Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxrrelem Structured version   Visualization version   GIF version

Theorem climxrrelem 45731
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxrrelem.m (𝜑𝑀 ∈ ℤ)
climxrrelem.z 𝑍 = (ℤ𝑀)
climxrrelem.f (𝜑𝐹:𝑍⟶ℝ*)
climxrrelem.c (𝜑𝐹𝐴)
climxrrelem.d (𝜑𝐷 ∈ ℝ+)
climxrrelem.p ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
climxrrelem.n ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
Assertion
Ref Expression
climxrrelem (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝐷,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem climxrrelem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑘𝜑
2 nfv 1914 . . . . . 6 𝑘 𝑗𝑍
3 nfra1 3253 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
42, 3nfan 1899 . . . . 5 𝑘(𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
51, 4nfan 1899 . . . 4 𝑘(𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
6 climxrrelem.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
76uztrn2 12772 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
87adantll 714 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
9 climxrrelem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ*)
109fdmd 6666 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝑍)
1110ad2antrr 726 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
128, 11eleqtrrd 2831 . . . . . 6 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
1312adantlrr 721 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
14 simpll 766 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
158adantlrr 721 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
16 rspa 3218 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
1716adantll 714 . . . . . . 7 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
1817adantll 714 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
199ffvelcdmda 7022 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
20193adant3 1132 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ∈ ℝ*)
21 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝜑)
22 simpr 484 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → (𝐹𝑘) = -∞)
23 simpl 482 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → (𝐹𝑘) ∈ ℂ)
2422, 23eqeltrrd 2829 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = -∞) → -∞ ∈ ℂ)
2524adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → -∞ ∈ ℂ)
26 climxrrelem.n . . . . . . . . . . . 12 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
2721, 25, 26syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
2827adantlrr 721 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴)))
29 fvoveq1 7376 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = -∞ → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴)))
3029adantl 481 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴)))
31 simpl 482 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
3230, 31eqbrtrrd 5119 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
3332adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
3433adantlrl 720 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) < 𝐷)
35 climxrrelem.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐹𝐴)
366fvexi 6840 . . . . . . . . . . . . . . . . . . . . 21 𝑍 ∈ V
3736a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑍 ∈ V)
389, 37fexd 7167 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ∈ V)
39 eqidd 2730 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
4038, 39clim 15419 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
4135, 40mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
4241simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
4342ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → 𝐴 ∈ ℂ)
4425, 43subcld 11493 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → (-∞ − 𝐴) ∈ ℂ)
4544abscld 15364 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
4645adantlrr 721 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
47 climxrrelem.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ+)
4847rpred 12955 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℝ)
4948ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → 𝐷 ∈ ℝ)
5046, 49ltnled 11281 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → ((abs‘(-∞ − 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴))))
5134, 50mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = -∞) → ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴)))
5228, 51pm2.65da 816 . . . . . . . . 9 ((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = -∞)
53523adant2 1131 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = -∞)
5453neqned 2932 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ≠ -∞)
55 simpll 766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝜑)
56 simpr 484 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → (𝐹𝑘) = +∞)
57 simpl 482 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → (𝐹𝑘) ∈ ℂ)
5856, 57eqeltrrd 2829 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) = +∞) → +∞ ∈ ℂ)
5958adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → +∞ ∈ ℂ)
60 climxrrelem.p . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
6155, 59, 60syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
6261adantlrr 721 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴)))
63 fvoveq1 7376 . . . . . . . . . . . . . . 15 ((𝐹𝑘) = +∞ → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴)))
6463adantl 481 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴)))
65 simpl 482 . . . . . . . . . . . . . 14 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)
6664, 65eqbrtrrd 5119 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑘) − 𝐴)) < 𝐷 ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6766adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6867adantlrl 720 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) < 𝐷)
6942ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → 𝐴 ∈ ℂ)
7059, 69subcld 11493 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → (+∞ − 𝐴) ∈ ℂ)
7170abscld 15364 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝑘) ∈ ℂ) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
7271adantlrr 721 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
7348ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → 𝐷 ∈ ℝ)
7472, 73ltnled 11281 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → ((abs‘(+∞ − 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴))))
7568, 74mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹𝑘) = +∞) → ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴)))
7662, 75pm2.65da 816 . . . . . . . . 9 ((𝜑 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = +∞)
77763adant2 1131 . . . . . . . 8 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹𝑘) = +∞)
7877neqned 2932 . . . . . . 7 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ≠ +∞)
7920, 54, 78xrred 45345 . . . . . 6 ((𝜑𝑘𝑍 ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)) → (𝐹𝑘) ∈ ℝ)
8014, 15, 18, 79syl3anc 1373 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
8113, 80jca 511 . . . 4 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
825, 81ralrimia 3228 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
839ffund 6660 . . . . 5 (𝜑 → Fun 𝐹)
84 ffvresb 7063 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8583, 84syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8685adantr 480 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
8782, 86mpbird 257 . 2 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
88 breq2 5099 . . . . . 6 (𝑥 = 𝐷 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
8988anbi2d 630 . . . . 5 (𝑥 = 𝐷 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9089rexralbidv 3195 . . . 4 (𝑥 = 𝐷 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9141simprd 495 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
9290, 91, 47rspcdva 3580 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
93 climxrrelem.m . . . 4 (𝜑𝑀 ∈ ℤ)
946rexuz3 15274 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9593, 94syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷)))
9692, 95mpbird 257 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝐷))
9787, 96reximddv 3145 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438   class class class wbr 5095  dom cdm 5623  cres 5625  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  cmin 11365  cz 12489  cuz 12753  +crp 12911  abscabs 15159  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413
This theorem is referenced by:  climxrre  45732
  Copyright terms: Public domain W3C validator