Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxrrelem Structured version   Visualization version   GIF version

Theorem climxrrelem 42378
Description: If a seqence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxrrelem.m (𝜑𝑀 ∈ ℤ)
climxrrelem.z 𝑍 = (ℤ𝑀)
climxrrelem.f (𝜑𝐹:𝑍⟶ℝ*)
climxrrelem.c (𝜑𝐹𝐴)
climxrrelem.d (𝜑𝐷 ∈ ℝ+)
climxrrelem.p ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
climxrrelem.n ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
Assertion
Ref Expression
climxrrelem (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝐷,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem climxrrelem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑘𝜑
2 nfv 1915 . . . . . 6 𝑘 𝑗𝑍
3 nfra1 3186 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
42, 3nfan 1900 . . . . 5 𝑘(𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
51, 4nfan 1900 . . . 4 𝑘(𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
6 climxrrelem.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
76uztrn2 12254 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
87adantll 713 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
9 climxrrelem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ*)
109fdmd 6501 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝑍)
1110ad2antrr 725 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
128, 11eleqtrrd 2896 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
1312adantlrr 720 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
14 simpll 766 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
158adantlrr 720 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
16 rspa 3174 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
1716adantll 713 . . . . . . 7 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
1817adantll 713 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
199ffvelrnda 6832 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
20193adant3 1129 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ∈ ℝ*)
21 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝜑)
22 simpr 488 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → (𝐹𝑘) = -∞)
23 simpl 486 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → (𝐹𝑘) ∈ ℂ)
2422, 23eqeltrrd 2894 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → -∞ ∈ ℂ)
2524adantll 713 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → -∞ ∈ ℂ)
26 climxrrelem.n . . . . . . . . . . . 12 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
2721, 25, 26syl2anc 587 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
2827adantlrr 720 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
29 fvoveq1 7162 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = -∞ → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴)))
3029adantl 485 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴)))
31 simpl 486 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
3230, 31eqbrtrrd 5057 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
3332adantll 713 . . . . . . . . . . . 12 (((𝜑 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
3433adantlrl 719 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
35 climxrrelem.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐹𝐴)
366fvexi 6663 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ∈ V
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑍 ∈ V)
389, 37fexd 6971 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ V)
39 eqidd 2802 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
4038, 39clim 14846 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
4135, 40mpbid 235 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
4241simpld 498 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
4342ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝐴 ∈ ℂ)
4425, 43subcld 10990 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → (-∞ − 𝐴) ∈ ℂ)
4544abscld 14791 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
4645adantlrr 720 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
47 climxrrelem.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ+)
4847rpred 12423 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℝ)
4948ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → 𝐷 ∈ ℝ)
5046, 49ltnled 10780 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → ((abs‘(-∞ − 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴))))
5134, 50mpbid 235 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴)))
5228, 51pm2.65da 816 . . . . . . . . 9 ((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = -∞)
53523adant2 1128 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = -∞)
5453neqned 2997 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ≠ -∞)
55 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝜑)
56 simpr 488 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → (𝐹𝑘) = +∞)
57 simpl 486 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → (𝐹𝑘) ∈ ℂ)
5856, 57eqeltrrd 2894 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → +∞ ∈ ℂ)
5958adantll 713 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → +∞ ∈ ℂ)
60 climxrrelem.p . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
6155, 59, 60syl2anc 587 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
6261adantlrr 720 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
63 fvoveq1 7162 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = +∞ → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴)))
6463adantl 485 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴)))
65 simpl 486 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
6664, 65eqbrtrrd 5057 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6766adantll 713 . . . . . . . . . . . 12 (((𝜑 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6867adantlrl 719 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6942ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝐴 ∈ ℂ)
7059, 69subcld 10990 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → (+∞ − 𝐴) ∈ ℂ)
7170abscld 14791 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
7271adantlrr 720 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
7348ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → 𝐷 ∈ ℝ)
7472, 73ltnled 10780 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → ((abs‘(+∞ − 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴))))
7568, 74mpbid 235 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴)))
7662, 75pm2.65da 816 . . . . . . . . 9 ((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = +∞)
77763adant2 1128 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = +∞)
7877neqned 2997 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ≠ +∞)
7920, 54, 78xrred 41984 . . . . . 6 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ∈ ℝ)
8014, 15, 18, 79syl3anc 1368 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
8113, 80jca 515 . . . 4 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
825, 81ralrimia 41754 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
839ffund 6495 . . . . 5 (𝜑 → Fun 𝐹)
84 ffvresb 6869 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8583, 84syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8685adantr 484 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8782, 86mpbird 260 . 2 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
88 breq2 5037 . . . . . 6 (𝑥 = 𝐷 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
8988anbi2d 631 . . . . 5 (𝑥 = 𝐷 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9089rexralbidv 3263 . . . 4 (𝑥 = 𝐷 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9141simprd 499 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
9290, 91, 47rspcdva 3576 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
93 climxrrelem.m . . . 4 (𝜑𝑀 ∈ ℤ)
946rexuz3 14703 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9593, 94syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9692, 95mpbird 260 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
9787, 96reximddv 3237 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wrex 3110  Vcvv 3444   class class class wbr 5033  dom cdm 5523  cres 5525  Fun wfun 6322  wf 6324  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  +∞cpnf 10665  -∞cmnf 10666  *cxr 10667   < clt 10668  cle 10669  cmin 10863  cz 11973  cuz 12235  +crp 12381  abscabs 14588  cli 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840
This theorem is referenced by:  climxrre  42379
  Copyright terms: Public domain W3C validator