Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisocnv Structured version   Visualization version   GIF version

Theorem rngoisocnv 36837
Description: The inverse of a ring isomorphism is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisocnv ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) β†’ ◑𝐹 ∈ (𝑆 RngIso 𝑅))

Proof of Theorem rngoisocnv
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 6842 . . . . . . . 8 (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) β†’ ◑𝐹:ran (1st β€˜π‘†)–1-1-ontoβ†’ran (1st β€˜π‘…))
2 f1of 6830 . . . . . . . 8 (◑𝐹:ran (1st β€˜π‘†)–1-1-ontoβ†’ran (1st β€˜π‘…) β†’ ◑𝐹:ran (1st β€˜π‘†)⟢ran (1st β€˜π‘…))
31, 2syl 17 . . . . . . 7 (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) β†’ ◑𝐹:ran (1st β€˜π‘†)⟢ran (1st β€˜π‘…))
43ad2antll 727 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ ◑𝐹:ran (1st β€˜π‘†)⟢ran (1st β€˜π‘…))
5 eqid 2732 . . . . . . . . . 10 (2nd β€˜π‘…) = (2nd β€˜π‘…)
6 eqid 2732 . . . . . . . . . 10 (GIdβ€˜(2nd β€˜π‘…)) = (GIdβ€˜(2nd β€˜π‘…))
7 eqid 2732 . . . . . . . . . 10 (2nd β€˜π‘†) = (2nd β€˜π‘†)
8 eqid 2732 . . . . . . . . . 10 (GIdβ€˜(2nd β€˜π‘†)) = (GIdβ€˜(2nd β€˜π‘†))
95, 6, 7, 8rngohom1 36824 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (πΉβ€˜(GIdβ€˜(2nd β€˜π‘…))) = (GIdβ€˜(2nd β€˜π‘†)))
1093expa 1118 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (πΉβ€˜(GIdβ€˜(2nd β€˜π‘…))) = (GIdβ€˜(2nd β€˜π‘†)))
1110adantrr 715 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ (πΉβ€˜(GIdβ€˜(2nd β€˜π‘…))) = (GIdβ€˜(2nd β€˜π‘†)))
12 eqid 2732 . . . . . . . . . . 11 ran (1st β€˜π‘…) = ran (1st β€˜π‘…)
1312, 5, 6rngo1cl 36795 . . . . . . . . . 10 (𝑅 ∈ RingOps β†’ (GIdβ€˜(2nd β€˜π‘…)) ∈ ran (1st β€˜π‘…))
14 f1ocnvfv 7272 . . . . . . . . . 10 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (GIdβ€˜(2nd β€˜π‘…)) ∈ ran (1st β€˜π‘…)) β†’ ((πΉβ€˜(GIdβ€˜(2nd β€˜π‘…))) = (GIdβ€˜(2nd β€˜π‘†)) β†’ (β—‘πΉβ€˜(GIdβ€˜(2nd β€˜π‘†))) = (GIdβ€˜(2nd β€˜π‘…))))
1513, 14sylan2 593 . . . . . . . . 9 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ 𝑅 ∈ RingOps) β†’ ((πΉβ€˜(GIdβ€˜(2nd β€˜π‘…))) = (GIdβ€˜(2nd β€˜π‘†)) β†’ (β—‘πΉβ€˜(GIdβ€˜(2nd β€˜π‘†))) = (GIdβ€˜(2nd β€˜π‘…))))
1615ancoms 459 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) β†’ ((πΉβ€˜(GIdβ€˜(2nd β€˜π‘…))) = (GIdβ€˜(2nd β€˜π‘†)) β†’ (β—‘πΉβ€˜(GIdβ€˜(2nd β€˜π‘†))) = (GIdβ€˜(2nd β€˜π‘…))))
1716ad2ant2rl 747 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(GIdβ€˜(2nd β€˜π‘…))) = (GIdβ€˜(2nd β€˜π‘†)) β†’ (β—‘πΉβ€˜(GIdβ€˜(2nd β€˜π‘†))) = (GIdβ€˜(2nd β€˜π‘…))))
1811, 17mpd 15 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ (β—‘πΉβ€˜(GIdβ€˜(2nd β€˜π‘†))) = (GIdβ€˜(2nd β€˜π‘…)))
19 f1ocnvfv2 7271 . . . . . . . . . . . . . 14 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ π‘₯ ∈ ran (1st β€˜π‘†)) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘₯)) = π‘₯)
20 f1ocnvfv2 7271 . . . . . . . . . . . . . 14 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)) β†’ (πΉβ€˜(β—‘πΉβ€˜π‘¦)) = 𝑦)
2119, 20anim12dan 619 . . . . . . . . . . . . 13 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘₯)) = π‘₯ ∧ (πΉβ€˜(β—‘πΉβ€˜π‘¦)) = 𝑦))
22 oveq12 7414 . . . . . . . . . . . . 13 (((πΉβ€˜(β—‘πΉβ€˜π‘₯)) = π‘₯ ∧ (πΉβ€˜(β—‘πΉβ€˜π‘¦)) = 𝑦) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(1st β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))) = (π‘₯(1st β€˜π‘†)𝑦))
2321, 22syl 17 . . . . . . . . . . . 12 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(1st β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))) = (π‘₯(1st β€˜π‘†)𝑦))
2423adantll 712 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(1st β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))) = (π‘₯(1st β€˜π‘†)𝑦))
