MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup1 Structured version   Visualization version   GIF version

Theorem frlmup1 21735
Description: Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
Assertion
Ref Expression
frlmup1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmup.b . 2 𝐵 = (Base‘𝐹)
2 eqid 2731 . 2 ( ·𝑠𝐹) = ( ·𝑠𝐹)
3 frlmup.v . 2 · = ( ·𝑠𝑇)
4 eqid 2731 . 2 (Scalar‘𝐹) = (Scalar‘𝐹)
5 eqid 2731 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
6 eqid 2731 . 2 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
7 frlmup.r . . . 4 (𝜑𝑅 = (Scalar‘𝑇))
8 frlmup.t . . . . 5 (𝜑𝑇 ∈ LMod)
95lmodring 20801 . . . . 5 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
108, 9syl 17 . . . 4 (𝜑 → (Scalar‘𝑇) ∈ Ring)
117, 10eqeltrd 2831 . . 3 (𝜑𝑅 ∈ Ring)
12 frlmup.i . . 3 (𝜑𝐼𝑋)
13 frlmup.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
1413frlmlmod 21686 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝐹 ∈ LMod)
1511, 12, 14syl2anc 584 . 2 (𝜑𝐹 ∈ LMod)
1613frlmsca 21690 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑅 = (Scalar‘𝐹))
1711, 12, 16syl2anc 584 . . 3 (𝜑𝑅 = (Scalar‘𝐹))
187, 17eqtr3d 2768 . 2 (𝜑 → (Scalar‘𝑇) = (Scalar‘𝐹))
19 frlmup.c . . 3 𝐶 = (Base‘𝑇)
20 eqid 2731 . . 3 (+g𝐹) = (+g𝐹)
21 eqid 2731 . . 3 (+g𝑇) = (+g𝑇)
22 lmodgrp 20800 . . . 4 (𝐹 ∈ LMod → 𝐹 ∈ Grp)
2315, 22syl 17 . . 3 (𝜑𝐹 ∈ Grp)
24 lmodgrp 20800 . . . 4 (𝑇 ∈ LMod → 𝑇 ∈ Grp)
258, 24syl 17 . . 3 (𝜑𝑇 ∈ Grp)
26 eleq1w 2814 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
2726anbi2d 630 . . . . . 6 (𝑧 = 𝑥 → ((𝜑𝑧𝐵) ↔ (𝜑𝑥𝐵)))
28 oveq1 7353 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧f · 𝐴) = (𝑥f · 𝐴))
2928oveq2d 7362 . . . . . . 7 (𝑧 = 𝑥 → (𝑇 Σg (𝑧f · 𝐴)) = (𝑇 Σg (𝑥f · 𝐴)))
3029eleq1d 2816 . . . . . 6 (𝑧 = 𝑥 → ((𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶 ↔ (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶))
3127, 30imbi12d 344 . . . . 5 (𝑧 = 𝑥 → (((𝜑𝑧𝐵) → (𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶) ↔ ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶)))
32 eqid 2731 . . . . . 6 (0g𝑇) = (0g𝑇)
33 lmodcmn 20843 . . . . . . . 8 (𝑇 ∈ LMod → 𝑇 ∈ CMnd)
348, 33syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
3534adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝑇 ∈ CMnd)
3612adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝐼𝑋)
378ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑇 ∈ LMod)
38 simprl 770 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘𝑅))
397fveq2d 6826 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4039ad2antrr 726 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4138, 40eleqtrd 2833 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑇)))
42 simprr 772 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑦𝐶)
43 eqid 2731 . . . . . . . . 9 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
4419, 5, 3, 43lmodvscl 20811 . . . . . . . 8 ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑦𝐶) → (𝑥 · 𝑦) ∈ 𝐶)
4537, 41, 42, 44syl3anc 1373 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (𝑥 · 𝑦) ∈ 𝐶)
46 eqid 2731 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4713, 46, 1frlmbasf 21697 . . . . . . . 8 ((𝐼𝑋𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
4812, 47sylan 580 . . . . . . 7 ((𝜑𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
49 frlmup.a . . . . . . . 8 (𝜑𝐴:𝐼𝐶)
5049adantr 480 . . . . . . 7 ((𝜑𝑧𝐵) → 𝐴:𝐼𝐶)
51 inidm 4174 . . . . . . 7 (𝐼𝐼) = 𝐼
5245, 48, 50, 36, 36, 51off 7628 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧f · 𝐴):𝐼𝐶)
53 ovexd 7381 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) ∈ V)
5452ffund 6655 . . . . . . 7 ((𝜑𝑧𝐵) → Fun (𝑧f · 𝐴))
55 fvexd 6837 . . . . . . 7 ((𝜑𝑧𝐵) → (0g𝑇) ∈ V)
56 eqid 2731 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
5713, 56, 1frlmbasfsupp 21695 . . . . . . . . . 10 ((𝐼𝑋𝑧𝐵) → 𝑧 finSupp (0g𝑅))
5812, 57sylan 580 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g𝑅))
597fveq2d 6826 . . . . . . . . . . . 12 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
6059eqcomd 2737 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝑇)) = (0g𝑅))
6160breq2d 5101 . . . . . . . . . 10 (𝜑 → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6261adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6358, 62mpbird 257 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g‘(Scalar‘𝑇)))
6463fsuppimpd 9253 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin)
65 ssidd 3953 . . . . . . . 8 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
668ad2antrr 726 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → 𝑇 ∈ LMod)
67 eqid 2731 . . . . . . . . . 10 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
6819, 5, 3, 67, 32lmod0vs 20828 . . . . . . . . 9 ((𝑇 ∈ LMod ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
6966, 68sylancom 588 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
70 fvexd 6837 . . . . . . . 8 ((𝜑𝑧𝐵) → (0g‘(Scalar‘𝑇)) ∈ V)
7165, 69, 48, 50, 36, 70suppssof1 8129 . . . . . . 7 ((𝜑𝑧𝐵) → ((𝑧f · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
72 suppssfifsupp 9264 . . . . . . 7 ((((𝑧f · 𝐴) ∈ V ∧ Fun (𝑧f · 𝐴) ∧ (0g𝑇) ∈ V) ∧ ((𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin ∧ ((𝑧f · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))) → (𝑧f · 𝐴) finSupp (0g𝑇))
7353, 54, 55, 64, 71, 72syl32anc 1380 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) finSupp (0g𝑇))
7419, 32, 35, 36, 52, 73gsumcl 19827 . . . . 5 ((𝜑𝑧𝐵) → (𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶)
7531, 74chvarvv 1990 . . . 4 ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶)
76 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
7775, 76fmptd 7047 . . 3 (𝜑𝐸:𝐵𝐶)
7834adantr 480 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑇 ∈ CMnd)
7912adantr 480 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑋)
80 eleq1w 2814 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
8180anbi2d 630 . . . . . . . 8 (𝑧 = 𝑦 → ((𝜑𝑧𝐵) ↔ (𝜑𝑦𝐵)))
82 oveq1 7353 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧f · 𝐴) = (𝑦f · 𝐴))
8382feq1d 6633 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧f · 𝐴):𝐼𝐶 ↔ (𝑦f · 𝐴):𝐼𝐶))
8481, 83imbi12d 344 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧f · 𝐴):𝐼𝐶) ↔ ((𝜑𝑦𝐵) → (𝑦f · 𝐴):𝐼𝐶)))
8584, 52chvarvv 1990 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦f · 𝐴):𝐼𝐶)
8685adantrr 717 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴):𝐼𝐶)
8752adantrl 716 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴):𝐼𝐶)
8882breq1d 5099 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧f · 𝐴) finSupp (0g𝑇) ↔ (𝑦f · 𝐴) finSupp (0g𝑇)))
8981, 88imbi12d 344 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧f · 𝐴) finSupp (0g𝑇)) ↔ ((𝜑𝑦𝐵) → (𝑦f · 𝐴) finSupp (0g𝑇))))
9089, 73chvarvv 1990 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦f · 𝐴) finSupp (0g𝑇))
9190adantrr 717 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴) finSupp (0g𝑇))
9273adantrl 716 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴) finSupp (0g𝑇))
9319, 32, 21, 78, 79, 86, 87, 91, 92gsumadd 19835 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))) = ((𝑇 Σg (𝑦f · 𝐴))(+g𝑇)(𝑇 Σg (𝑧f · 𝐴))))
941, 20lmodvacl 20808 . . . . . . . 8 ((𝐹 ∈ LMod ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
95943expb 1120 . . . . . . 7 ((𝐹 ∈ LMod ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
9615, 95sylan 580 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
97 oveq1 7353 . . . . . . . 8 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑥f · 𝐴) = ((𝑦(+g𝐹)𝑧) ∘f · 𝐴))
9897oveq2d 7362 . . . . . . 7 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
99 ovex 7379 . . . . . . 7 (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)) ∈ V
10098, 76, 99fvmpt 6929 . . . . . 6 ((𝑦(+g𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
10196, 100syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
10211adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 ∈ Ring)
103 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
104 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
105 eqid 2731 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
10613, 1, 102, 79, 103, 104, 105, 20frlmplusgval 21701 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) = (𝑦f (+g𝑅)𝑧))
107106oveq1d 7361 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘f · 𝐴) = ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴))
10813, 46, 1frlmbasf 21697 . . . . . . . . . . . . 13 ((𝐼𝑋𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
10912, 108sylan 580 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
110109adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦:𝐼⟶(Base‘𝑅))
111110ffnd 6652 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦 Fn 𝐼)
11248adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧:𝐼⟶(Base‘𝑅))
113112ffnd 6652 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧 Fn 𝐼)
114111, 113, 79, 79, 51offn 7623 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f (+g𝑅)𝑧) Fn 𝐼)
11549ffnd 6652 . . . . . . . . . 10 (𝜑𝐴 Fn 𝐼)
116115adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴 Fn 𝐼)
117114, 116, 79, 79, 51offn 7623 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴) Fn 𝐼)
11885ffnd 6652 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑦f · 𝐴) Fn 𝐼)
119118adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴) Fn 𝐼)
12052ffnd 6652 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) Fn 𝐼)
121120adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴) Fn 𝐼)
122119, 121, 79, 79, 51offn 7623 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)) Fn 𝐼)
1237fveq2d 6826 . . . . . . . . . . . . . 14 (𝜑 → (+g𝑅) = (+g‘(Scalar‘𝑇)))
124123ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (+g𝑅) = (+g‘(Scalar‘𝑇)))
125124oveqd 7363 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦𝑥)(+g𝑅)(𝑧𝑥)) = ((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)))
126125oveq1d 7361 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
1278ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
128110ffvelcdmda 7017 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘𝑅))
12939ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
130128, 129eleqtrd 2833 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)))
131112ffvelcdmda 7017 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
132131, 129eleqtrd 2833 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
13349adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴:𝐼𝐶)
134133ffvelcdmda 7017 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
135 eqid 2731 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑇)) = (+g‘(Scalar‘𝑇))
13619, 21, 5, 3, 43, 135lmodvsdir 20819 . . . . . . . . . . . 12 ((𝑇 ∈ LMod ∧ ((𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
137127, 130, 132, 134, 136syl13anc 1374 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
138126, 137eqtrd 2766 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
139111adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 Fn 𝐼)
140113adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
14112ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
142 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
143 fnfvof 7627 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝑧 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦f (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
144139, 140, 141, 142, 143syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦f (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
145144oveq1d 7361 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)))
146115ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
147 fnfvof 7627 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦f · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
148139, 146, 141, 142, 147syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦f · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
149 fnfvof 7627 . . . . . . . . . . . 12 (((𝑧 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
150140, 146, 141, 142, 149syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
151148, 150oveq12d 7364 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
152138, 145, 1513eqtr4d 2776 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
153114adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦f (+g𝑅)𝑧) Fn 𝐼)
154 fnfvof 7627 . . . . . . . . . 10 ((((𝑦f (+g𝑅)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
155153, 146, 141, 142, 154syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
156119adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦f · 𝐴) Fn 𝐼)
157121adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧f · 𝐴) Fn 𝐼)
158 fnfvof 7627 . . . . . . . . . 10 ((((𝑦f · 𝐴) Fn 𝐼 ∧ (𝑧f · 𝐴) Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
159156, 157, 141, 142, 158syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
160152, 155, 1593eqtr4d 2776 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥))
161117, 122, 160eqfnfvd 6967 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴) = ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)))
162107, 161eqtrd 2766 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘f · 𝐴) = ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)))
163162oveq2d 7362 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)) = (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))))
164101, 163eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))))
165 oveq1 7353 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥f · 𝐴) = (𝑦f · 𝐴))
166165oveq2d 7362 . . . . . . 7 (𝑥 = 𝑦 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑦f · 𝐴)))
167 ovex 7379 . . . . . . 7 (𝑇 Σg (𝑦f · 𝐴)) ∈ V
168166, 76, 167fvmpt 6929 . . . . . 6 (𝑦𝐵 → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
169168ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
170 oveq1 7353 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥f · 𝐴) = (𝑧f · 𝐴))
171170oveq2d 7362 . . . . . . 7 (𝑥 = 𝑧 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑧f · 𝐴)))
172 ovex 7379 . . . . . . 7 (𝑇 Σg (𝑧f · 𝐴)) ∈ V
173171, 76, 172fvmpt 6929 . . . . . 6 (𝑧𝐵 → (𝐸𝑧) = (𝑇 Σg (𝑧f · 𝐴)))
174173ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑧) = (𝑇 Σg (𝑧f · 𝐴)))
175169, 174oveq12d 7364 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝐸𝑦)(+g𝑇)(𝐸𝑧)) = ((𝑇 Σg (𝑦f · 𝐴))(+g𝑇)(𝑇 Σg (𝑧f · 𝐴))))
17693, 164, 1753eqtr4d 2776 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = ((𝐸𝑦)(+g𝑇)(𝐸𝑧)))
1771, 19, 20, 21, 23, 25, 77, 176isghmd 19137 . 2 (𝜑𝐸 ∈ (𝐹 GrpHom 𝑇))
1788adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑇 ∈ LMod)
17912adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐼𝑋)
18018fveq2d 6826 . . . . . . . 8 (𝜑 → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
181180eleq2d 2817 . . . . . . 7 (𝜑 → (𝑦 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑦 ∈ (Base‘(Scalar‘𝐹))))
182181biimpar 477 . . . . . 6 ((𝜑𝑦 ∈ (Base‘(Scalar‘𝐹))) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
183182adantrr 717 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
18452adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧f · 𝐴):𝐼𝐶)
185184ffvelcdmda 7017 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) ∈ 𝐶)
18652feqmptd 6890 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) = (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))
187186, 73eqbrtrrd 5113 . . . . . 6 ((𝜑𝑧𝐵) → (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)) finSupp (0g𝑇))
188187adantrl 716 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)) finSupp (0g𝑇))
18919, 5, 43, 32, 21, 3, 178, 179, 183, 185, 188gsumvsmul 20859 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥)))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))))
19015adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐹 ∈ LMod)
191 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
192 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧𝐵)
1931, 4, 2, 6lmodvscl 20811 . . . . . . . . . . . 12 ((𝐹 ∈ LMod ∧ 𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
194190, 191, 192, 193syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
19513, 46, 1frlmbasf 21697 . . . . . . . . . . 11 ((𝐼𝑋 ∧ (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
196179, 194, 195syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
197196ffnd 6652 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
198115adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐴 Fn 𝐼)
199197, 198, 179, 179, 51offn 7623 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) Fn 𝐼)
200 dffn2 6653 . . . . . . . 8 (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) Fn 𝐼 ↔ ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴):𝐼⟶V)
201199, 200sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴):𝐼⟶V)
202201feqmptd 6890 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) = (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥)))
2037fveq2d 6826 . . . . . . . . . . . 12 (𝜑 → (.r𝑅) = (.r‘(Scalar‘𝑇)))
204203ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (.r𝑅) = (.r‘(Scalar‘𝑇)))
205204oveqd 7363 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦(.r𝑅)(𝑧𝑥)) = (𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)))
206205oveq1d 7361 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
2078ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
208 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
209180ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
210208, 209eleqtrrd 2834 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
21148ffvelcdmda 7017 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
21239ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
213211, 212eleqtrd 2833 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
214213adantlrl 720 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
21549ffvelcdmda 7017 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
216215adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
217 eqid 2731 . . . . . . . . . . 11 (.r‘(Scalar‘𝑇)) = (.r‘(Scalar‘𝑇))
21819, 5, 3, 43, 217lmodvsass 20820 . . . . . . . . . 10 ((𝑇 ∈ LMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
219207, 210, 214, 216, 218syl13anc 1374 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
220206, 219eqtrd 2766 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
221197adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
222115ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
22312ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
224 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
225 fnfvof 7627 . . . . . . . . . 10 ((((𝑦( ·𝑠𝐹)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
226221, 222, 223, 224, 225syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
22717fveq2d 6826 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
228227ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
229208, 228eleqtrrd 2834 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘𝑅))
230 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧𝐵)
231 eqid 2731 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
23213, 1, 46, 223, 229, 230, 224, 2, 231frlmvscaval 21705 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦( ·𝑠𝐹)𝑧)‘𝑥) = (𝑦(.r𝑅)(𝑧𝑥)))
233232oveq1d 7361 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
234226, 233eqtrd 2766 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
23548ffnd 6652 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝑧 Fn 𝐼)
236235adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧 Fn 𝐼)
237236adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
238237, 222, 223, 224, 149syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
239238oveq2d 7362 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦 · ((𝑧f · 𝐴)‘𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
240220, 234, 2393eqtr4d 2776 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (𝑦 · ((𝑧f · 𝐴)‘𝑥)))
241240mpteq2dva 5182 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥)) = (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥))))
242202, 241eqtrd 2766 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) = (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥))))
243242oveq2d 7362 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥)))))
244184feqmptd 6890 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧f · 𝐴) = (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))
245244oveq2d 7362 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑧f · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥))))
246245oveq2d 7362 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝑇 Σg (𝑧f · 𝐴))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))))
247189, 243, 2463eqtr4d 2776 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
248 oveq1 7353 . . . . . 6 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑥f · 𝐴) = ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴))
249248oveq2d 7362 . . . . 5 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
250 ovex 7379 . . . . 5 (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) ∈ V
251249, 76, 250fvmpt 6929 . . . 4 ((𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
252194, 251syl 17 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
253173oveq2d 7362 . . . 4 (𝑧𝐵 → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
254253ad2antll 729 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
255247, 252, 2543eqtr4d 2776 . 2 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑦 · (𝐸𝑧)))
2561, 2, 3, 4, 5, 6, 15, 8, 18, 177, 255islmhmd 20973 1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   class class class wbr 5089  cmpt 5170  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Grpcgrp 18846  CMndccmn 19692  Ringcrg 20151  LModclmod 20793   LMHom clmhm 20953   freeLMod cfrlm 21683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lmhm 20956  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684
This theorem is referenced by:  frlmup3  21737  frlmup4  21738  islindf5  21776  indlcim  21777  lnrfg  43211
  Copyright terms: Public domain W3C validator