Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxrrelem Structured version   Visualization version   GIF version

Theorem climxrrelem 45871
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxrrelem.m (𝜑𝑀 ∈ ℤ)
climxrrelem.z 𝑍 = (ℤ𝑀)
climxrrelem.f (𝜑𝐹:𝑍⟶ℝ*)
climxrrelem.c (𝜑𝐹𝐴)
climxrrelem.d (𝜑𝐷 ∈ ℝ+)
climxrrelem.p ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
climxrrelem.n ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
Assertion
Ref Expression
climxrrelem (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝐷,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem climxrrelem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑘𝜑
2 nfv 1915 . . . . . 6 𝑘 𝑗𝑍
3 nfra1 3257 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
42, 3nfan 1900 . . . . 5 𝑘(𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
51, 4nfan 1900 . . . 4 𝑘(𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
6 climxrrelem.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
76uztrn2 12757 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
87adantll 714 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
9 climxrrelem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ*)
109fdmd 6666 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝑍)
1110ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
128, 11eleqtrrd 2836 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
1312adantlrr 721 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
14 simpll 766 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
158adantlrr 721 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
16 rspa 3222 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
1716adantll 714 . . . . . . 7 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
1817adantll 714 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
199ffvelcdmda 7023 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
20193adant3 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ∈ ℝ*)
21 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝜑)
22 simpr 484 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → (𝐹𝑘) = -∞)
23 simpl 482 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → (𝐹𝑘) ∈ ℂ)
2422, 23eqeltrrd 2834 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → -∞ ∈ ℂ)
2524adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → -∞ ∈ ℂ)
26 climxrrelem.n . . . . . . . . . . . 12 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
2721, 25, 26syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
2827adantlrr 721 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
29 fvoveq1 7375 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = -∞ → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴)))
3029adantl 481 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴)))
31 simpl 482 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
3230, 31eqbrtrrd 5117 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
3332adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
3433adantlrl 720 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
35 climxrrelem.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐹𝐴)
366fvexi 6842 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ∈ V
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑍 ∈ V)
389, 37fexd 7167 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ V)
39 eqidd 2734 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
4038, 39clim 15403 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
4135, 40mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
4241simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
4342ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝐴 ∈ ℂ)
4425, 43subcld 11479 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → (-∞ − 𝐴) ∈ ℂ)
4544abscld 15348 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
4645adantlrr 721 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
47 climxrrelem.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ+)
4847rpred 12936 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℝ)
4948ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → 𝐷 ∈ ℝ)
5046, 49ltnled 11267 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → ((abs‘(-∞ − 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴))))
5134, 50mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴)))
5228, 51pm2.65da 816 . . . . . . . . 9 ((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = -∞)
53523adant2 1131 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = -∞)
5453neqned 2936 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ≠ -∞)
55 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝜑)
56 simpr 484 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → (𝐹𝑘) = +∞)
57 simpl 482 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → (𝐹𝑘) ∈ ℂ)
5856, 57eqeltrrd 2834 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → +∞ ∈ ℂ)
5958adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → +∞ ∈ ℂ)
60 climxrrelem.p . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
6155, 59, 60syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
6261adantlrr 721 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
63 fvoveq1 7375 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = +∞ → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴)))
6463adantl 481 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴)))
65 simpl 482 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
6664, 65eqbrtrrd 5117 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6766adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6867adantlrl 720 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6942ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝐴 ∈ ℂ)
7059, 69subcld 11479 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → (+∞ − 𝐴) ∈ ℂ)
7170abscld 15348 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
7271adantlrr 721 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
7348ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → 𝐷 ∈ ℝ)
7472, 73ltnled 11267 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → ((abs‘(+∞ − 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴))))
7568, 74mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴)))
7662, 75pm2.65da 816 . . . . . . . . 9 ((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = +∞)
77763adant2 1131 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = +∞)
7877neqned 2936 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ≠ +∞)
7920, 54, 78xrred 45487 . . . . . 6 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ∈ ℝ)
8014, 15, 18, 79syl3anc 1373 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
8113, 80jca 511 . . . 4 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
825, 81ralrimia 3232 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
839ffund 6660 . . . . 5 (𝜑 → Fun 𝐹)
84 ffvresb 7064 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8583, 84syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8685adantr 480 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8782, 86mpbird 257 . 2 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
88 breq2 5097 . . . . . 6 (𝑥 = 𝐷 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
8988anbi2d 630 . . . . 5 (𝑥 = 𝐷 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9089rexralbidv 3199 . . . 4 (𝑥 = 𝐷 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9141simprd 495 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
9290, 91, 47rspcdva 3574 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
93 climxrrelem.m . . . 4 (𝜑𝑀 ∈ ℤ)
946rexuz3 15258 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9593, 94syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9692, 95mpbird 257 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
9787, 96reximddv 3149 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437   class class class wbr 5093  dom cdm 5619  cres 5621  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  +∞cpnf 11150  -∞cmnf 11151  *cxr 11152   < clt 11153  cle 11154  cmin 11351  cz 12475  cuz 12738  +crp 12892  abscabs 15143  cli 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397
This theorem is referenced by:  climxrre  45872
  Copyright terms: Public domain W3C validator