2524adantll 712 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(1st β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))) = (π‘₯(1st β€˜π‘†)𝑦))
26 f1ocnvdm 7279 . . . . . . . . . . . . . . . 16 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ π‘₯ ∈ ran (1st β€˜π‘†)) β†’ (β—‘πΉβ€˜π‘₯) ∈ ran (1st β€˜π‘…))
27 f1ocnvdm 7279 . . . . . . . . . . . . . . . 16 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)) β†’ (β—‘πΉβ€˜π‘¦) ∈ ran (1st β€˜π‘…))
2826, 27anim12dan 619 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((β—‘πΉβ€˜π‘₯) ∈ ran (1st β€˜π‘…) ∧ (β—‘πΉβ€˜π‘¦) ∈ ran (1st β€˜π‘…)))
29 eqid 2732 . . . . . . . . . . . . . . . 16 (1st β€˜π‘…) = (1st β€˜π‘…)
30 eqid 2732 . . . . . . . . . . . . . . . 16 (1st β€˜π‘†) = (1st β€˜π‘†)
3129, 12, 30rngohomadd 36825 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ ((β—‘πΉβ€˜π‘₯) ∈ ran (1st β€˜π‘…) ∧ (β—‘πΉβ€˜π‘¦) ∈ ran (1st β€˜π‘…))) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(1st β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))))
3228, 31sylan2 593 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)))) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(1st β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))))
3332exp32 421 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) β†’ ((π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(1st β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))))))
34333expa 1118 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) β†’ ((π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(1st β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))))))
3534impr 455 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ ((π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(1st β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦)))))
3635imp 407 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(1st β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))))
37 eqid 2732 . . . . . . . . . . . . . . . 16 ran (1st β€˜π‘†) = ran (1st β€˜π‘†)
3830, 37rngogcl 36768 . . . . . . . . . . . . . . 15 ((𝑆 ∈ RingOps ∧ π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)) β†’ (π‘₯(1st β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†))
39383expb 1120 . . . . . . . . . . . . . 14 ((𝑆 ∈ RingOps ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (π‘₯(1st β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†))
40 f1ocnvfv2 7271 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯(1st β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†)) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦))) = (π‘₯(1st β€˜π‘†)𝑦))
4140ancoms 459 . . . . . . . . . . . . . 14 (((π‘₯(1st β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦))) = (π‘₯(1st β€˜π‘†)𝑦))
4239, 41sylan 580 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦))) = (π‘₯(1st β€˜π‘†)𝑦))
4342an32s 650 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦))) = (π‘₯(1st β€˜π‘†)𝑦))
4443adantlll 716 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦))) = (π‘₯(1st β€˜π‘†)𝑦))
4544adantlrl 718 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦))) = (π‘₯(1st β€˜π‘†)𝑦))
4625, 36, 453eqtr4rd 2783 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦))) = (πΉβ€˜((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))))
47 f1of1 6829 . . . . . . . . . . . 12 (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) β†’ 𝐹:ran (1st β€˜π‘…)–1-1β†’ran (1st β€˜π‘†))
4847ad2antlr 725 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ 𝐹:ran (1st β€˜π‘…)–1-1β†’ran (1st β€˜π‘†))
49 f1ocnvdm 7279 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯(1st β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†)) β†’ (β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…))
5049ancoms 459 . . . . . . . . . . . . . 14 (((π‘₯(1st β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) β†’ (β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…))
5139, 50sylan 580 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) β†’ (β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…))
5251an32s 650 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…))
5352adantlll 716 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…))
5429, 12rngogcl 36768 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ (β—‘πΉβ€˜π‘₯) ∈ ran (1st β€˜π‘…) ∧ (β—‘πΉβ€˜π‘¦) ∈ ran (1st β€˜π‘…)) β†’ ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))
55543expb 1120 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ ((β—‘πΉβ€˜π‘₯) ∈ ran (1st β€˜π‘…) ∧ (β—‘πΉβ€˜π‘¦) ∈ ran (1st β€˜π‘…))) β†’ ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))
5628, 55sylan2 593 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)))) β†’ ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))
5756anassrs 468 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))
5857adantllr 717 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))
59 f1fveq 7257 . . . . . . . . . . 11 ((𝐹:ran (1st β€˜π‘…)–1-1β†’ran (1st β€˜π‘†) ∧ ((β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…) ∧ ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))) β†’ ((πΉβ€˜(β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦))) = (πΉβ€˜((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))) ↔ (β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))))
6048, 53, 58, 59syl12anc 835 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦))) = (πΉβ€˜((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))) ↔ (β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))))
6160adantlrl 718 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦))) = (πΉβ€˜((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))) ↔ (β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦))))
6246, 61mpbid 231 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)))
63 oveq12 7414 . . . . . . . . . . . . 13 (((πΉβ€˜(β—‘πΉβ€˜π‘₯)) = π‘₯ ∧ (πΉβ€˜(β—‘πΉβ€˜π‘¦)) = 𝑦) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(2nd β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))) = (π‘₯(2nd β€˜π‘†)𝑦))
6421, 63syl 17 . . . . . . . . . . . 12 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(2nd β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))) = (π‘₯(2nd β€˜π‘†)𝑦))
6564adantll 712 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(2nd β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))) = (π‘₯(2nd β€˜π‘†)𝑦))
6665adantll 712 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(2nd β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))) = (π‘₯(2nd β€˜π‘†)𝑦))
6729, 12, 5, 7rngohommul 36826 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ ((β—‘πΉβ€˜π‘₯) ∈ ran (1st β€˜π‘…) ∧ (β—‘πΉβ€˜π‘¦) ∈ ran (1st β€˜π‘…))) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(2nd β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))))
6828, 67sylan2 593 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)))) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(2nd β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))))
6968exp32 421 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) β†’ ((π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(2nd β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))))))
70693expa 1118 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) β†’ ((π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(2nd β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))))))
7170impr 455 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ ((π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(2nd β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦)))))
7271imp 407 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (πΉβ€˜((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))) = ((πΉβ€˜(β—‘πΉβ€˜π‘₯))(2nd β€˜π‘†)(πΉβ€˜(β—‘πΉβ€˜π‘¦))))
7330, 7, 37rngocl 36757 . . . . . . . . . . . . . . 15 ((𝑆 ∈ RingOps ∧ π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)) β†’ (π‘₯(2nd β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†))
74733expb 1120 . . . . . . . . . . . . . 14 ((𝑆 ∈ RingOps ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (π‘₯(2nd β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†))
75 f1ocnvfv2 7271 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯(2nd β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†)) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦))) = (π‘₯(2nd β€˜π‘†)𝑦))
7675ancoms 459 . . . . . . . . . . . . . 14 (((π‘₯(2nd β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦))) = (π‘₯(2nd β€˜π‘†)𝑦))
7774, 76sylan 580 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦))) = (π‘₯(2nd β€˜π‘†)𝑦))
7877an32s 650 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦))) = (π‘₯(2nd β€˜π‘†)𝑦))
7978adantlll 716 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦))) = (π‘₯(2nd β€˜π‘†)𝑦))
8079adantlrl 718 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦))) = (π‘₯(2nd β€˜π‘†)𝑦))
8166, 72, 803eqtr4rd 2783 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (πΉβ€˜(β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦))) = (πΉβ€˜((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))))
82 f1ocnvdm 7279 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯(2nd β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†)) β†’ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…))
8382ancoms 459 . . . . . . . . . . . . . 14 (((π‘₯(2nd β€˜π‘†)𝑦) ∈ ran (1st β€˜π‘†) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) β†’ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…))
8474, 83sylan 580 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) β†’ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…))
8584an32s 650 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…))
8685adantlll 716 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…))
8729, 5, 12rngocl 36757 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ (β—‘πΉβ€˜π‘₯) ∈ ran (1st β€˜π‘…) ∧ (β—‘πΉβ€˜π‘¦) ∈ ran (1st β€˜π‘…)) β†’ ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))
88873expb 1120 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ ((β—‘πΉβ€˜π‘₯) ∈ ran (1st β€˜π‘…) ∧ (β—‘πΉβ€˜π‘¦) ∈ ran (1st β€˜π‘…))) β†’ ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))
8928, 88sylan2 593 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†)))) β†’ ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))
9089anassrs 468 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))
9190adantllr 717 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))
92 f1fveq 7257 . . . . . . . . . . 11 ((𝐹:ran (1st β€˜π‘…)–1-1β†’ran (1st β€˜π‘†) ∧ ((β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) ∈ ran (1st β€˜π‘…) ∧ ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∈ ran (1st β€˜π‘…))) β†’ ((πΉβ€˜(β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦))) = (πΉβ€˜((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))) ↔ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))))
9348, 86, 91, 92syl12anc 835 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦))) = (πΉβ€˜((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))) ↔ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))))
