Step | Hyp | Ref
| Expression |
1 | | frlmup.b |
. 2
⊢ 𝐵 = (Base‘𝐹) |
2 | | eqid 2825 |
. 2
⊢ (
·𝑠 ‘𝐹) = ( ·𝑠
‘𝐹) |
3 | | frlmup.v |
. 2
⊢ · = (
·𝑠 ‘𝑇) |
4 | | eqid 2825 |
. 2
⊢
(Scalar‘𝐹) =
(Scalar‘𝐹) |
5 | | eqid 2825 |
. 2
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
6 | | eqid 2825 |
. 2
⊢
(Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) |
7 | | frlmup.r |
. . . 4
⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
8 | | frlmup.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ LMod) |
9 | 5 | lmodring 19234 |
. . . . 5
⊢ (𝑇 ∈ LMod →
(Scalar‘𝑇) ∈
Ring) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
11 | 7, 10 | eqeltrd 2906 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | | frlmup.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑋) |
13 | | frlmup.f |
. . . 4
⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
14 | 13 | frlmlmod 20463 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → 𝐹 ∈ LMod) |
15 | 11, 12, 14 | syl2anc 579 |
. 2
⊢ (𝜑 → 𝐹 ∈ LMod) |
16 | 13 | frlmsca 20467 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → 𝑅 = (Scalar‘𝐹)) |
17 | 11, 12, 16 | syl2anc 579 |
. . 3
⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
18 | 7, 17 | eqtr3d 2863 |
. 2
⊢ (𝜑 → (Scalar‘𝑇) = (Scalar‘𝐹)) |
19 | | frlmup.c |
. . 3
⊢ 𝐶 = (Base‘𝑇) |
20 | | eqid 2825 |
. . 3
⊢
(+g‘𝐹) = (+g‘𝐹) |
21 | | eqid 2825 |
. . 3
⊢
(+g‘𝑇) = (+g‘𝑇) |
22 | | lmodgrp 19233 |
. . . 4
⊢ (𝐹 ∈ LMod → 𝐹 ∈ Grp) |
23 | 15, 22 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 ∈ Grp) |
24 | | lmodgrp 19233 |
. . . 4
⊢ (𝑇 ∈ LMod → 𝑇 ∈ Grp) |
25 | 8, 24 | syl 17 |
. . 3
⊢ (𝜑 → 𝑇 ∈ Grp) |
26 | | eleq1w 2889 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
27 | 26 | anbi2d 622 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝜑 ∧ 𝑧 ∈ 𝐵) ↔ (𝜑 ∧ 𝑥 ∈ 𝐵))) |
28 | | oveq1 6917 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑧 ∘𝑓 · 𝐴) = (𝑥 ∘𝑓 · 𝐴)) |
29 | 28 | oveq2d 6926 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)) = (𝑇 Σg (𝑥 ∘𝑓
·
𝐴))) |
30 | 29 | eleq1d 2891 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑇 Σg (𝑧 ∘𝑓
·
𝐴)) ∈ 𝐶 ↔ (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) ∈ 𝐶)) |
31 | 27, 30 | imbi12d 336 |
. . . . 5
⊢ (𝑧 = 𝑥 → (((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)) ∈ 𝐶) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) ∈ 𝐶))) |
32 | | eqid 2825 |
. . . . . 6
⊢
(0g‘𝑇) = (0g‘𝑇) |
33 | | lmodcmn 19274 |
. . . . . . . 8
⊢ (𝑇 ∈ LMod → 𝑇 ∈ CMnd) |
34 | 8, 33 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ CMnd) |
35 | 34 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑇 ∈ CMnd) |
36 | 12 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝐼 ∈ 𝑋) |
37 | 8 | ad2antrr 717 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → 𝑇 ∈ LMod) |
38 | | simprl 787 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → 𝑥 ∈ (Base‘𝑅)) |
39 | 7 | fveq2d 6441 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑇))) |
40 | 39 | ad2antrr 717 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → (Base‘𝑅) = (Base‘(Scalar‘𝑇))) |
41 | 38, 40 | eleqtrd 2908 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑇))) |
42 | | simprr 789 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → 𝑦 ∈ 𝐶) |
43 | | eqid 2825 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
44 | 19, 5, 3, 43 | lmodvscl 19243 |
. . . . . . . 8
⊢ ((𝑇 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑇)) ∧ 𝑦 ∈ 𝐶) → (𝑥 · 𝑦) ∈ 𝐶) |
45 | 37, 41, 42, 44 | syl3anc 1494 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐶)) → (𝑥 · 𝑦) ∈ 𝐶) |
46 | | eqid 2825 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
47 | 13, 46, 1 | frlmbasf 20474 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑋 ∧ 𝑧 ∈ 𝐵) → 𝑧:𝐼⟶(Base‘𝑅)) |
48 | 12, 47 | sylan 575 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧:𝐼⟶(Base‘𝑅)) |
49 | | frlmup.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
50 | 49 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝐴:𝐼⟶𝐶) |
51 | | inidm 4049 |
. . . . . . 7
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
52 | 45, 48, 50, 36, 36, 51 | off 7177 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴):𝐼⟶𝐶) |
53 | | ovex 6942 |
. . . . . . . 8
⊢ (𝑧 ∘𝑓
·
𝐴) ∈
V |
54 | 53 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴) ∈ V) |
55 | 52 | ffund 6286 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → Fun (𝑧 ∘𝑓 · 𝐴)) |
56 | | fvexd 6452 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (0g‘𝑇) ∈ V) |
57 | | eqid 2825 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
58 | 13, 57, 1 | frlmbasfsupp 20472 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑋 ∧ 𝑧 ∈ 𝐵) → 𝑧 finSupp (0g‘𝑅)) |
59 | 12, 58 | sylan 575 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 finSupp (0g‘𝑅)) |
60 | 7 | fveq2d 6441 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0g‘𝑅) =
(0g‘(Scalar‘𝑇))) |
61 | 60 | eqcomd 2831 |
. . . . . . . . . . 11
⊢ (𝜑 →
(0g‘(Scalar‘𝑇)) = (0g‘𝑅)) |
62 | 61 | breq2d 4887 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 finSupp
(0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g‘𝑅))) |
63 | 62 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 finSupp
(0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g‘𝑅))) |
64 | 59, 63 | mpbird 249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 finSupp
(0g‘(Scalar‘𝑇))) |
65 | 64 | fsuppimpd 8557 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 supp
(0g‘(Scalar‘𝑇))) ∈ Fin) |
66 | | ssidd 3849 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 supp
(0g‘(Scalar‘𝑇))) ⊆ (𝑧 supp
(0g‘(Scalar‘𝑇)))) |
67 | 8 | ad2antrr 717 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑤 ∈ 𝐶) → 𝑇 ∈ LMod) |
68 | | eqid 2825 |
. . . . . . . . . 10
⊢
(0g‘(Scalar‘𝑇)) =
(0g‘(Scalar‘𝑇)) |
69 | 19, 5, 3, 68, 32 | lmod0vs 19259 |
. . . . . . . . 9
⊢ ((𝑇 ∈ LMod ∧ 𝑤 ∈ 𝐶) →
((0g‘(Scalar‘𝑇)) · 𝑤) = (0g‘𝑇)) |
70 | 67, 69 | sylancom 582 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑤 ∈ 𝐶) →
((0g‘(Scalar‘𝑇)) · 𝑤) = (0g‘𝑇)) |
71 | | fvexd 6452 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) →
(0g‘(Scalar‘𝑇)) ∈ V) |
72 | 66, 70, 48, 50, 36, 71 | suppssof1 7598 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → ((𝑧 ∘𝑓 · 𝐴) supp
(0g‘𝑇))
⊆ (𝑧 supp
(0g‘(Scalar‘𝑇)))) |
73 | | suppssfifsupp 8565 |
. . . . . . 7
⊢ ((((𝑧 ∘𝑓
·
𝐴) ∈ V ∧ Fun
(𝑧
∘𝑓 · 𝐴) ∧ (0g‘𝑇) ∈ V) ∧ ((𝑧 supp
(0g‘(Scalar‘𝑇))) ∈ Fin ∧ ((𝑧 ∘𝑓 · 𝐴) supp
(0g‘𝑇))
⊆ (𝑧 supp
(0g‘(Scalar‘𝑇))))) → (𝑧 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)) |
74 | 54, 55, 56, 65, 72, 73 | syl32anc 1501 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)) |
75 | 19, 32, 35, 36, 52, 74 | gsumcl 18676 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)) ∈ 𝐶) |
76 | 31, 75 | chvarv 2416 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) ∈ 𝐶) |
77 | | frlmup.e |
. . . 4
⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘𝑓
·
𝐴))) |
78 | 76, 77 | fmptd 6638 |
. . 3
⊢ (𝜑 → 𝐸:𝐵⟶𝐶) |
79 | 34 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑇 ∈ CMnd) |
80 | 12 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐼 ∈ 𝑋) |
81 | | eleq1w 2889 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
82 | 81 | anbi2d 622 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝜑 ∧ 𝑧 ∈ 𝐵) ↔ (𝜑 ∧ 𝑦 ∈ 𝐵))) |
83 | | oveq1 6917 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 ∘𝑓 · 𝐴) = (𝑦 ∘𝑓 · 𝐴)) |
84 | 83 | feq1d 6267 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝑧 ∘𝑓 · 𝐴):𝐼⟶𝐶 ↔ (𝑦 ∘𝑓 · 𝐴):𝐼⟶𝐶)) |
85 | 82, 84 | imbi12d 336 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴):𝐼⟶𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘𝑓 · 𝐴):𝐼⟶𝐶))) |
86 | 85, 52 | chvarv 2416 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘𝑓 · 𝐴):𝐼⟶𝐶) |
87 | 86 | adantrr 708 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∘𝑓 · 𝐴):𝐼⟶𝐶) |
88 | 52 | adantrl 707 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∘𝑓 · 𝐴):𝐼⟶𝐶) |
89 | 83 | breq1d 4885 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝑧 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)
↔ (𝑦
∘𝑓 · 𝐴) finSupp (0g‘𝑇))) |
90 | 82, 89 | imbi12d 336 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇))
↔ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)))) |
91 | 90, 74 | chvarv 2416 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)) |
92 | 91 | adantrr 708 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)) |
93 | 74 | adantrl 707 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∘𝑓 · 𝐴) finSupp
(0g‘𝑇)) |
94 | 19, 32, 21, 79, 80, 87, 88, 92, 93 | gsumadd 18683 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg ((𝑦 ∘𝑓
·
𝐴)
∘𝑓 (+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))) = ((𝑇 Σg (𝑦 ∘𝑓
·
𝐴))(+g‘𝑇)(𝑇 Σg (𝑧 ∘𝑓
·
𝐴)))) |
95 | 1, 20 | lmodvacl 19240 |
. . . . . . . 8
⊢ ((𝐹 ∈ LMod ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝐹)𝑧) ∈ 𝐵) |
96 | 95 | 3expb 1153 |
. . . . . . 7
⊢ ((𝐹 ∈ LMod ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐹)𝑧) ∈ 𝐵) |
97 | 15, 96 | sylan 575 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐹)𝑧) ∈ 𝐵) |
98 | | oveq1 6917 |
. . . . . . . 8
⊢ (𝑥 = (𝑦(+g‘𝐹)𝑧) → (𝑥 ∘𝑓 · 𝐴) = ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴)) |
99 | 98 | oveq2d 6926 |
. . . . . . 7
⊢ (𝑥 = (𝑦(+g‘𝐹)𝑧) → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) = (𝑇 Σg ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
100 | | ovex 6942 |
. . . . . . 7
⊢ (𝑇 Σg
((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴)) ∈ V |
101 | 99, 77, 100 | fvmpt 6533 |
. . . . . 6
⊢ ((𝑦(+g‘𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦(+g‘𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
102 | 97, 101 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐸‘(𝑦(+g‘𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
103 | 11 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Ring) |
104 | | simprl 787 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
105 | | simprr 789 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
106 | | eqid 2825 |
. . . . . . . . 9
⊢
(+g‘𝑅) = (+g‘𝑅) |
107 | 13, 1, 103, 80, 104, 105, 106, 20 | frlmplusgval 20477 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐹)𝑧) = (𝑦 ∘𝑓
(+g‘𝑅)𝑧)) |
108 | 107 | oveq1d 6925 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴) = ((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴)) |
109 | 13, 46, 1 | frlmbasf 20474 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑋 ∧ 𝑦 ∈ 𝐵) → 𝑦:𝐼⟶(Base‘𝑅)) |
110 | 12, 109 | sylan 575 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦:𝐼⟶(Base‘𝑅)) |
111 | 110 | adantrr 708 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦:𝐼⟶(Base‘𝑅)) |
112 | 111 | ffnd 6283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 Fn 𝐼) |
113 | 48 | adantrl 707 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧:𝐼⟶(Base‘𝑅)) |
114 | 113 | ffnd 6283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 Fn 𝐼) |
115 | 112, 114,
80, 80, 51 | offn 7173 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∘𝑓
(+g‘𝑅)𝑧) Fn 𝐼) |
116 | 49 | ffnd 6283 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 Fn 𝐼) |
117 | 116 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐴 Fn 𝐼) |
118 | 115, 117,
80, 80, 51 | offn 7173 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴) Fn 𝐼) |
119 | 86 | ffnd 6283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 ∘𝑓 · 𝐴) Fn 𝐼) |
120 | 119 | adantrr 708 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∘𝑓 · 𝐴) Fn 𝐼) |
121 | 52 | ffnd 6283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴) Fn 𝐼) |
122 | 121 | adantrl 707 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∘𝑓 · 𝐴) Fn 𝐼) |
123 | 120, 122,
80, 80, 51 | offn 7173 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴)) Fn 𝐼) |
124 | 7 | fveq2d 6441 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (+g‘𝑅) =
(+g‘(Scalar‘𝑇))) |
125 | 124 | ad2antrr 717 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (+g‘𝑅) =
(+g‘(Scalar‘𝑇))) |
126 | 125 | oveqd 6927 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥)) = ((𝑦‘𝑥)(+g‘(Scalar‘𝑇))(𝑧‘𝑥))) |
127 | 126 | oveq1d 6925 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥)) = (((𝑦‘𝑥)(+g‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥))) |
128 | 8 | ad2antrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑇 ∈ LMod) |
129 | 111 | ffvelrnda 6613 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈ (Base‘𝑅)) |
130 | 39 | ad2antrr 717 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇))) |
131 | 129, 130 | eleqtrd 2908 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈ (Base‘(Scalar‘𝑇))) |
132 | 113 | ffvelrnda 6613 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑧‘𝑥) ∈ (Base‘𝑅)) |
133 | 132, 130 | eleqtrd 2908 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑧‘𝑥) ∈ (Base‘(Scalar‘𝑇))) |
134 | 49 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐴:𝐼⟶𝐶) |
135 | 134 | ffvelrnda 6613 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝐴‘𝑥) ∈ 𝐶) |
136 | | eqid 2825 |
. . . . . . . . . . . . 13
⊢
(+g‘(Scalar‘𝑇)) =
(+g‘(Scalar‘𝑇)) |
137 | 19, 21, 5, 3, 43, 136 | lmodvsdir 19250 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ LMod ∧ ((𝑦‘𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧‘𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴‘𝑥) ∈ 𝐶)) → (((𝑦‘𝑥)(+g‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥)) = (((𝑦‘𝑥) · (𝐴‘𝑥))(+g‘𝑇)((𝑧‘𝑥) · (𝐴‘𝑥)))) |
138 | 128, 131,
133, 135, 137 | syl13anc 1495 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦‘𝑥)(+g‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥)) = (((𝑦‘𝑥) · (𝐴‘𝑥))(+g‘𝑇)((𝑧‘𝑥) · (𝐴‘𝑥)))) |
139 | 127, 138 | eqtrd 2861 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥)) = (((𝑦‘𝑥) · (𝐴‘𝑥))(+g‘𝑇)((𝑧‘𝑥) · (𝐴‘𝑥)))) |
140 | 112 | adantr 474 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑦 Fn 𝐼) |
141 | 114 | adantr 474 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑧 Fn 𝐼) |
142 | 12 | ad2antrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑋) |
143 | | simpr 479 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
144 | | fnfvof 7176 |
. . . . . . . . . . . 12
⊢ (((𝑦 Fn 𝐼 ∧ 𝑧 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → ((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) = ((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥))) |
145 | 140, 141,
142, 143, 144 | syl22anc 872 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) = ((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥))) |
146 | 145 | oveq1d 6925 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) · (𝐴‘𝑥)) = (((𝑦‘𝑥)(+g‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥))) |
147 | 116 | ad2antrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝐴 Fn 𝐼) |
148 | | fnfvof 7176 |
. . . . . . . . . . . 12
⊢ (((𝑦 Fn 𝐼 ∧ 𝐴 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → ((𝑦 ∘𝑓 · 𝐴)‘𝑥) = ((𝑦‘𝑥) · (𝐴‘𝑥))) |
149 | 140, 147,
142, 143, 148 | syl22anc 872 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∘𝑓 · 𝐴)‘𝑥) = ((𝑦‘𝑥) · (𝐴‘𝑥))) |
150 | | fnfvof 7176 |
. . . . . . . . . . . 12
⊢ (((𝑧 Fn 𝐼 ∧ 𝐴 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → ((𝑧 ∘𝑓 · 𝐴)‘𝑥) = ((𝑧‘𝑥) · (𝐴‘𝑥))) |
151 | 141, 147,
142, 143, 150 | syl22anc 872 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑧 ∘𝑓 · 𝐴)‘𝑥) = ((𝑧‘𝑥) · (𝐴‘𝑥))) |
152 | 149, 151 | oveq12d 6928 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓 · 𝐴)‘𝑥)(+g‘𝑇)((𝑧 ∘𝑓 · 𝐴)‘𝑥)) = (((𝑦‘𝑥) · (𝐴‘𝑥))(+g‘𝑇)((𝑧‘𝑥) · (𝐴‘𝑥)))) |
153 | 139, 146,
152 | 3eqtr4d 2871 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) · (𝐴‘𝑥)) = (((𝑦 ∘𝑓 · 𝐴)‘𝑥)(+g‘𝑇)((𝑧 ∘𝑓 · 𝐴)‘𝑥))) |
154 | 115 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∘𝑓
(+g‘𝑅)𝑧) Fn 𝐼) |
155 | | fnfvof 7176 |
. . . . . . . . . 10
⊢ ((((𝑦 ∘𝑓
(+g‘𝑅)𝑧) Fn 𝐼 ∧ 𝐴 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → (((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) · (𝐴‘𝑥))) |
156 | 154, 147,
142, 143, 155 | syl22anc 872 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦 ∘𝑓
(+g‘𝑅)𝑧)‘𝑥) · (𝐴‘𝑥))) |
157 | 120 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∘𝑓 · 𝐴) Fn 𝐼) |
158 | 122 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑧 ∘𝑓 · 𝐴) Fn 𝐼) |
159 | | fnfvof 7176 |
. . . . . . . . . 10
⊢ ((((𝑦 ∘𝑓
·
𝐴) Fn 𝐼 ∧ (𝑧 ∘𝑓 · 𝐴) Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → (((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))‘𝑥) = (((𝑦 ∘𝑓 · 𝐴)‘𝑥)(+g‘𝑇)((𝑧 ∘𝑓 · 𝐴)‘𝑥))) |
160 | 157, 158,
142, 143, 159 | syl22anc 872 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))‘𝑥) = (((𝑦 ∘𝑓 · 𝐴)‘𝑥)(+g‘𝑇)((𝑧 ∘𝑓 · 𝐴)‘𝑥))) |
161 | 153, 156,
160 | 3eqtr4d 2871 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))‘𝑥)) |
162 | 118, 123,
161 | eqfnfvd 6568 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦 ∘𝑓
(+g‘𝑅)𝑧) ∘𝑓 · 𝐴) = ((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))) |
163 | 108, 162 | eqtrd 2861 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴) = ((𝑦 ∘𝑓 · 𝐴) ∘𝑓
(+g‘𝑇)(𝑧 ∘𝑓 · 𝐴))) |
164 | 163 | oveq2d 6926 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg ((𝑦(+g‘𝐹)𝑧) ∘𝑓 · 𝐴)) = (𝑇 Σg ((𝑦 ∘𝑓
·
𝐴)
∘𝑓 (+g‘𝑇)(𝑧 ∘𝑓 · 𝐴)))) |
165 | 102, 164 | eqtrd 2861 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐸‘(𝑦(+g‘𝐹)𝑧)) = (𝑇 Σg ((𝑦 ∘𝑓
·
𝐴)
∘𝑓 (+g‘𝑇)(𝑧 ∘𝑓 · 𝐴)))) |
166 | | oveq1 6917 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∘𝑓 · 𝐴) = (𝑦 ∘𝑓 · 𝐴)) |
167 | 166 | oveq2d 6926 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) = (𝑇 Σg (𝑦 ∘𝑓
·
𝐴))) |
168 | | ovex 6942 |
. . . . . . 7
⊢ (𝑇 Σg
(𝑦
∘𝑓 · 𝐴)) ∈ V |
169 | 167, 77, 168 | fvmpt 6533 |
. . . . . 6
⊢ (𝑦 ∈ 𝐵 → (𝐸‘𝑦) = (𝑇 Σg (𝑦 ∘𝑓
·
𝐴))) |
170 | 169 | ad2antrl 719 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐸‘𝑦) = (𝑇 Σg (𝑦 ∘𝑓
·
𝐴))) |
171 | | oveq1 6917 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ∘𝑓 · 𝐴) = (𝑧 ∘𝑓 · 𝐴)) |
172 | 171 | oveq2d 6926 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) = (𝑇 Σg (𝑧 ∘𝑓
·
𝐴))) |
173 | | ovex 6942 |
. . . . . . 7
⊢ (𝑇 Σg
(𝑧
∘𝑓 · 𝐴)) ∈ V |
174 | 172, 77, 173 | fvmpt 6533 |
. . . . . 6
⊢ (𝑧 ∈ 𝐵 → (𝐸‘𝑧) = (𝑇 Σg (𝑧 ∘𝑓
·
𝐴))) |
175 | 174 | ad2antll 720 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐸‘𝑧) = (𝑇 Σg (𝑧 ∘𝑓
·
𝐴))) |
176 | 170, 175 | oveq12d 6928 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝐸‘𝑦)(+g‘𝑇)(𝐸‘𝑧)) = ((𝑇 Σg (𝑦 ∘𝑓
·
𝐴))(+g‘𝑇)(𝑇 Σg (𝑧 ∘𝑓
·
𝐴)))) |
177 | 94, 165, 176 | 3eqtr4d 2871 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝐸‘(𝑦(+g‘𝐹)𝑧)) = ((𝐸‘𝑦)(+g‘𝑇)(𝐸‘𝑧))) |
178 | 1, 19, 20, 21, 23, 25, 78, 177 | isghmd 18027 |
. 2
⊢ (𝜑 → 𝐸 ∈ (𝐹 GrpHom 𝑇)) |
179 | 8 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝑇 ∈ LMod) |
180 | 12 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝐼 ∈ 𝑋) |
181 | 18 | fveq2d 6441 |
. . . . . . . 8
⊢ (𝜑 →
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹))) |
182 | 181 | eleq2d 2892 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑦 ∈ (Base‘(Scalar‘𝐹)))) |
183 | 182 | biimpar 471 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(Scalar‘𝐹))) → 𝑦 ∈ (Base‘(Scalar‘𝑇))) |
184 | 183 | adantrr 708 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝑇))) |
185 | 52 | adantrl 707 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∘𝑓 · 𝐴):𝐼⟶𝐶) |
186 | 185 | ffvelrnda 6613 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑧 ∘𝑓 · 𝐴)‘𝑥) ∈ 𝐶) |
187 | 52 | feqmptd 6500 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∘𝑓 · 𝐴) = (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥))) |
188 | 187, 74 | eqbrtrrd 4899 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥)) finSupp (0g‘𝑇)) |
189 | 188 | adantrl 707 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥)) finSupp (0g‘𝑇)) |
190 | 19, 5, 43, 32, 21, 3, 179, 180, 184, 186, 189 | gsumvsmul 19290 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg (𝑥 ∈ 𝐼 ↦ (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥)))) = (𝑦 · (𝑇 Σg (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥))))) |
191 | 15 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝐹 ∈ LMod) |
192 | | simprl 787 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝐹))) |
193 | | simprr 789 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
194 | 1, 4, 2, 6 | lmodvscl 19243 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ LMod ∧ 𝑦 ∈
(Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵) → (𝑦( ·𝑠
‘𝐹)𝑧) ∈ 𝐵) |
195 | 191, 192,
193, 194 | syl3anc 1494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑦( ·𝑠
‘𝐹)𝑧) ∈ 𝐵) |
196 | 13, 46, 1 | frlmbasf 20474 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑋 ∧ (𝑦( ·𝑠
‘𝐹)𝑧) ∈ 𝐵) → (𝑦( ·𝑠
‘𝐹)𝑧):𝐼⟶(Base‘𝑅)) |
197 | 180, 195,
196 | syl2anc 579 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑦( ·𝑠
‘𝐹)𝑧):𝐼⟶(Base‘𝑅)) |
198 | 197 | ffnd 6283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑦( ·𝑠
‘𝐹)𝑧) Fn 𝐼) |
199 | 116 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝐴 Fn 𝐼) |
200 | 198, 199,
180, 180, 51 | offn 7173 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴) Fn 𝐼) |
201 | | dffn2 6284 |
. . . . . . . 8
⊢ (((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴) Fn 𝐼 ↔ ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴):𝐼⟶V) |
202 | 200, 201 | sylib 210 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴):𝐼⟶V) |
203 | 202 | feqmptd 6500 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴) = (𝑥 ∈ 𝐼 ↦ (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥))) |
204 | 7 | fveq2d 6441 |
. . . . . . . . . . . 12
⊢ (𝜑 → (.r‘𝑅) =
(.r‘(Scalar‘𝑇))) |
205 | 204 | ad2antrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (.r‘𝑅) =
(.r‘(Scalar‘𝑇))) |
206 | 205 | oveqd 6927 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦(.r‘𝑅)(𝑧‘𝑥)) = (𝑦(.r‘(Scalar‘𝑇))(𝑧‘𝑥))) |
207 | 206 | oveq1d 6925 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦(.r‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥)) = ((𝑦(.r‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥))) |
208 | 8 | ad2antrr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑇 ∈ LMod) |
209 | | simplrl 795 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝐹))) |
210 | 181 | ad2antrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (Base‘(Scalar‘𝑇)) =
(Base‘(Scalar‘𝐹))) |
211 | 209, 210 | eleqtrrd 2909 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝑇))) |
212 | 48 | ffvelrnda 6613 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (𝑧‘𝑥) ∈ (Base‘𝑅)) |
213 | 39 | ad2antrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇))) |
214 | 212, 213 | eleqtrd 2908 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 ∈ 𝐼) → (𝑧‘𝑥) ∈ (Base‘(Scalar‘𝑇))) |
215 | 214 | adantlrl 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑧‘𝑥) ∈ (Base‘(Scalar‘𝑇))) |
216 | 49 | ffvelrnda 6613 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐴‘𝑥) ∈ 𝐶) |
217 | 216 | adantlr 706 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝐴‘𝑥) ∈ 𝐶) |
218 | | eqid 2825 |
. . . . . . . . . . 11
⊢
(.r‘(Scalar‘𝑇)) =
(.r‘(Scalar‘𝑇)) |
219 | 19, 5, 3, 43, 218 | lmodvsass 19251 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ LMod ∧ (𝑦 ∈
(Base‘(Scalar‘𝑇)) ∧ (𝑧‘𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴‘𝑥) ∈ 𝐶)) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥)) = (𝑦 · ((𝑧‘𝑥) · (𝐴‘𝑥)))) |
220 | 208, 211,
215, 217, 219 | syl13anc 1495 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧‘𝑥)) · (𝐴‘𝑥)) = (𝑦 · ((𝑧‘𝑥) · (𝐴‘𝑥)))) |
221 | 207, 220 | eqtrd 2861 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦(.r‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥)) = (𝑦 · ((𝑧‘𝑥) · (𝐴‘𝑥)))) |
222 | 198 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦( ·𝑠
‘𝐹)𝑧) Fn 𝐼) |
223 | 116 | ad2antrr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝐴 Fn 𝐼) |
224 | 12 | ad2antrr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑋) |
225 | | simpr 479 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
226 | | fnfvof 7176 |
. . . . . . . . . 10
⊢ ((((𝑦(
·𝑠 ‘𝐹)𝑧) Fn 𝐼 ∧ 𝐴 Fn 𝐼) ∧ (𝐼 ∈ 𝑋 ∧ 𝑥 ∈ 𝐼)) → (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦( ·𝑠
‘𝐹)𝑧)‘𝑥) · (𝐴‘𝑥))) |
227 | 222, 223,
224, 225, 226 | syl22anc 872 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (((𝑦( ·𝑠
‘𝐹)𝑧)‘𝑥) · (𝐴‘𝑥))) |
228 | 17 | fveq2d 6441 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝐹))) |
229 | 228 | ad2antrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝐹))) |
230 | 209, 229 | eleqtrrd 2909 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑦 ∈ (Base‘𝑅)) |
231 | | simplrr 796 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑧 ∈ 𝐵) |
