Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsn1add | Structured version Visualization version GIF version |
Description: If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀, then 𝐾 does not divide (𝑀 + 𝑁). (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
dvdsn1add | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → ¬ 𝐾 ∥ (𝑀 + 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) | |
2 | zaddcl 12061 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | |
3 | 2 | 3adant1 1127 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
4 | simp3 1135 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
5 | 1, 3, 4 | 3jca 1125 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
6 | 5 | ad2antrr 725 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → (𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
7 | pm3.22 463 | . . . . . . 7 ⊢ ((𝐾 ∥ 𝑁 ∧ 𝐾 ∥ (𝑀 + 𝑁)) → (𝐾 ∥ (𝑀 + 𝑁) ∧ 𝐾 ∥ 𝑁)) | |
8 | 7 | adantll 713 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → (𝐾 ∥ (𝑀 + 𝑁) ∧ 𝐾 ∥ 𝑁)) |
9 | dvds2sub 15692 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 + 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 + 𝑁) − 𝑁))) | |
10 | 6, 8, 9 | sylc 65 | . . . . 5 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝐾 ∥ ((𝑀 + 𝑁) − 𝑁)) |
11 | zcn 12025 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
12 | 11 | 3ad2ant2 1131 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
13 | 12 | ad2antrr 725 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝑀 ∈ ℂ) |
14 | 4 | zcnd 12127 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
15 | 14 | ad2antrr 725 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝑁 ∈ ℂ) |
16 | 13, 15 | pncand 11036 | . . . . 5 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
17 | 10, 16 | breqtrd 5058 | . . . 4 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝐾 ∥ 𝑀) |
18 | 17 | adantlrl 719 | . . 3 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝐾 ∥ 𝑀) |
19 | simplrl 776 | . . 3 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → ¬ 𝐾 ∥ 𝑀) | |
20 | 18, 19 | pm2.65da 816 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → ¬ 𝐾 ∥ (𝑀 + 𝑁)) |
21 | 20 | ex 416 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → ¬ 𝐾 ∥ (𝑀 + 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 ∈ wcel 2111 class class class wbr 5032 (class class class)co 7150 ℂcc 10573 + caddc 10578 − cmin 10908 ℤcz 12020 ∥ cdvds 15655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-dvds 15656 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |