MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup1 Structured version   Visualization version   GIF version

Theorem frlmup1 21005
Description: Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
Assertion
Ref Expression
frlmup1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmup.b . 2 𝐵 = (Base‘𝐹)
2 eqid 2738 . 2 ( ·𝑠𝐹) = ( ·𝑠𝐹)
3 frlmup.v . 2 · = ( ·𝑠𝑇)
4 eqid 2738 . 2 (Scalar‘𝐹) = (Scalar‘𝐹)
5 eqid 2738 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
6 eqid 2738 . 2 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
7 frlmup.r . . . 4 (𝜑𝑅 = (Scalar‘𝑇))
8 frlmup.t . . . . 5 (𝜑𝑇 ∈ LMod)
95lmodring 20131 . . . . 5 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
108, 9syl 17 . . . 4 (𝜑 → (Scalar‘𝑇) ∈ Ring)
117, 10eqeltrd 2839 . . 3 (𝜑𝑅 ∈ Ring)
12 frlmup.i . . 3 (𝜑𝐼𝑋)
13 frlmup.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
1413frlmlmod 20956 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝐹 ∈ LMod)
1511, 12, 14syl2anc 584 . 2 (𝜑𝐹 ∈ LMod)
1613frlmsca 20960 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑅 = (Scalar‘𝐹))
1711, 12, 16syl2anc 584 . . 3 (𝜑𝑅 = (Scalar‘𝐹))
187, 17eqtr3d 2780 . 2 (𝜑 → (Scalar‘𝑇) = (Scalar‘𝐹))
19 frlmup.c . . 3 𝐶 = (Base‘𝑇)
20 eqid 2738 . . 3 (+g𝐹) = (+g𝐹)
21 eqid 2738 . . 3 (+g𝑇) = (+g𝑇)
22 lmodgrp 20130 . . . 4 (𝐹 ∈ LMod → 𝐹 ∈ Grp)
2315, 22syl 17 . . 3 (𝜑𝐹 ∈ Grp)
24 lmodgrp 20130 . . . 4 (𝑇 ∈ LMod → 𝑇 ∈ Grp)
258, 24syl 17 . . 3 (𝜑𝑇 ∈ Grp)
26 eleq1w 2821 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
2726anbi2d 629 . . . . . 6 (𝑧 = 𝑥 → ((𝜑𝑧𝐵) ↔ (𝜑𝑥𝐵)))
28 oveq1 7282 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧f · 𝐴) = (𝑥f · 𝐴))
2928oveq2d 7291 . . . . . . 7 (𝑧 = 𝑥 → (𝑇 Σg (𝑧f · 𝐴)) = (𝑇 Σg (𝑥f · 𝐴)))
3029eleq1d 2823 . . . . . 6 (𝑧 = 𝑥 → ((𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶 ↔ (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶))
3127, 30imbi12d 345 . . . . 5 (𝑧 = 𝑥 → (((𝜑𝑧𝐵) → (𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶) ↔ ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶)))
32 eqid 2738 . . . . . 6 (0g𝑇) = (0g𝑇)
33 lmodcmn 20171 . . . . . . . 8 (𝑇 ∈ LMod → 𝑇 ∈ CMnd)
348, 33syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
3534adantr 481 . . . . . 6 ((𝜑𝑧𝐵) → 𝑇 ∈ CMnd)
3612adantr 481 . . . . . 6 ((𝜑𝑧𝐵) → 𝐼𝑋)
378ad2antrr 723 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑇 ∈ LMod)
38 simprl 768 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘𝑅))
397fveq2d 6778 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4039ad2antrr 723 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4138, 40eleqtrd 2841 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑇)))
42 simprr 770 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑦𝐶)
43 eqid 2738 . . . . . . . . 9 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
4419, 5, 3, 43lmodvscl 20140 . . . . . . . 8 ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑦𝐶) → (𝑥 · 𝑦) ∈ 𝐶)
4537, 41, 42, 44syl3anc 1370 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (𝑥 · 𝑦) ∈ 𝐶)
46 eqid 2738 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4713, 46, 1frlmbasf 20967 . . . . . . . 8 ((𝐼𝑋𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
4812, 47sylan 580 . . . . . . 7 ((𝜑𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
49 frlmup.a . . . . . . . 8 (𝜑𝐴:𝐼𝐶)
5049adantr 481 . . . . . . 7 ((𝜑𝑧𝐵) → 𝐴:𝐼𝐶)
51 inidm 4152 . . . . . . 7 (𝐼𝐼) = 𝐼
5245, 48, 50, 36, 36, 51off 7551 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧f · 𝐴):𝐼𝐶)
53 ovexd 7310 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) ∈ V)
5452ffund 6604 . . . . . . 7 ((𝜑𝑧𝐵) → Fun (𝑧f · 𝐴))
55 fvexd 6789 . . . . . . 7 ((𝜑𝑧𝐵) → (0g𝑇) ∈ V)
56 eqid 2738 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
5713, 56, 1frlmbasfsupp 20965 . . . . . . . . . 10 ((𝐼𝑋𝑧𝐵) → 𝑧 finSupp (0g𝑅))
5812, 57sylan 580 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g𝑅))
597fveq2d 6778 . . . . . . . . . . . 12 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
6059eqcomd 2744 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝑇)) = (0g𝑅))
6160breq2d 5086 . . . . . . . . . 10 (𝜑 → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6261adantr 481 . . . . . . . . 9 ((𝜑𝑧𝐵) → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6358, 62mpbird 256 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g‘(Scalar‘𝑇)))
6463fsuppimpd 9135 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin)
65 ssidd 3944 . . . . . . . 8 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
668ad2antrr 723 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → 𝑇 ∈ LMod)
67 eqid 2738 . . . . . . . . . 10 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
6819, 5, 3, 67, 32lmod0vs 20156 . . . . . . . . 9 ((𝑇 ∈ LMod ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
6966, 68sylancom 588 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
70 fvexd 6789 . . . . . . . 8 ((𝜑𝑧𝐵) → (0g‘(Scalar‘𝑇)) ∈ V)
7165, 69, 48, 50, 36, 70suppssof1 8015 . . . . . . 7 ((𝜑𝑧𝐵) → ((𝑧f · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
72 suppssfifsupp 9143 . . . . . . 7 ((((𝑧f · 𝐴) ∈ V ∧ Fun (𝑧f · 𝐴) ∧ (0g𝑇) ∈ V) ∧ ((𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin ∧ ((𝑧f · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))) → (𝑧f · 𝐴) finSupp (0g𝑇))
7353, 54, 55, 64, 71, 72syl32anc 1377 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) finSupp (0g𝑇))
7419, 32, 35, 36, 52, 73gsumcl 19516 . . . . 5 ((𝜑𝑧𝐵) → (𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶)
7531, 74chvarvv 2002 . . . 4 ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶)
76 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
7775, 76fmptd 6988 . . 3 (𝜑𝐸:𝐵𝐶)
7834adantr 481 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑇 ∈ CMnd)
7912adantr 481 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑋)
80 eleq1w 2821 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
8180anbi2d 629 . . . . . . . 8 (𝑧 = 𝑦 → ((𝜑𝑧𝐵) ↔ (𝜑𝑦𝐵)))
82 oveq1 7282 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧f · 𝐴) = (𝑦f · 𝐴))
8382feq1d 6585 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧f · 𝐴):𝐼𝐶 ↔ (𝑦f · 𝐴):𝐼𝐶))
8481, 83imbi12d 345 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧f · 𝐴):𝐼𝐶) ↔ ((𝜑𝑦𝐵) → (𝑦f · 𝐴):𝐼𝐶)))
8584, 52chvarvv 2002 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦f · 𝐴):𝐼𝐶)
8685adantrr 714 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴):𝐼𝐶)
8752adantrl 713 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴):𝐼𝐶)
8882breq1d 5084 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧f · 𝐴) finSupp (0g𝑇) ↔ (𝑦f · 𝐴) finSupp (0g𝑇)))
8981, 88imbi12d 345 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧f · 𝐴) finSupp (0g𝑇)) ↔ ((𝜑𝑦𝐵) → (𝑦f · 𝐴) finSupp (0g𝑇))))
9089, 73chvarvv 2002 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦f · 𝐴) finSupp (0g𝑇))
9190adantrr 714 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴) finSupp (0g𝑇))
9273adantrl 713 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴) finSupp (0g𝑇))
9319, 32, 21, 78, 79, 86, 87, 91, 92gsumadd 19524 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))) = ((𝑇 Σg (𝑦f · 𝐴))(+g𝑇)(𝑇 Σg (𝑧f · 𝐴))))
941, 20lmodvacl 20137 . . . . . . . 8 ((𝐹 ∈ LMod ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
95943expb 1119 . . . . . . 7 ((𝐹 ∈ LMod ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
9615, 95sylan 580 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
97 oveq1 7282 . . . . . . . 8 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑥f · 𝐴) = ((𝑦(+g𝐹)𝑧) ∘f · 𝐴))
9897oveq2d 7291 . . . . . . 7 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
99 ovex 7308 . . . . . . 7 (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)) ∈ V
10098, 76, 99fvmpt 6875 . . . . . 6 ((𝑦(+g𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
10196, 100syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
10211adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 ∈ Ring)
103 simprl 768 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
104 simprr 770 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
105 eqid 2738 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
10613, 1, 102, 79, 103, 104, 105, 20frlmplusgval 20971 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) = (𝑦f (+g𝑅)𝑧))
107106oveq1d 7290 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘f · 𝐴) = ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴))
10813, 46, 1frlmbasf 20967 . . . . . . . . . . . . 13 ((𝐼𝑋𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
10912, 108sylan 580 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
110109adantrr 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦:𝐼⟶(Base‘𝑅))
111110ffnd 6601 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦 Fn 𝐼)
11248adantrl 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧:𝐼⟶(Base‘𝑅))
113112ffnd 6601 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧 Fn 𝐼)
114111, 113, 79, 79, 51offn 7546 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f (+g𝑅)𝑧) Fn 𝐼)
11549ffnd 6601 . . . . . . . . . 10 (𝜑𝐴 Fn 𝐼)
116115adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴 Fn 𝐼)
117114, 116, 79, 79, 51offn 7546 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴) Fn 𝐼)
11885ffnd 6601 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑦f · 𝐴) Fn 𝐼)
119118adantrr 714 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴) Fn 𝐼)
12052ffnd 6601 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) Fn 𝐼)
121120adantrl 713 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴) Fn 𝐼)
122119, 121, 79, 79, 51offn 7546 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)) Fn 𝐼)
1237fveq2d 6778 . . . . . . . . . . . . . 14 (𝜑 → (+g𝑅) = (+g‘(Scalar‘𝑇)))
124123ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (+g𝑅) = (+g‘(Scalar‘𝑇)))
125124oveqd 7292 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦𝑥)(+g𝑅)(𝑧𝑥)) = ((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)))
126125oveq1d 7290 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
1278ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
128110ffvelrnda 6961 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘𝑅))
12939ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
130128, 129eleqtrd 2841 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)))
131112ffvelrnda 6961 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
132131, 129eleqtrd 2841 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
13349adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴:𝐼𝐶)
134133ffvelrnda 6961 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
135 eqid 2738 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑇)) = (+g‘(Scalar‘𝑇))
13619, 21, 5, 3, 43, 135lmodvsdir 20147 . . . . . . . . . . . 12 ((𝑇 ∈ LMod ∧ ((𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
137127, 130, 132, 134, 136syl13anc 1371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
138126, 137eqtrd 2778 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
139111adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 Fn 𝐼)
140113adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
14112ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
142 simpr 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
143 fnfvof 7550 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝑧 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦f (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
144139, 140, 141, 142, 143syl22anc 836 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦f (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
145144oveq1d 7290 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)))
146115ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
147 fnfvof 7550 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦f · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
148139, 146, 141, 142, 147syl22anc 836 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦f · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
149 fnfvof 7550 . . . . . . . . . . . 12 (((𝑧 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
150140, 146, 141, 142, 149syl22anc 836 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
151148, 150oveq12d 7293 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
152138, 145, 1513eqtr4d 2788 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
153114adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦f (+g𝑅)𝑧) Fn 𝐼)
154 fnfvof 7550 . . . . . . . . . 10 ((((𝑦f (+g𝑅)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
155153, 146, 141, 142, 154syl22anc 836 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
156119adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦f · 𝐴) Fn 𝐼)
157121adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧f · 𝐴) Fn 𝐼)
158 fnfvof 7550 . . . . . . . . . 10 ((((𝑦f · 𝐴) Fn 𝐼 ∧ (𝑧f · 𝐴) Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
159156, 157, 141, 142, 158syl22anc 836 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
160152, 155, 1593eqtr4d 2788 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥))
161117, 122, 160eqfnfvd 6912 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴) = ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)))
162107, 161eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘f · 𝐴) = ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)))
