Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisocnv Structured version   Visualization version   GIF version

Theorem rngoisocnv 38010
Description: The inverse of a ring isomorphism is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisocnv ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑆 RingOpsIso 𝑅))

Proof of Theorem rngoisocnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 6835 . . . . . . . 8 (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅))
2 f1of 6823 . . . . . . . 8 (𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅) → 𝐹:ran (1st𝑆)⟶ran (1st𝑅))
31, 2syl 17 . . . . . . 7 (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → 𝐹:ran (1st𝑆)⟶ran (1st𝑅))
43ad2antll 729 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → 𝐹:ran (1st𝑆)⟶ran (1st𝑅))
5 eqid 2736 . . . . . . . . . 10 (2nd𝑅) = (2nd𝑅)
6 eqid 2736 . . . . . . . . . 10 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
7 eqid 2736 . . . . . . . . . 10 (2nd𝑆) = (2nd𝑆)
8 eqid 2736 . . . . . . . . . 10 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
95, 6, 7, 8rngohom1 37997 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
1093expa 1118 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
1110adantrr 717 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
12 eqid 2736 . . . . . . . . . . 11 ran (1st𝑅) = ran (1st𝑅)
1312, 5, 6rngo1cl 37968 . . . . . . . . . 10 (𝑅 ∈ RingOps → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
14 f1ocnvfv 7276 . . . . . . . . . 10 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (GId‘(2nd𝑅)) ∈ ran (1st𝑅)) → ((𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) → (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅))))
1513, 14sylan2 593 . . . . . . . . 9 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ 𝑅 ∈ RingOps) → ((𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) → (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅))))
1615ancoms 458 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → ((𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) → (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅))))
1716ad2ant2rl 749 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → ((𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) → (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅))))
1811, 17mpd 15 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅)))
19 f1ocnvfv2 7275 . . . . . . . . . . . . . 14 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ 𝑥 ∈ ran (1st𝑆)) → (𝐹‘(𝐹𝑥)) = 𝑥)
20 f1ocnvfv2 7275 . . . . . . . . . . . . . 14 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2119, 20anim12dan 619 . . . . . . . . . . . . 13 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥)) = 𝑥 ∧ (𝐹‘(𝐹𝑦)) = 𝑦))
22 oveq12 7419 . . . . . . . . . . . . 13 (((𝐹‘(𝐹𝑥)) = 𝑥 ∧ (𝐹‘(𝐹𝑦)) = 𝑦) → ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(1st𝑆)𝑦))
2321, 22syl 17 . . . . . . . . . . . 12 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(1st𝑆)𝑦))
2423adantll 714 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(1st𝑆)𝑦))
2524adantll 714 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(1st𝑆)𝑦))
26 f1ocnvdm 7283 . . . . . . . . . . . . . . . 16 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ 𝑥 ∈ ran (1st𝑆)) → (𝐹𝑥) ∈ ran (1st𝑅))
27 f1ocnvdm 7283 . . . . . . . . . . . . . . . 16 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹𝑦) ∈ ran (1st𝑅))
2826, 27anim12dan 619 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅)))
29 eqid 2736 . . . . . . . . . . . . . . . 16 (1st𝑅) = (1st𝑅)
30 eqid 2736 . . . . . . . . . . . . . . . 16 (1st𝑆) = (1st𝑆)
3129, 12, 30rngohomadd 37998 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ ((𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅))) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))))
3228, 31sylan2 593 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)))) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))))
3332exp32 420 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))))))
34333expa 1118 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))))))
3534impr 454 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦)))))
3635imp 406 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))))
37 eqid 2736 . . . . . . . . . . . . . . . 16 ran (1st𝑆) = ran (1st𝑆)
3830, 37rngogcl 37941 . . . . . . . . . . . . . . 15 ((𝑆 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆))
39383expb 1120 . . . . . . . . . . . . . 14 ((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆))
40 f1ocnvfv2 7275 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4140ancoms 458 . . . . . . . . . . . . . 14 (((𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4239, 41sylan 580 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4342an32s 652 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4443adantlll 718 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4544adantlrl 720 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4625, 36, 453eqtr4rd 2782 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))))
47 f1of1 6822 . . . . . . . . . . . 12 (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → 𝐹:ran (1st𝑅)–1-1→ran (1st𝑆))
4847ad2antlr 727 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → 𝐹:ran (1st𝑅)–1-1→ran (1st𝑆))
49 f1ocnvdm 7283 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆)) → (𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅))
5049ancoms 458 . . . . . . . . . . . . . 14 (((𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅))
5139, 50sylan 580 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅))
5251an32s 652 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅))
5352adantlll 718 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅))
5429, 12rngogcl 37941 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ (𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅)) → ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
55543expb 1120 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ ((𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅))) → ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
5628, 55sylan2 593 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)))) → ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
5756anassrs 467 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
5857adantllr 719 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
59 f1fveq 7260 . . . . . . . . . . 11 ((𝐹:ran (1st𝑅)–1-1→ran (1st𝑆) ∧ ((𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅) ∧ ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))) → ((𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦))))
6048, 53, 58, 59syl12anc 836 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦))))
6160adantlrl 720 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦))))
6246, 61mpbid 232 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)))
63 oveq12 7419 . . . . . . . . . . . . 13 (((𝐹‘(𝐹𝑥)) = 𝑥 ∧ (𝐹‘(𝐹𝑦)) = 𝑦) → ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(2nd𝑆)𝑦))
6421, 63syl 17 . . . . . . . . . . . 12 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(2nd𝑆)𝑦))
6564adantll 714 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(2nd𝑆)𝑦))
6665adantll 714 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(2nd𝑆)𝑦))
6729, 12, 5, 7rngohommul 37999 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ ((𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅))) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))))
6828, 67sylan2 593 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)))) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))))
6968exp32 420 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))))))
70693expa 1118 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))))))
7170impr 454 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦)))))
7271imp 406 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))))
7330, 7, 37rngocl 37930 . . . . . . . . . . . . . . 15 ((𝑆 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆))
74733expb 1120 . . . . . . . . . . . . . 14 ((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆))
75 f1ocnvfv2 7275 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
7675ancoms 458 . . . . . . . . . . . . . 14 (((𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
7774, 76sylan 580 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
7877an32s 652 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
7978adantlll 718 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
8079adantlrl 720 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
8166, 72, 803eqtr4rd 2782 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
82 f1ocnvdm 7283 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆)) → (𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅))
8382ancoms 458 . . . . . . . . . . . . . 14 (((𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅))
8474, 83sylan 580 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅))
8584an32s 652 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅))
8685adantlll 718 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅))
8729, 5, 12rngocl 37930 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ (𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅)) → ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
88873expb 1120 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ ((𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅))) → ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
8928, 88sylan2 593 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)))) → ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
9089anassrs 467 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
9190adantllr 719 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
92 f1fveq 7260 . . . . . . . . . . 11 ((𝐹:ran (1st𝑅)–1-1→ran (1st𝑆) ∧ ((𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅) ∧ ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))) → ((𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
9348, 86, 91, 92syl12anc 836 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
9493adantlrl 720 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
9581, 94mpbid 232 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)))
9662, 95jca 511 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
9796ralrimivva 3188 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → ∀𝑥 ∈ ran (1st𝑆)∀𝑦 ∈ ran (1st𝑆)((𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
9830, 7, 37, 8, 29, 5, 12, 6isrngohom 37994 . . . . . . . 8 ((𝑆 ∈ RingOps ∧ 𝑅 ∈ RingOps) → (𝐹 ∈ (𝑆 RingOpsHom 𝑅) ↔ (𝐹:ran (1st𝑆)⟶ran (1st𝑅) ∧ (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅)) ∧ ∀𝑥 ∈ ran (1st𝑆)∀𝑦 ∈ ran (1st𝑆)((𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))))
9998ancoms 458 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑆 RingOpsHom 𝑅) ↔ (𝐹:ran (1st𝑆)⟶ran (1st𝑅) ∧ (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅)) ∧ ∀𝑥 ∈ ran (1st𝑆)∀𝑦 ∈ ran (1st𝑆)((𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))))
10099adantr 480 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → (𝐹 ∈ (𝑆 RingOpsHom 𝑅) ↔ (𝐹:ran (1st𝑆)⟶ran (1st𝑅) ∧ (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅)) ∧ ∀𝑥 ∈ ran (1st𝑆)∀𝑦 ∈ ran (1st𝑆)((𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))))
1014, 18, 97, 100mpbir3and 1343 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → 𝐹 ∈ (𝑆 RingOpsHom 𝑅))
1021ad2antll 729 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅))
103101, 102jca 511 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → (𝐹 ∈ (𝑆 RingOpsHom 𝑅) ∧ 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅)))
104103ex 412 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → ((𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹 ∈ (𝑆 RingOpsHom 𝑅) ∧ 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅))))
10529, 12, 30, 37isrngoiso 38007 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))))
10630, 37, 29, 12isrngoiso 38007 . . . 4 ((𝑆 ∈ RingOps ∧ 𝑅 ∈ RingOps) → (𝐹 ∈ (𝑆 RingOpsIso 𝑅) ↔ (𝐹 ∈ (𝑆 RingOpsHom 𝑅) ∧ 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅))))
107106ancoms 458 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑆 RingOpsIso 𝑅) ↔ (𝐹 ∈ (𝑆 RingOpsHom 𝑅) ∧ 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅))))
108104, 105, 1073imtr4d 294 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) → 𝐹 ∈ (𝑆 RingOpsIso 𝑅)))
1091083impia 1117 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑆 RingOpsIso 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  ccnv 5658  ran crn 5660  wf 6532  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  GIdcgi 30476  RingOpscrngo 37923   RingOpsHom crngohom 37989   RingOpsIso crngoiso 37990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-grpo 30479  df-gid 30480  df-ablo 30531  df-ass 37872  df-exid 37874  df-mgmOLD 37878  df-sgrOLD 37890  df-mndo 37896  df-rngo 37924  df-rngohom 37992  df-rngoiso 38005
This theorem is referenced by:  riscer  38017
  Copyright terms: Public domain W3C validator