Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxrrelem Structured version   Visualization version   GIF version

Theorem climxrrelem 45714
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxrrelem.m (𝜑𝑀 ∈ ℤ)
climxrrelem.z 𝑍 = (ℤ𝑀)
climxrrelem.f (𝜑𝐹:𝑍⟶ℝ*)
climxrrelem.c (𝜑𝐹𝐴)
climxrrelem.d (𝜑𝐷 ∈ ℝ+)
climxrrelem.p ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
climxrrelem.n ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
Assertion
Ref Expression
climxrrelem (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝐷,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem climxrrelem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . . 5 𝑘𝜑
2 nfv 1913 . . . . . 6 𝑘 𝑗𝑍
3 nfra1 3264 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
42, 3nfan 1898 . . . . 5 𝑘(𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
51, 4nfan 1898 . . . 4 𝑘(𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
6 climxrrelem.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
76uztrn2 12864 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
87adantll 714 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
9 climxrrelem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ*)
109fdmd 6713 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝑍)
1110ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
128, 11eleqtrrd 2836 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
1312adantlrr 721 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
14 simpll 766 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
158adantlrr 721 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
16 rspa 3229 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
1716adantll 714 . . . . . . 7 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
1817adantll 714 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
199ffvelcdmda 7071 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
20193adant3 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ∈ ℝ*)
21 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝜑)
22 simpr 484 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → (𝐹𝑘) = -∞)
23 simpl 482 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → (𝐹𝑘) ∈ ℂ)
2422, 23eqeltrrd 2834 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → -∞ ∈ ℂ)
2524adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → -∞ ∈ ℂ)
26 climxrrelem.n . . . . . . . . . . . 12 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
2721, 25, 26syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
2827adantlrr 721 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
29 fvoveq1 7423 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = -∞ → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴)))
3029adantl 481 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴)))
31 simpl 482 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
3230, 31eqbrtrrd 5141 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
3332adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
3433adantlrl 720 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
35 climxrrelem.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐹𝐴)
366fvexi 6887 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ∈ V
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑍 ∈ V)
389, 37fexd 7216 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ V)
39 eqidd 2735 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
4038, 39clim 15499 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
4135, 40mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
4241simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
4342ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝐴 ∈ ℂ)
4425, 43subcld 11587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → (-∞ − 𝐴) ∈ ℂ)
4544abscld 15444 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
4645adantlrr 721 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
47 climxrrelem.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ+)
4847rpred 13044 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℝ)
4948ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → 𝐷 ∈ ℝ)
5046, 49ltnled 11375 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → ((abs‘(-∞ − 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴))))
5134, 50mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴)))
5228, 51pm2.65da 816 . . . . . . . . 9 ((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = -∞)
53523adant2 1131 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = -∞)
5453neqned 2938 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ≠ -∞)
55 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝜑)
56 simpr 484 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → (𝐹𝑘) = +∞)
57 simpl 482 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → (𝐹𝑘) ∈ ℂ)
5856, 57eqeltrrd 2834 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → +∞ ∈ ℂ)
5958adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → +∞ ∈ ℂ)
60 climxrrelem.p . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
6155, 59, 60syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
6261adantlrr 721 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
63 fvoveq1 7423 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = +∞ → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴)))
6463adantl 481 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴)))
65 simpl 482 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
6664, 65eqbrtrrd 5141 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6766adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6867adantlrl 720 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6942ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝐴 ∈ ℂ)
7059, 69subcld 11587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → (+∞ − 𝐴) ∈ ℂ)
7170abscld 15444 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
7271adantlrr 721 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
7348ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → 𝐷 ∈ ℝ)
7472, 73ltnled 11375 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → ((abs‘(+∞ − 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴))))
7568, 74mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴)))
7662, 75pm2.65da 816 . . . . . . . . 9 ((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = +∞)
77763adant2 1131 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = +∞)
7877neqned 2938 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ≠ +∞)
7920, 54, 78xrred 45326 . . . . . 6 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ∈ ℝ)
8014, 15, 18, 79syl3anc 1372 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
8113, 80jca 511 . . . 4 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
825, 81ralrimia 3239 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
839ffund 6707 . . . . 5 (𝜑 → Fun 𝐹)
84 ffvresb 7112 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8583, 84syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8685adantr 480 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8782, 86mpbird 257 . 2 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
88 breq2 5121 . . . . . 6 (𝑥 = 𝐷 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
8988anbi2d 630 . . . . 5 (𝑥 = 𝐷 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9089rexralbidv 3205 . . . 4 (𝑥 = 𝐷 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9141simprd 495 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
9290, 91, 47rspcdva 3600 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
93 climxrrelem.m . . . 4 (𝜑𝑀 ∈ ℤ)
946rexuz3 15356 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9593, 94syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9692, 95mpbird 257 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
9787, 96reximddv 3154 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  Vcvv 3457   class class class wbr 5117  dom cdm 5652  cres 5654  Fun wfun 6522  wf 6524  cfv 6528  (class class class)co 7400  cc 11120  cr 11121  +∞cpnf 11259  -∞cmnf 11260  *cxr 11261   < clt 11262  cle 11263  cmin 11459  cz 12581  cuz 12845  +crp 13001  abscabs 15242  cli 15489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-sup 9449  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-n0 12495  df-z 12582  df-uz 12846  df-rp 13002  df-seq 14010  df-exp 14070  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-clim 15493
This theorem is referenced by:  climxrre  45715
  Copyright terms: Public domain W3C validator