163162oveq2d 7291 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)) = (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))))
164101, 163eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))))
165 oveq1 7282 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥f · 𝐴) = (𝑦f · 𝐴))
166165oveq2d 7291 . . . . . . 7 (𝑥 = 𝑦 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑦f · 𝐴)))
167 ovex 7308 . . . . . . 7 (𝑇 Σg (𝑦f · 𝐴)) ∈ V
168166, 76, 167fvmpt 6875 . . . . . 6 (𝑦𝐵 → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
169168ad2antrl 725 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
170 oveq1 7282 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥f · 𝐴) = (𝑧f · 𝐴))
171170oveq2d 7291 . . . . . . 7 (𝑥 = 𝑧 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑧f · 𝐴)))
172 ovex 7308 . . . . . . 7 (𝑇 Σg (𝑧f · 𝐴)) ∈ V
173171, 76, 172fvmpt 6875 . . . . . 6 (𝑧𝐵 → (𝐸𝑧) = (𝑇 Σg (𝑧f · 𝐴)))
174173ad2antll 726 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑧) = (𝑇 Σg (𝑧f · 𝐴)))
175169, 174oveq12d 7293 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝐸𝑦)(+g𝑇)(𝐸𝑧)) = ((𝑇 Σg (𝑦f · 𝐴))(+g𝑇)(𝑇 Σg (𝑧f · 𝐴))))
17693, 164, 1753eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = ((𝐸𝑦)(+g𝑇)(𝐸𝑧)))
1771, 19, 20, 21, 23, 25, 77, 176isghmd 18843 . 2 (𝜑𝐸 ∈ (𝐹 GrpHom 𝑇))
1788adantr 481 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑇 ∈ LMod)
17912adantr 481 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐼𝑋)
18018fveq2d 6778 . . . . . . . 8 (𝜑 → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
181180eleq2d 2824 . . . . . . 7 (𝜑 → (𝑦 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑦 ∈ (Base‘(Scalar‘𝐹))))
182181biimpar 478 . . . . . 6 ((𝜑𝑦 ∈ (Base‘(Scalar‘𝐹))) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
183182adantrr 714 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
18452adantrl 713 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧f · 𝐴):𝐼𝐶)
185184ffvelrnda 6961 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) ∈ 𝐶)
18652feqmptd 6837 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) = (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))
187186, 73eqbrtrrd 5098 . . . . . 6 ((𝜑𝑧𝐵) → (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)) finSupp (0g𝑇))
188187adantrl 713 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)) finSupp (0g𝑇))
18919, 5, 43, 32, 21, 3, 178, 179, 183, 185, 188gsumvsmul 20187 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥)))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))))
19015adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐹 ∈ LMod)
191 simprl 768 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
192 simprr 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧𝐵)
1931, 4, 2, 6lmodvscl 20140 . . . . . . . . . . . 12 ((𝐹 ∈ LMod ∧ 𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
194190, 191, 192, 193syl3anc 1370 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
19513, 46, 1frlmbasf 20967 . . . . . . . . . . 11 ((𝐼𝑋 ∧ (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
196179, 194, 195syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
197196ffnd 6601 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
198115adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐴 Fn 𝐼)
199197, 198, 179, 179, 51offn 7546 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) Fn 𝐼)
200 dffn2 6602 . . . . . . . 8 (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) Fn 𝐼 ↔ ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴):𝐼⟶V)
201199, 200sylib 217 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴):𝐼⟶V)
202201feqmptd 6837 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) = (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥)))
2037fveq2d 6778 . . . . . . . . . . . 12 (𝜑 → (.r𝑅) = (.r‘(Scalar‘𝑇)))
204203ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (.r𝑅) = (.r‘(Scalar‘𝑇)))
205204oveqd 7292 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦(.r𝑅)(𝑧𝑥)) = (𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)))
206205oveq1d 7290 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
2078ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
208 simplrl 774 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
209180ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
210208, 209eleqtrrd 2842 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
21148ffvelrnda 6961 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
21239ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