232 | | eqid 2825 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
233 | 13, 1, 46, 224, 230, 231, 225, 2, 232 | frlmvscaval 20481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑦( ·𝑠
‘𝐹)𝑧)‘𝑥) = (𝑦(.r‘𝑅)(𝑧‘𝑥))) |
234 | 233 | oveq1d 6925 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦( ·𝑠
‘𝐹)𝑧)‘𝑥) · (𝐴‘𝑥)) = ((𝑦(.r‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥))) |
235 | 227, 234 | eqtrd 2861 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = ((𝑦(.r‘𝑅)(𝑧‘𝑥)) · (𝐴‘𝑥))) |
236 | 48 | ffnd 6283 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → 𝑧 Fn 𝐼) |
237 | 236 | adantrl 707 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → 𝑧 Fn 𝐼) |
238 | 237 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → 𝑧 Fn 𝐼) |
239 | 238, 223,
224, 225, 150 | syl22anc 872 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝑧 ∘𝑓 · 𝐴)‘𝑥) = ((𝑧‘𝑥) · (𝐴‘𝑥))) |
240 | 239 | oveq2d 6926 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥)) = (𝑦 · ((𝑧‘𝑥) · (𝐴‘𝑥)))) |
241 | 221, 235,
240 | 3eqtr4d 2871 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥) = (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥))) |
242 | 241 | mpteq2dva 4969 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐼 ↦ (((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)‘𝑥)) = (𝑥 ∈ 𝐼 ↦ (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥)))) |
243 | 203, 242 | eqtrd 2861 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴) = (𝑥 ∈ 𝐼 ↦ (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥)))) |
244 | 243 | oveq2d 6926 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg ((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴)) = (𝑇 Σg (𝑥 ∈ 𝐼 ↦ (𝑦 · ((𝑧 ∘𝑓
·
𝐴)‘𝑥))))) |
245 | 185 | feqmptd 6500 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∘𝑓 · 𝐴) = (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥))) |
246 | 245 | oveq2d 6926 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)) = (𝑇 Σg (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥)))) |
247 | 246 | oveq2d 6926 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑦 · (𝑇 Σg (𝑧 ∘𝑓
·
𝐴))) = (𝑦 · (𝑇 Σg (𝑥 ∈ 𝐼 ↦ ((𝑧 ∘𝑓 · 𝐴)‘𝑥))))) |
248 | 190, 244,
247 | 3eqtr4d 2871 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑇 Σg ((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴)) = (𝑦 · (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)))) |
249 | | oveq1 6917 |
. . . . . 6
⊢ (𝑥 = (𝑦( ·𝑠
‘𝐹)𝑧) → (𝑥 ∘𝑓 · 𝐴) = ((𝑦( ·𝑠
‘𝐹)𝑧) ∘𝑓 · 𝐴)) |
250 | 249 | oveq2d 6926 |
. . . . 5
⊢ (𝑥 = (𝑦( ·𝑠
‘𝐹)𝑧) → (𝑇 Σg (𝑥 ∘𝑓
·
𝐴)) = (𝑇 Σg ((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
251 | | ovex 6942 |
. . . . 5
⊢ (𝑇 Σg
((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴)) ∈ V |
252 | 250, 77, 251 | fvmpt 6533 |
. . . 4
⊢ ((𝑦(
·𝑠 ‘𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦( ·𝑠
‘𝐹)𝑧)) = (𝑇 Σg ((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
253 | 195, 252 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝐸‘(𝑦( ·𝑠
‘𝐹)𝑧)) = (𝑇 Σg ((𝑦(
·𝑠 ‘𝐹)𝑧) ∘𝑓 · 𝐴))) |
254 | 174 | oveq2d 6926 |
. . . 4
⊢ (𝑧 ∈ 𝐵 → (𝑦 · (𝐸‘𝑧)) = (𝑦 · (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)))) |
255 | 254 | ad2antll 720 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝑦 · (𝐸‘𝑧)) = (𝑦 · (𝑇 Σg (𝑧 ∘𝑓
·
𝐴)))) |
256 | 248, 253,
255 | 3eqtr4d 2871 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧 ∈ 𝐵)) → (𝐸‘(𝑦( ·𝑠
‘𝐹)𝑧)) = (𝑦 · (𝐸‘𝑧))) |
257 | 1, 2, 3, 4, 5, 6, 15, 8, 18, 178, 256 | islmhmd 19405 |
1
⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |