MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup1 Structured version   Visualization version   GIF version

Theorem frlmup1 21337
Description: Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
Assertion
Ref Expression
frlmup1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmup.b . 2 𝐵 = (Base‘𝐹)
2 eqid 2733 . 2 ( ·𝑠𝐹) = ( ·𝑠𝐹)
3 frlmup.v . 2 · = ( ·𝑠𝑇)
4 eqid 2733 . 2 (Scalar‘𝐹) = (Scalar‘𝐹)
5 eqid 2733 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
6 eqid 2733 . 2 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
7 frlmup.r . . . 4 (𝜑𝑅 = (Scalar‘𝑇))
8 frlmup.t . . . . 5 (𝜑𝑇 ∈ LMod)
95lmodring 20467 . . . . 5 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
108, 9syl 17 . . . 4 (𝜑 → (Scalar‘𝑇) ∈ Ring)
117, 10eqeltrd 2834 . . 3 (𝜑𝑅 ∈ Ring)
12 frlmup.i . . 3 (𝜑𝐼𝑋)
13 frlmup.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
1413frlmlmod 21288 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝐹 ∈ LMod)
1511, 12, 14syl2anc 585 . 2 (𝜑𝐹 ∈ LMod)
1613frlmsca 21292 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑅 = (Scalar‘𝐹))
1711, 12, 16syl2anc 585 . . 3 (𝜑𝑅 = (Scalar‘𝐹))
187, 17eqtr3d 2775 . 2 (𝜑 → (Scalar‘𝑇) = (Scalar‘𝐹))
19 frlmup.c . . 3 𝐶 = (Base‘𝑇)
20 eqid 2733 . . 3 (+g𝐹) = (+g𝐹)
21 eqid 2733 . . 3 (+g𝑇) = (+g𝑇)
22 lmodgrp 20466 . . . 4 (𝐹 ∈ LMod → 𝐹 ∈ Grp)
2315, 22syl 17 . . 3 (𝜑𝐹 ∈ Grp)
24 lmodgrp 20466 . . . 4 (𝑇 ∈ LMod → 𝑇 ∈ Grp)
258, 24syl 17 . . 3 (𝜑𝑇 ∈ Grp)
26 eleq1w 2817 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
2726anbi2d 630 . . . . . 6 (𝑧 = 𝑥 → ((𝜑𝑧𝐵) ↔ (𝜑𝑥𝐵)))
28 oveq1 7411 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧f · 𝐴) = (𝑥f · 𝐴))
2928oveq2d 7420 . . . . . . 7 (𝑧 = 𝑥 → (𝑇 Σg (𝑧f · 𝐴)) = (𝑇 Σg (𝑥f · 𝐴)))
3029eleq1d 2819 . . . . . 6 (𝑧 = 𝑥 → ((𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶 ↔ (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶))
3127, 30imbi12d 345 . . . . 5 (𝑧 = 𝑥 → (((𝜑𝑧𝐵) → (𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶) ↔ ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶)))
32 eqid 2733 . . . . . 6 (0g𝑇) = (0g𝑇)
33 lmodcmn 20508 . . . . . . . 8 (𝑇 ∈ LMod → 𝑇 ∈ CMnd)
348, 33syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
3534adantr 482 . . . . . 6 ((𝜑𝑧𝐵) → 𝑇 ∈ CMnd)
3612adantr 482 . . . . . 6 ((𝜑𝑧𝐵) → 𝐼𝑋)
378ad2antrr 725 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑇 ∈ LMod)
38 simprl 770 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘𝑅))
397fveq2d 6892 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4039ad2antrr 725 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4138, 40eleqtrd 2836 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑇)))
42 simprr 772 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑦𝐶)
43 eqid 2733 . . . . . . . . 9 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
4419, 5, 3, 43lmodvscl 20477 . . . . . . . 8 ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑦𝐶) → (𝑥 · 𝑦) ∈ 𝐶)
4537, 41, 42, 44syl3anc 1372 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (𝑥 · 𝑦) ∈ 𝐶)
46 eqid 2733 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4713, 46, 1frlmbasf 21299 . . . . . . . 8 ((𝐼𝑋𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
4812, 47sylan 581 . . . . . . 7 ((𝜑𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
49 frlmup.a . . . . . . . 8 (𝜑𝐴:𝐼𝐶)
5049adantr 482 . . . . . . 7 ((𝜑𝑧𝐵) → 𝐴:𝐼𝐶)
51 inidm 4217 . . . . . . 7 (𝐼𝐼) = 𝐼
5245, 48, 50, 36, 36, 51off 7683 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧f · 𝐴):𝐼𝐶)
53 ovexd 7439 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) ∈ V)
5452ffund 6718 . . . . . . 7 ((𝜑𝑧𝐵) → Fun (𝑧f · 𝐴))
55 fvexd 6903 . . . . . . 7 ((𝜑𝑧𝐵) → (0g𝑇) ∈ V)
56 eqid 2733 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
5713, 56, 1frlmbasfsupp 21297 . . . . . . . . . 10 ((𝐼𝑋𝑧𝐵) → 𝑧 finSupp (0g𝑅))
5812, 57sylan 581 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g𝑅))
597fveq2d 6892 . . . . . . . . . . . 12 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
6059eqcomd 2739 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝑇)) = (0g𝑅))
6160breq2d 5159 . . . . . . . . . 10 (𝜑 → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6261adantr 482 . . . . . . . . 9 ((𝜑𝑧𝐵) → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6358, 62mpbird 257 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g‘(Scalar‘𝑇)))
6463fsuppimpd 9365 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin)
65 ssidd 4004 . . . . . . . 8 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