213211, 212eleqtrd 2841 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
214213adantlrl 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
21549ffvelrnda 6961 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
216215adantlr 712 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
217 eqid 2738 . . . . . . . . . . 11 (.r‘(Scalar‘𝑇)) = (.r‘(Scalar‘𝑇))
21819, 5, 3, 43, 217lmodvsass 20148 . . . . . . . . . 10 ((𝑇 ∈ LMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
219207, 210, 214, 216, 218syl13anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
220206, 219eqtrd 2778 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
221197adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
222115ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
22312ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
224 simpr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
225 fnfvof 7550 . . . . . . . . . 10 ((((𝑦( ·𝑠𝐹)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
226221, 222, 223, 224, 225syl22anc 836 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
22717fveq2d 6778 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
228227ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
229208, 228eleqtrrd 2842 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘𝑅))
230 simplrr 775 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧𝐵)
231 eqid 2738 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
23213, 1, 46, 223, 229, 230, 224, 2, 231frlmvscaval 20975 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦( ·𝑠𝐹)𝑧)‘𝑥) = (𝑦(.r𝑅)(𝑧𝑥)))
233232oveq1d 7290 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
234226, 233eqtrd 2778 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
23548ffnd 6601 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝑧 Fn 𝐼)
236235adantrl 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧 Fn 𝐼)
237236adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
238237, 222, 223, 224, 149syl22anc 836 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
239238oveq2d 7291 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦 · ((𝑧f · 𝐴)‘𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
240220, 234, 2393eqtr4d 2788 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (𝑦 · ((𝑧f · 𝐴)‘𝑥)))
241240mpteq2dva 5174 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥)) = (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥))))
242202, 241eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) = (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥))))
243242oveq2d 7291 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥)))))
244184feqmptd 6837 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧f · 𝐴) = (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))
245244oveq2d 7291 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑧f · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥))))
246245oveq2d 7291 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝑇 Σg (𝑧f · 𝐴))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))))
247189, 243, 2463eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
248 oveq1 7282 . . . . . 6 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑥f · 𝐴) = ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴))
249248oveq2d 7291 . . . . 5 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
250 ovex 7308 . . . . 5 (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) ∈ V
251249, 76, 250fvmpt 6875 . . . 4 ((𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
252194, 251syl 17 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
253173oveq2d 7291 . . . 4 (𝑧𝐵 → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
254253ad2antll 726 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
255247, 252, 2543eqtr4d 2788 . 2 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑦 · (𝐸𝑧)))
2561, 2, 3, 4, 5, 6, 15, 8, 18, 177, 255islmhmd 20301 1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531   supp csupp 7977  Fincfn 8733   finSupp cfsupp 9128  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  Grpcgrp 18577  CMndccmn 19386  Ringcrg 19783  LModclmod 20123   LMHom clmhm 20281   freeLMod cfrlm 20953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lmhm 20284  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954
This theorem is referenced by:  frlmup3  21007  frlmup4  21008  islindf5  21046  indlcim  21047  lnrfg  40944
  Copyright terms: Public domain W3C validator