544 . . . . . . . . . . . . . . . 16 (((𝑋𝑖) ∈ ℝ* ∧ ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑋𝑖) < (𝑦𝑖))
120101, 118, 99, 119syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) < (𝑦𝑖))
12198, 100, 120ltled 10840 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ≤ (𝑦𝑖))
12298, 100, 121abssuble0d 14854 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) = ((𝑦𝑖) − (𝑋𝑖)))
1231163adant2 1129 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ)
124 iooltub 42559 . . . . . . . . . . . . . . . 16 (((𝑋𝑖) ∈ ℝ* ∧ ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) ∈ ℝ* ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))) → (𝑦𝑖) < ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
125101, 118, 99, 124syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) < ((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))))
126100, 123, 98, 125ltsub1dd 11304 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑦𝑖) − (𝑋𝑖)) < (((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) − (𝑋𝑖)))
12798recnd 10721 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℂ)
128104, 108resqrtcld 14839 . . . . . . . . . . . . . . . . . 18 (𝜑 → (√‘(♯‘𝐼)) ∈ ℝ)
12915, 128, 113redivcld 11520 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ)
130129recnd 10721 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 / (√‘(♯‘𝐼))) ∈ ℂ)
1311303ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℂ)
132127, 131pncan2d 11051 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼)))) − (𝑋𝑖)) = (𝐸 / (√‘(♯‘𝐼))))
133126, 132breqtrd 5063 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → ((𝑦𝑖) − (𝑋𝑖)) < (𝐸 / (√‘(♯‘𝐼))))
134122, 133eqbrtrd 5059 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(♯‘𝐼))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
13580, 95, 96, 134syl3anc 1369 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
136135adantlrl 719 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(♯‘𝐼))))
13714adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐸 ∈ ℝ+)
138104, 107elrpd 12483 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐼) ∈ ℝ+)
139138adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (♯‘𝐼) ∈ ℝ+)
140139rpsqrtcld 14833 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ∈ ℝ+)
141137, 140rpdivcld 12503 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝐸 / (√‘(♯‘𝐼))) ∈ ℝ+)
142 qndenserrnbllem.d . . . . . . . . . 10 𝐷 = (dist‘(ℝ^‘𝐼))
14375, 77, 78, 79, 74, 136, 141, 142rrndistlt 43344 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑋𝐷𝑦) < ((√‘(♯‘𝐼)) · (𝐸 / (√‘(♯‘𝐼)))))
144137rpcnd 12488 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝐸 ∈ ℂ)
145139rpcnd 12488 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (♯‘𝐼) ∈ ℂ)
146145sqrtcld 14859 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ∈ ℂ)
147140rpne0d 12491 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (√‘(♯‘𝐼)) ≠ 0)
148144, 146, 147divcan2d 11470 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → ((√‘(♯‘𝐼)) · (𝐸 / (√‘(♯‘𝐼)))) = 𝐸)
149143, 148breqtrd 5063 . . . . . . . 8 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑋𝐷𝑦) < 𝐸)
15074, 149jca 515 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸))
151142rrxmetfi 24127 . . . . . . . . . . 11 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
1521, 151syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
153 metxmet 23051 . . . . . . . . . 10 (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
154152, 153syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
15515rexrd 10743 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ*)
156 elbl 23105 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ 𝑋 ∈ (ℝ ↑m 𝐼) ∧ 𝐸 ∈ ℝ*) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
157154, 7, 155, 156syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
158157adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑m 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
159150, 158mpbird 260 . . . . . 6 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
16068, 159jca 515 . . . . 5 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼)))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
161160ex 416 . . . 4 (𝜑 → ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → (𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))))
162161eximdv 1919 . . 3 (𝜑 → (∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(♯‘𝐼))))))) → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))))
16356, 162mpd 15 . 2 (𝜑 → ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
164 df-rex 3077 . 2 (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∃𝑦(𝑦 ∈ (ℚ ↑m 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
165163, 164sylibr 237 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1085   = wceq 1539  ∃wex 1782   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  ∃wrex 3072  Vcvv 3410   ∩ cin 3860   ⊆ wss 3861  ∅c0 4228   class class class wbr 5037   Fn wfn 6336  ⟶wf 6337  ‘cfv 6341  (class class class)co 7157   ↑m cmap 8423  Fincfn 8541  ℂcc 10587  ℝcr 10588  0cc0 10589   + caddc 10592   · cmul 10594  ℝ*cxr 10726   < clt 10727   ≤ cle 10728   − cmin 10922   / cdiv 11349  ℕcn 11688  ℚcq 12402  ℝ+crp 12444  (,)cioo 12793  ♯chash 13754  √csqrt 14654  abscabs 14655  distcds 16647  ∞Metcxmet 20166  Metcmet 20167  ballcbl 20168  ℝ^crrx 24098 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667  ax-addf 10668  ax-mulf 10669 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-of 7412  df-om 7587  df-1st 7700  df-2nd 7701  df-supp 7843  df-tpos 7909  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-er 8306  df-map 8425  df-ixp 8494  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-fsupp 8881  df-sup 8953  df-inf 8954  df-oi 9021  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-4 11753  df-5 11754  df-6 11755  df-7 11756  df-8 11757  df-9 11758  df-n0 11949  df-z 12035  df-dec 12152  df-uz 12297  df-q 12403  df-rp 12445  df-xadd 12563  df-ioo 12797  df-ico 12799  df-fz 12954  df-fzo 13097  df-seq 13433  df-exp 13494  df-hash 13755  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-clim 14907  df-sum 15105  df-struct 16558  df-ndx 16559  df-slot 16560  df-base 16562  df-sets 16563  df-ress 16564  df-plusg 16651  df-mulr 16652  df-starv 16653  df-sca 16654  df-vsca 16655  df-ip 16656  df-tset 16657  df-ple 16658  df-ds 16660  df-unif 16661  df-hom 16662  df-cco 16663  df-0g 16788  df-gsum 16789  df-prds 16794  df-pws 16796  df-mgm 17933  df-sgrp 17982  df-mnd 17993  df-mhm 18037  df-grp 18187  df-minusg 18188  df-sbg 18189  df-subg 18358  df-ghm 18438  df-cntz 18529  df-cmn 18990  df-abl 18991  df-mgp 19323  df-ur 19335  df-ring 19382  df-cring 19383  df-oppr 19459  df-dvdsr 19477  df-unit 19478  df-invr 19508  df-dvr 19519  df-rnghom 19553  df-drng 19587  df-field 19588  df-subrg 19616  df-staf 19699  df-srng 19700  df-lmod 19719  df-lss 19787  df-sra 20027  df-rgmod 20028  df-psmet 20173  df-xmet 20174  df-met 20175  df-bl 20176  df-cnfld 20182  df-refld 20385  df-dsmm 20512  df-frlm 20527  df-nm 23299  df-tng 23301  df-tcph 23885  df-rrx 24100 This theorem is referenced by:  qndenserrnbl  43349
 Copyright terms: Public domain W3C validator