9493adantlrl 718 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((πΉβ€˜(β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦))) = (πΉβ€˜((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))) ↔ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))))
9581, 94mpbid 231 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦)))
9662, 95jca 512 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) ∧ (π‘₯ ∈ ran (1st β€˜π‘†) ∧ 𝑦 ∈ ran (1st β€˜π‘†))) β†’ ((β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∧ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))))
9796ralrimivva 3200 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ βˆ€π‘₯ ∈ ran (1st β€˜π‘†)βˆ€π‘¦ ∈ ran (1st β€˜π‘†)((β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∧ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))))
9830, 7, 37, 8, 29, 5, 12, 6isrngohom 36821 . . . . . . . 8 ((𝑆 ∈ RingOps ∧ 𝑅 ∈ RingOps) β†’ (◑𝐹 ∈ (𝑆 RngHom 𝑅) ↔ (◑𝐹:ran (1st β€˜π‘†)⟢ran (1st β€˜π‘…) ∧ (β—‘πΉβ€˜(GIdβ€˜(2nd β€˜π‘†))) = (GIdβ€˜(2nd β€˜π‘…)) ∧ βˆ€π‘₯ ∈ ran (1st β€˜π‘†)βˆ€π‘¦ ∈ ran (1st β€˜π‘†)((β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∧ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))))))
9998ancoms 459 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (◑𝐹 ∈ (𝑆 RngHom 𝑅) ↔ (◑𝐹:ran (1st β€˜π‘†)⟢ran (1st β€˜π‘…) ∧ (β—‘πΉβ€˜(GIdβ€˜(2nd β€˜π‘†))) = (GIdβ€˜(2nd β€˜π‘…)) ∧ βˆ€π‘₯ ∈ ran (1st β€˜π‘†)βˆ€π‘¦ ∈ ran (1st β€˜π‘†)((β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∧ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))))))
10099adantr 481 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ (◑𝐹 ∈ (𝑆 RngHom 𝑅) ↔ (◑𝐹:ran (1st β€˜π‘†)⟢ran (1st β€˜π‘…) ∧ (β—‘πΉβ€˜(GIdβ€˜(2nd β€˜π‘†))) = (GIdβ€˜(2nd β€˜π‘…)) ∧ βˆ€π‘₯ ∈ ran (1st β€˜π‘†)βˆ€π‘¦ ∈ ran (1st β€˜π‘†)((β—‘πΉβ€˜(π‘₯(1st β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(1st β€˜π‘…)(β—‘πΉβ€˜π‘¦)) ∧ (β—‘πΉβ€˜(π‘₯(2nd β€˜π‘†)𝑦)) = ((β—‘πΉβ€˜π‘₯)(2nd β€˜π‘…)(β—‘πΉβ€˜π‘¦))))))
1014, 18, 97, 100mpbir3and 1342 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ ◑𝐹 ∈ (𝑆 RngHom 𝑅))
1021ad2antll 727 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ ◑𝐹:ran (1st β€˜π‘†)–1-1-ontoβ†’ran (1st β€˜π‘…))
103101, 102jca 512 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))) β†’ (◑𝐹 ∈ (𝑆 RngHom 𝑅) ∧ ◑𝐹:ran (1st β€˜π‘†)–1-1-ontoβ†’ran (1st β€˜π‘…)))
104103ex 413 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†)) β†’ (◑𝐹 ∈ (𝑆 RngHom 𝑅) ∧ ◑𝐹:ran (1st β€˜π‘†)–1-1-ontoβ†’ran (1st β€˜π‘…))))
10529, 12, 30, 37isrngoiso 36834 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))))
10630, 37, 29, 12isrngoiso 36834 . . . 4 ((𝑆 ∈ RingOps ∧ 𝑅 ∈ RingOps) β†’ (◑𝐹 ∈ (𝑆 RngIso 𝑅) ↔ (◑𝐹 ∈ (𝑆 RngHom 𝑅) ∧ ◑𝐹:ran (1st β€˜π‘†)–1-1-ontoβ†’ran (1st β€˜π‘…))))
107106ancoms 459 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (◑𝐹 ∈ (𝑆 RngIso 𝑅) ↔ (◑𝐹 ∈ (𝑆 RngHom 𝑅) ∧ ◑𝐹:ran (1st β€˜π‘†)–1-1-ontoβ†’ran (1st β€˜π‘…))))
108104, 105, 1073imtr4d 293 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (𝐹 ∈ (𝑅 RngIso 𝑆) β†’ ◑𝐹 ∈ (𝑆 RngIso 𝑅)))
1091083impia 1117 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) β†’ ◑𝐹 ∈ (𝑆 RngIso 𝑅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  β—‘ccnv 5674  ran crn 5676  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  GIdcgi 29730  RingOpscrngo 36750   RngHom crnghom 36816   RngIso crngiso 36817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818  df-grpo 29733  df-gid 29734  df-ablo 29785  df-ass 36699  df-exid 36701  df-mgmOLD 36705  df-sgrOLD 36717  df-mndo 36723  df-rngo 36751  df-rngohom 36819  df-rngoiso 36832
This theorem is referenced by:  riscer  36844
  Copyright terms: Public domain W3C validator