668ad2antrr 725 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → 𝑇 ∈ LMod)
67 eqid 2733 . . . . . . . . . 10 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
6819, 5, 3, 67, 32lmod0vs 20493 . . . . . . . . 9 ((𝑇 ∈ LMod ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
6966, 68sylancom 589 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
70 fvexd 6903 . . . . . . . 8 ((𝜑𝑧𝐵) → (0g‘(Scalar‘𝑇)) ∈ V)
7165, 69, 48, 50, 36, 70suppssof1 8179 . . . . . . 7 ((𝜑𝑧𝐵) → ((𝑧f · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
72 suppssfifsupp 9374 . . . . . . 7 ((((𝑧f · 𝐴) ∈ V ∧ Fun (𝑧f · 𝐴) ∧ (0g𝑇) ∈ V) ∧ ((𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin ∧ ((𝑧f · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))) → (𝑧f · 𝐴) finSupp (0g𝑇))
7353, 54, 55, 64, 71, 72syl32anc 1379 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) finSupp (0g𝑇))
7419, 32, 35, 36, 52, 73gsumcl 19775 . . . . 5 ((𝜑𝑧𝐵) → (𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶)
7531, 74chvarvv 2003 . . . 4 ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶)
76 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
7775, 76fmptd 7109 . . 3 (𝜑𝐸:𝐵𝐶)
7834adantr 482 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑇 ∈ CMnd)
7912adantr 482 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑋)
80 eleq1w 2817 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
8180anbi2d 630 . . . . . . . 8 (𝑧 = 𝑦 → ((𝜑𝑧𝐵) ↔ (𝜑𝑦𝐵)))
82 oveq1 7411 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧f · 𝐴) = (𝑦f · 𝐴))
8382feq1d 6699 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧f · 𝐴):𝐼𝐶 ↔ (𝑦f · 𝐴):𝐼𝐶))
8481, 83imbi12d 345 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧f · 𝐴):𝐼𝐶) ↔ ((𝜑𝑦𝐵) → (𝑦f · 𝐴):𝐼𝐶)))
8584, 52chvarvv 2003 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦f · 𝐴):𝐼𝐶)
8685adantrr 716 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴):𝐼𝐶)
8752adantrl 715 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴):𝐼𝐶)
8882breq1d 5157 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧f · 𝐴) finSupp (0g𝑇) ↔ (𝑦f · 𝐴) finSupp (0g𝑇)))
8981, 88imbi12d 345 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧f · 𝐴) finSupp (0g𝑇)) ↔ ((𝜑𝑦𝐵) → (𝑦f · 𝐴) finSupp (0g𝑇))))
9089, 73chvarvv 2003 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦f · 𝐴) finSupp (0g𝑇))
9190adantrr 716 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴) finSupp (0g𝑇))
9273adantrl 715 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴) finSupp (0g𝑇))
9319, 32, 21, 78, 79, 86, 87, 91, 92gsumadd 19783 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))) = ((𝑇 Σg (𝑦f · 𝐴))(+g𝑇)(𝑇 Σg (𝑧f · 𝐴))))
941, 20lmodvacl 20474 . . . . . . . 8 ((𝐹 ∈ LMod ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
95943expb 1121 . . . . . . 7 ((𝐹 ∈ LMod ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
9615, 95sylan 581 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
97 oveq1 7411 . . . . . . . 8 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑥f · 𝐴) = ((𝑦(+g𝐹)𝑧) ∘f · 𝐴))
9897oveq2d 7420 . . . . . . 7 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
99 ovex 7437 . . . . . . 7 (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)) ∈ V
10098, 76, 99fvmpt 6994 . . . . . 6 ((𝑦(+g𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
10196, 100syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
10211adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 ∈ Ring)
103 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
104 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
105 eqid 2733 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
10613, 1, 102, 79, 103, 104, 105, 20frlmplusgval 21303 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) = (𝑦f (+g𝑅)𝑧))
107106oveq1d 7419 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘f · 𝐴) = ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴))
10813, 46, 1frlmbasf 21299 . . . . . . . . . . . . 13 ((𝐼𝑋𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
10912, 108sylan 581 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
110109adantrr 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦:𝐼⟶(Base‘𝑅))
111110ffnd 6715 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦 Fn 𝐼)
11248adantrl 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧:𝐼⟶(Base‘𝑅))
113112ffnd 6715 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧 Fn 𝐼)
114111, 113, 79, 79, 51offn 7678 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f (+g𝑅)𝑧) Fn 𝐼)
11549ffnd 6715 . . . . . . . . . 10 (𝜑𝐴 Fn 𝐼)
116115adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴 Fn 𝐼)
117114, 116, 79, 79, 51offn 7678 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴) Fn 𝐼)
11885ffnd 6715 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑦f · 𝐴) Fn 𝐼)
119118adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴) Fn 𝐼)
12052ffnd 6715 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) Fn 𝐼)
121120adantrl 715 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴) Fn 𝐼)
122119, 121, 79, 79, 51offn 7678 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)) Fn 𝐼)
1237fveq2d 6892 . . . . . . . . . . . . . 14 (𝜑 → (+g𝑅) = (+g‘(Scalar‘𝑇)))
124123ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (+g𝑅) = (+g‘(Scalar‘𝑇)))
125124oveqd 7421 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦𝑥)(+g𝑅)(𝑧𝑥)) = ((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)))
126125oveq1d 7419 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
1278ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
128110ffvelcdmda 7082 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘𝑅))
12939ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
130128, 129eleqtrd 2836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)))
131112ffvelcdmda 7082 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
132131, 129eleqtrd 2836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
13349adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴:𝐼𝐶)
134133ffvelcdmda 7082 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
135 eqid 2733 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑇)) = (+g‘(Scalar‘𝑇))
13619, 21, 5, 3, 43, 135lmodvsdir 20484 . . . . . . . . . . . 12 ((𝑇 ∈ LMod ∧ ((𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
137127, 130, 132, 134, 136syl13anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
138126, 137eqtrd 2773 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
139111adantr 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 Fn 𝐼)
140113adantr 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
14112ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
142 simpr 486 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
143 fnfvof 7682 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝑧 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦f (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
144139, 140, 141, 142, 143syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦f (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
145144oveq1d 7419 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)))
146115ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
147 fnfvof 7682 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦f · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
148139, 146, 141, 142, 147syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦f · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
149 fnfvof 7682 . . . . . . . . . . . 12 (((𝑧 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
150140, 146, 141, 142, 149syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
151148, 150oveq12d 7422 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
152138, 145, 1513eqtr4d 2783 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
153114adantr 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦f (+g𝑅)𝑧) Fn 𝐼)
154 fnfvof 7682 . . . . . . . . . 10 ((((𝑦f (+g𝑅)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
155153, 146, 141, 142, 154syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
156119adantr 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦f · 𝐴) Fn 𝐼)
157121adantr 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧f · 𝐴) Fn 𝐼)
158 fnfvof 7682 . . . . . . . . . 10 ((((𝑦f · 𝐴) Fn 𝐼 ∧ (𝑧f · 𝐴) Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
159156, 157, 141, 142, 158syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
160152, 155, 1593eqtr4d 2783 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥))
161117, 122, 160eqfnfvd 7031 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴) = ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)))
162107, 161eqtrd 2773 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘f · 𝐴) = ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)))
163162oveq2d 7420 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)) = (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))))
164101, 163eqtrd 2773 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))))
165 oveq1 7411 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥f · 𝐴) = (𝑦f · 𝐴))
166165oveq2d 7420 . . . . . . 7 (𝑥 = 𝑦 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑦f · 𝐴)))
167 ovex 7437 . . . . . . 7 (𝑇 Σg (𝑦f · 𝐴)) ∈ V
168166, 76, 167fvmpt 6994 . . . . . 6 (𝑦𝐵 → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
169168ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
170 oveq1 7411 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥f · 𝐴) = (𝑧f · 𝐴))
171170oveq2d 7420 . . . . . . 7 (𝑥 = 𝑧 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑧f · 𝐴)))
172 ovex 7437 . . . . . . 7 (𝑇 Σg (𝑧f · 𝐴)) ∈ V
173171, 76, 172fvmpt 6994 . . . . . 6 (𝑧𝐵 → (𝐸𝑧) = (𝑇 Σg (𝑧f · 𝐴)))
174173ad2antll 728 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑧) = (𝑇 Σg (𝑧f · 𝐴)))
175169, 174oveq12d 7422 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝐸𝑦)(+g𝑇)(𝐸𝑧)) = ((𝑇 Σg (𝑦f · 𝐴))(+g𝑇)(𝑇 Σg (𝑧f · 𝐴))))
17693, 164, 1753eqtr4d 2783 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = ((𝐸𝑦)(+g𝑇)(𝐸𝑧)))
1771, 19, 20, 21, 23, 25, 77, 176isghmd 19095 . 2 (𝜑𝐸 ∈ (𝐹 GrpHom 𝑇))
1788adantr 482 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑇 ∈ LMod)
17912adantr 482 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐼𝑋)
18018fveq2d 6892 . . . . . . . 8 (𝜑 → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
181180eleq2d 2820 . . . . . . 7 (𝜑 → (𝑦 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑦 ∈ (Base‘(Scalar‘𝐹))))
182181biimpar 479 . . . . . 6 ((𝜑𝑦 ∈ (Base‘(Scalar‘𝐹))) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
183182adantrr 716 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
18452adantrl 715 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧f · 𝐴):𝐼𝐶)
185184ffvelcdmda 7082 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) ∈ 𝐶)
18652feqmptd 6956 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) = (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))
187186, 73eqbrtrrd 5171 . . . . . 6 ((𝜑𝑧𝐵) → (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)) finSupp (0g𝑇))
188187adantrl 715 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)) finSupp (0g𝑇))
18919, 5, 43, 32, 21, 3, 178, 179, 183, 185, 188gsumvsmul 20524 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥)))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))))
19015adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐹 ∈ LMod)
191 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
192 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧𝐵)
1931, 4, 2, 6lmodvscl 20477 . . . . . . . . . . . 12 ((𝐹 ∈ LMod ∧ 𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
194190, 191, 192, 193syl3anc 1372 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
19513, 46, 1frlmbasf 21299 . . . . . . . . . . 11 ((𝐼𝑋 ∧ (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
196179, 194, 195syl2anc 585 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
197196ffnd 6715 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
198115adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐴 Fn 𝐼)
199197, 198, 179, 179, 51offn 7678 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) Fn 𝐼)
200 dffn2 6716 . . . . . . . 8 (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) Fn 𝐼 ↔ ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴):𝐼⟶V)
201199, 200sylib 217 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴):𝐼⟶V)
202201feqmptd 6956 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) = (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥)))
2037fveq2d 6892 . . . . . . . . . . . 12 (𝜑 → (.r𝑅) = (.r‘(Scalar‘𝑇)))
204203ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (.r𝑅) = (.r‘(Scalar‘𝑇)))
205204oveqd 7421 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦(.r𝑅)(𝑧𝑥)) = (𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)))
206205oveq1d 7419 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
2078ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
208 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
209180ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
210208, 209eleqtrrd 2837 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
21148ffvelcdmda 7082 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
21239ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
213211, 212eleqtrd 2836 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
214213adantlrl 719 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
21549ffvelcdmda 7082 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
216215adantlr 714 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
217 eqid 2733 . . . . . . . . . . 11 (.r‘(Scalar‘𝑇)) = (.r‘(Scalar‘𝑇))
21819, 5, 3, 43, 217lmodvsass 20485 . . . . . . . . . 10 ((𝑇 ∈ LMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
219207, 210, 214, 216, 218syl13anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
220206, 219eqtrd 2773 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
221197adantr 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
222115ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
22312ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
224 simpr 486 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
225 fnfvof 7682 . . . . . . . . . 10 ((((𝑦( ·𝑠𝐹)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
226221, 222, 223, 224, 225syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
22717fveq2d 6892 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
228227ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
229208, 228eleqtrrd 2837 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘𝑅))
230 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧𝐵)
231 eqid 2733 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
23213, 1, 46, 223, 229, 230, 224, 2, 231frlmvscaval 21307 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦( ·𝑠𝐹)𝑧)‘𝑥) = (𝑦(.r𝑅)(𝑧𝑥)))
233232oveq1d 7419 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
234226, 233eqtrd 2773 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
23548ffnd 6715 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝑧 Fn 𝐼)
236235adantrl 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧 Fn 𝐼)
237236adantr 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
238237, 222, 223, 224, 149syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
239238oveq2d 7420 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦 · ((𝑧f · 𝐴)‘𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
240220, 234, 2393eqtr4d 2783 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (𝑦 · ((𝑧f · 𝐴)‘𝑥)))
241240mpteq2dva 5247 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥)) = (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥))))
242202, 241eqtrd 2773 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) = (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥))))
243242oveq2d 7420 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥)))))
244184feqmptd 6956 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧f · 𝐴) = (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))
245244oveq2d 7420 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑧f · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥))))
246245oveq2d 7420 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝑇 Σg (𝑧f · 𝐴))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))))
247189, 243, 2463eqtr4d 2783 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
248 oveq1 7411 . . . . . 6 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑥f · 𝐴) = ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴))
249248oveq2d 7420 . . . . 5 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
250 ovex 7437 . . . . 5 (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) ∈ V
251249, 76, 250fvmpt 6994 . . . 4 ((𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
252194, 251syl 17 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
253173oveq2d 7420 . . . 4 (𝑧𝐵 → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
254253ad2antll 728 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
255247, 252, 2543eqtr4d 2783 . 2 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑦 · (𝐸𝑧)))
2561, 2, 3, 4, 5, 6, 15, 8, 18, 177, 255islmhmd 20638 1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  wss 3947   class class class wbr 5147  cmpt 5230  Fun wfun 6534   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7404  f cof 7663   supp csupp 8141  Fincfn 8935   finSupp cfsupp 9357  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381   Σg cgsu 17382  Grpcgrp 18815  CMndccmn 19641  Ringcrg 20047  LModclmod 20459   LMHom clmhm 20618   freeLMod cfrlm 21285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-subrg 20349  df-lmod 20461  df-lss 20531  df-lmhm 20621  df-sra 20773  df-rgmod 20774  df-dsmm 21271  df-frlm 21286
This theorem is referenced by:  frlmup3  21339  frlmup4  21340  islindf5  21378  indlcim  21379  lnrfg  41794
  Copyright terms: Public domain W3C validator