Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑘𝜑 |
2 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘 𝑗 ∈ 𝑍 |
3 | | nfra1 3142 |
. . . . . 6
⊢
Ⅎ𝑘∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) |
4 | 2, 3 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑘(𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
5 | 1, 4 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑘(𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) |
6 | | climxrrelem.z |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) |
7 | 6 | uztrn2 12530 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
8 | 7 | adantll 710 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
9 | | climxrrelem.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
10 | 9 | fdmd 6595 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 = 𝑍) |
11 | 10 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → dom 𝐹 = 𝑍) |
12 | 8, 11 | eleqtrrd 2842 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ dom 𝐹) |
13 | 12 | adantlrr 717 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ dom 𝐹) |
14 | | simpll 763 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) |
15 | 8 | adantlrr 717 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
16 | | rspa 3130 |
. . . . . . . 8
⊢
((∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
17 | 16 | adantll 710 |
. . . . . . 7
⊢ (((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
18 | 17 | adantll 710 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
19 | 9 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈
ℝ*) |
20 | 19 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → (𝐹‘𝑘) ∈
ℝ*) |
21 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → 𝜑) |
22 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = -∞) → (𝐹‘𝑘) = -∞) |
23 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = -∞) → (𝐹‘𝑘) ∈ ℂ) |
24 | 22, 23 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = -∞) → -∞ ∈
ℂ) |
25 | 24 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → -∞ ∈
ℂ) |
26 | | climxrrelem.n |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ -∞ ∈ ℂ)
→ 𝐷 ≤
(abs‘(-∞ − 𝐴))) |
27 | 21, 25, 26 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴))) |
28 | 27 | adantlrr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴))) |
29 | | fvoveq1 7278 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘) = -∞ → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴))) |
30 | 29 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = -∞) → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴))) |
31 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = -∞) → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) |
32 | 30, 31 | eqbrtrrd 5094 |
. . . . . . . . . . . . 13
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = -∞) → (abs‘(-∞
− 𝐴)) < 𝐷) |
33 | 32 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) ∧ (𝐹‘𝑘) = -∞) → (abs‘(-∞
− 𝐴)) < 𝐷) |
34 | 33 | adantlrl 716 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → (abs‘(-∞
− 𝐴)) < 𝐷) |
35 | | climxrrelem.c |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
36 | 6 | fvexi 6770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑍 ∈ V |
37 | 36 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑍 ∈ V) |
38 | 9, 37 | fexd 7085 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ∈ V) |
39 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
40 | 38, 39 | clim 15131 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
41 | 35, 40 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
42 | 41 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ ℂ) |
43 | 42 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → 𝐴 ∈ ℂ) |
44 | 25, 43 | subcld 11262 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → (-∞ − 𝐴) ∈
ℂ) |
45 | 44 | abscld 15076 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → (abs‘(-∞
− 𝐴)) ∈
ℝ) |
46 | 45 | adantlrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → (abs‘(-∞
− 𝐴)) ∈
ℝ) |
47 | | climxrrelem.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈
ℝ+) |
48 | 47 | rpred 12701 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ ℝ) |
49 | 48 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → 𝐷 ∈ ℝ) |
50 | 46, 49 | ltnled 11052 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → ((abs‘(-∞
− 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴)))) |
51 | 34, 50 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴))) |
52 | 28, 51 | pm2.65da 813 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹‘𝑘) = -∞) |
53 | 52 | 3adant2 1129 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹‘𝑘) = -∞) |
54 | 53 | neqned 2949 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → (𝐹‘𝑘) ≠ -∞) |
55 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → 𝜑) |
56 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = +∞) → (𝐹‘𝑘) = +∞) |
57 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = +∞) → (𝐹‘𝑘) ∈ ℂ) |
58 | 56, 57 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = +∞) → +∞ ∈
ℂ) |
59 | 58 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → +∞ ∈
ℂ) |
60 | | climxrrelem.p |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ +∞ ∈ ℂ)
→ 𝐷 ≤
(abs‘(+∞ − 𝐴))) |
61 | 55, 59, 60 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴))) |
62 | 61 | adantlrr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴))) |
63 | | fvoveq1 7278 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘) = +∞ → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴))) |
64 | 63 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = +∞) → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴))) |
65 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = +∞) → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) |
66 | 64, 65 | eqbrtrrd 5094 |
. . . . . . . . . . . . 13
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = +∞) → (abs‘(+∞
− 𝐴)) < 𝐷) |
67 | 66 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) ∧ (𝐹‘𝑘) = +∞) → (abs‘(+∞
− 𝐴)) < 𝐷) |
68 | 67 | adantlrl 716 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → (abs‘(+∞
− 𝐴)) < 𝐷) |
69 | 42 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → 𝐴 ∈ ℂ) |
70 | 59, 69 | subcld 11262 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → (+∞ − 𝐴) ∈
ℂ) |
71 | 70 | abscld 15076 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → (abs‘(+∞
− 𝐴)) ∈
ℝ) |
72 | 71 | adantlrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → (abs‘(+∞
− 𝐴)) ∈
ℝ) |
73 | 48 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → 𝐷 ∈ ℝ) |
74 | 72, 73 | ltnled 11052 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → ((abs‘(+∞
− 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴)))) |
75 | 68, 74 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴))) |
76 | 62, 75 | pm2.65da 813 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹‘𝑘) = +∞) |
77 | 76 | 3adant2 1129 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹‘𝑘) = +∞) |
78 | 77 | neqned 2949 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → (𝐹‘𝑘) ≠ +∞) |
79 | 20, 54, 78 | xrred 42794 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → (𝐹‘𝑘) ∈ ℝ) |
80 | 14, 15, 18, 79 | syl3anc 1369 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
81 | 13, 80 | jca 511 |
. . . 4
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
82 | 5, 81 | ralrimia 3420 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
83 | 9 | ffund 6588 |
. . . . 5
⊢ (𝜑 → Fun 𝐹) |
84 | | ffvresb 6980 |
. . . . 5
⊢ (Fun
𝐹 → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
85 | 83, 84 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
86 | 85 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
87 | 82, 86 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
88 | | breq2 5074 |
. . . . . 6
⊢ (𝑥 = 𝐷 → ((abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
89 | 88 | anbi2d 628 |
. . . . 5
⊢ (𝑥 = 𝐷 → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) |
90 | 89 | rexralbidv 3229 |
. . . 4
⊢ (𝑥 = 𝐷 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) |
91 | 41 | simprd 495 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) |
92 | 90, 91, 47 | rspcdva 3554 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
93 | | climxrrelem.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
94 | 6 | rexuz3 14988 |
. . . 4
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) |
95 | 93, 94 | syl 17 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) |
96 | 92, 95 | mpbird 256 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
97 | 87, 96 | reximddv 3203 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |