Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxrrelem Structured version   Visualization version   GIF version

Theorem climxrrelem 45705
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxrrelem.m (𝜑𝑀 ∈ ℤ)
climxrrelem.z 𝑍 = (ℤ𝑀)
climxrrelem.f (𝜑𝐹:𝑍⟶ℝ*)
climxrrelem.c (𝜑𝐹𝐴)
climxrrelem.d (𝜑𝐷 ∈ ℝ+)
climxrrelem.p ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
climxrrelem.n ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
Assertion
Ref Expression
climxrrelem (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝐷,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem climxrrelem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1912 . . . . 5 𝑘𝜑
2 nfv 1912 . . . . . 6 𝑘 𝑗𝑍
3 nfra1 3282 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
42, 3nfan 1897 . . . . 5 𝑘(𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
51, 4nfan 1897 . . . 4 𝑘(𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
6 climxrrelem.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
76uztrn2 12895 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
87adantll 714 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
9 climxrrelem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ*)
109fdmd 6747 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝑍)
1110ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
128, 11eleqtrrd 2842 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
1312adantlrr 721 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
14 simpll 767 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
158adantlrr 721 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
16 rspa 3246 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
1716adantll 714 . . . . . . 7 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
1817adantll 714 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
199ffvelcdmda 7104 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
20193adant3 1131 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ∈ ℝ*)
21 simpll 767 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝜑)
22 simpr 484 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → (𝐹𝑘) = -∞)
23 simpl 482 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → (𝐹𝑘) ∈ ℂ)
2422, 23eqeltrrd 2840 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → -∞ ∈ ℂ)
2524adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → -∞ ∈ ℂ)
26 climxrrelem.n . . . . . . . . . . . 12 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
2721, 25, 26syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
2827adantlrr 721 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
29 fvoveq1 7454 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = -∞ → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴)))
3029adantl 481 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴)))
31 simpl 482 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
3230, 31eqbrtrrd 5172 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
3332adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
3433adantlrl 720 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
35 climxrrelem.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐹𝐴)
366fvexi 6921 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ∈ V
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑍 ∈ V)
389, 37fexd 7247 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ V)
39 eqidd 2736 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
4038, 39clim 15527 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
4135, 40mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
4241simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
4342ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝐴 ∈ ℂ)
4425, 43subcld 11618 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → (-∞ − 𝐴) ∈ ℂ)
4544abscld 15472 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
4645adantlrr 721 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
47 climxrrelem.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ+)
4847rpred 13075 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℝ)
4948ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → 𝐷 ∈ ℝ)
5046, 49ltnled 11406 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → ((abs‘(-∞ − 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴))))
5134, 50mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴)))
5228, 51pm2.65da 817 . . . . . . . . 9 ((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = -∞)
53523adant2 1130 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = -∞)
5453neqned 2945 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ≠ -∞)
55 simpll 767 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝜑)
56 simpr 484 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → (𝐹𝑘) = +∞)
57 simpl 482 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → (𝐹𝑘) ∈ ℂ)
5856, 57eqeltrrd 2840 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → +∞ ∈ ℂ)
5958adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → +∞ ∈ ℂ)
60 climxrrelem.p . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
6155, 59, 60syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
6261adantlrr 721 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
63 fvoveq1 7454 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = +∞ → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴)))
6463adantl 481 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴)))
65 simpl 482 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
6664, 65eqbrtrrd 5172 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6766adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6867adantlrl 720 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6942ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝐴 ∈ ℂ)
7059, 69subcld 11618 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → (+∞ − 𝐴) ∈ ℂ)
7170abscld 15472 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
7271adantlrr 721 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
7348ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → 𝐷 ∈ ℝ)
7472, 73ltnled 11406 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → ((abs‘(+∞ − 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴))))
7568, 74mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴)))
7662, 75pm2.65da 817 . . . . . . . . 9 ((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = +∞)
77763adant2 1130 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = +∞)
7877neqned 2945 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ≠ +∞)
7920, 54, 78xrred 45315 . . . . . 6 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ∈ ℝ)
8014, 15, 18, 79syl3anc 1370 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
8113, 80jca 511 . . . 4 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
825, 81ralrimia 3256 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
839ffund 6741 . . . . 5 (𝜑 → Fun 𝐹)
84 ffvresb 7145 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8583, 84syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8685adantr 480 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8782, 86mpbird 257 . 2 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
88 breq2 5152 . . . . . 6 (𝑥 = 𝐷 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
8988anbi2d 630 . . . . 5 (𝑥 = 𝐷 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9089rexralbidv 3221 . . . 4 (𝑥 = 𝐷 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9141simprd 495 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
9290, 91, 47rspcdva 3623 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
93 climxrrelem.m . . . 4 (𝜑𝑀 ∈ ℤ)
946rexuz3 15384 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9593, 94syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9692, 95mpbird 257 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
9787, 96reximddv 3169 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478   class class class wbr 5148  dom cdm 5689  cres 5691  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  cmin 11490  cz 12611  cuz 12876  +crp 13032  abscabs 15270  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by:  climxrre  45706
  Copyright terms: Public domain W3C validator