![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsn1add | Structured version Visualization version GIF version |
Description: If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀, then 𝐾 does not divide (𝑀 + 𝑁). (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
dvdsn1add | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → ¬ 𝐾 ∥ (𝑀 + 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) | |
2 | zaddcl 12655 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | |
3 | 2 | 3adant1 1129 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
4 | simp3 1137 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
5 | 1, 3, 4 | 3jca 1127 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → (𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
7 | pm3.22 459 | . . . . . . 7 ⊢ ((𝐾 ∥ 𝑁 ∧ 𝐾 ∥ (𝑀 + 𝑁)) → (𝐾 ∥ (𝑀 + 𝑁) ∧ 𝐾 ∥ 𝑁)) | |
8 | 7 | adantll 714 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → (𝐾 ∥ (𝑀 + 𝑁) ∧ 𝐾 ∥ 𝑁)) |
9 | dvds2sub 16325 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 + 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 + 𝑁) − 𝑁))) | |
10 | 6, 8, 9 | sylc 65 | . . . . 5 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝐾 ∥ ((𝑀 + 𝑁) − 𝑁)) |
11 | zcn 12616 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
12 | 11 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
13 | 12 | ad2antrr 726 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝑀 ∈ ℂ) |
14 | 4 | zcnd 12721 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝑁 ∈ ℂ) |
16 | 13, 15 | pncand 11619 | . . . . 5 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
17 | 10, 16 | breqtrd 5174 | . . . 4 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ 𝑁) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝐾 ∥ 𝑀) |
18 | 17 | adantlrl 720 | . . 3 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → 𝐾 ∥ 𝑀) |
19 | simplrl 777 | . . 3 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) ∧ 𝐾 ∥ (𝑀 + 𝑁)) → ¬ 𝐾 ∥ 𝑀) | |
20 | 18, 19 | pm2.65da 817 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → ¬ 𝐾 ∥ (𝑀 + 𝑁)) |
21 | 20 | ex 412 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → ¬ 𝐾 ∥ (𝑀 + 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℂcc 11151 + caddc 11156 − cmin 11490 ℤcz 12611 ∥ cdvds 16287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-dvds 16288 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |