MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup1 Structured version   Visualization version   GIF version

Theorem frlmup1 21707
Description: Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
Assertion
Ref Expression
frlmup1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmup.b . 2 𝐵 = (Base‘𝐹)
2 eqid 2729 . 2 ( ·𝑠𝐹) = ( ·𝑠𝐹)
3 frlmup.v . 2 · = ( ·𝑠𝑇)
4 eqid 2729 . 2 (Scalar‘𝐹) = (Scalar‘𝐹)
5 eqid 2729 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
6 eqid 2729 . 2 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
7 frlmup.r . . . 4 (𝜑𝑅 = (Scalar‘𝑇))
8 frlmup.t . . . . 5 (𝜑𝑇 ∈ LMod)
95lmodring 20774 . . . . 5 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
108, 9syl 17 . . . 4 (𝜑 → (Scalar‘𝑇) ∈ Ring)
117, 10eqeltrd 2828 . . 3 (𝜑𝑅 ∈ Ring)
12 frlmup.i . . 3 (𝜑𝐼𝑋)
13 frlmup.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
1413frlmlmod 21658 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝐹 ∈ LMod)
1511, 12, 14syl2anc 584 . 2 (𝜑𝐹 ∈ LMod)
1613frlmsca 21662 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑅 = (Scalar‘𝐹))
1711, 12, 16syl2anc 584 . . 3 (𝜑𝑅 = (Scalar‘𝐹))
187, 17eqtr3d 2766 . 2 (𝜑 → (Scalar‘𝑇) = (Scalar‘𝐹))
19 frlmup.c . . 3 𝐶 = (Base‘𝑇)
20 eqid 2729 . . 3 (+g𝐹) = (+g𝐹)
21 eqid 2729 . . 3 (+g𝑇) = (+g𝑇)
22 lmodgrp 20773 . . . 4 (𝐹 ∈ LMod → 𝐹 ∈ Grp)
2315, 22syl 17 . . 3 (𝜑𝐹 ∈ Grp)
24 lmodgrp 20773 . . . 4 (𝑇 ∈ LMod → 𝑇 ∈ Grp)
258, 24syl 17 . . 3 (𝜑𝑇 ∈ Grp)
26 eleq1w 2811 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
2726anbi2d 630 . . . . . 6 (𝑧 = 𝑥 → ((𝜑𝑧𝐵) ↔ (𝜑𝑥𝐵)))
28 oveq1 7394 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧f · 𝐴) = (𝑥f · 𝐴))
2928oveq2d 7403 . . . . . . 7 (𝑧 = 𝑥 → (𝑇 Σg (𝑧f · 𝐴)) = (𝑇 Σg (𝑥f · 𝐴)))
3029eleq1d 2813 . . . . . 6 (𝑧 = 𝑥 → ((𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶 ↔ (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶))
3127, 30imbi12d 344 . . . . 5 (𝑧 = 𝑥 → (((𝜑𝑧𝐵) → (𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶) ↔ ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶)))
32 eqid 2729 . . . . . 6 (0g𝑇) = (0g𝑇)
33 lmodcmn 20816 . . . . . . . 8 (𝑇 ∈ LMod → 𝑇 ∈ CMnd)
348, 33syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
3534adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝑇 ∈ CMnd)
3612adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝐼𝑋)
378ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑇 ∈ LMod)
38 simprl 770 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘𝑅))
397fveq2d 6862 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4039ad2antrr 726 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4138, 40eleqtrd 2830 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑇)))
42 simprr 772 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑦𝐶)
43 eqid 2729 . . . . . . . . 9 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
4419, 5, 3, 43lmodvscl 20784 . . . . . . . 8 ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑦𝐶) → (𝑥 · 𝑦) ∈ 𝐶)
4537, 41, 42, 44syl3anc 1373 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (𝑥 · 𝑦) ∈ 𝐶)
46 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4713, 46, 1frlmbasf 21669 . . . . . . . 8 ((𝐼𝑋𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
4812, 47sylan 580 . . . . . . 7 ((𝜑𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
49 frlmup.a . . . . . . . 8 (𝜑𝐴:𝐼𝐶)
5049adantr 480 . . . . . . 7 ((𝜑𝑧𝐵) → 𝐴:𝐼𝐶)
51 inidm 4190 . . . . . . 7 (𝐼𝐼) = 𝐼
5245, 48, 50, 36, 36, 51off 7671 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧f · 𝐴):𝐼𝐶)
53 ovexd 7422 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) ∈ V)
5452ffund 6692 . . . . . . 7 ((𝜑𝑧𝐵) → Fun (𝑧f · 𝐴))
55 fvexd 6873 . . . . . . 7 ((𝜑𝑧𝐵) → (0g𝑇) ∈ V)
56 eqid 2729 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
5713, 56, 1frlmbasfsupp 21667 . . . . . . . . . 10 ((𝐼𝑋𝑧𝐵) → 𝑧 finSupp (0g𝑅))
5812, 57sylan 580 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g𝑅))
597fveq2d 6862 . . . . . . . . . . . 12 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
6059eqcomd 2735 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝑇)) = (0g𝑅))
6160breq2d 5119 . . . . . . . . . 10 (𝜑 → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6261adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6358, 62mpbird 257 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g‘(Scalar‘𝑇)))
6463fsuppimpd 9320 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin)
65 ssidd 3970 . . . . . . . 8 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
668ad2antrr 726 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → 𝑇 ∈ LMod)
67 eqid 2729 . . . . . . . . . 10 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
6819, 5, 3, 67, 32lmod0vs 20801 . . . . . . . . 9 ((𝑇 ∈ LMod ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
6966, 68sylancom 588 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
70 fvexd 6873 . . . . . . . 8 ((𝜑𝑧𝐵) → (0g‘(Scalar‘𝑇)) ∈ V)
7165, 69, 48, 50, 36, 70suppssof1 8178 . . . . . . 7 ((𝜑𝑧𝐵) → ((𝑧f · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
72 suppssfifsupp 9331 . . . . . . 7 ((((𝑧f · 𝐴) ∈ V ∧ Fun (𝑧f · 𝐴) ∧ (0g𝑇) ∈ V) ∧ ((𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin ∧ ((𝑧f · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))) → (𝑧f · 𝐴) finSupp (0g𝑇))
7353, 54, 55, 64, 71, 72syl32anc 1380 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) finSupp (0g𝑇))
7419, 32, 35, 36, 52, 73gsumcl 19845 . . . . 5 ((𝜑𝑧𝐵) → (𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶)
7531, 74chvarvv 1989 . . . 4 ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶)
76 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
7775, 76fmptd 7086 . . 3 (𝜑𝐸:𝐵𝐶)
7834adantr 480 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑇 ∈ CMnd)
7912adantr 480 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑋)
80 eleq1w 2811 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
8180anbi2d 630 . . . . . . . 8 (𝑧 = 𝑦 → ((𝜑𝑧𝐵) ↔ (𝜑𝑦𝐵)))
82 oveq1 7394 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧f · 𝐴) = (𝑦f · 𝐴))
8382feq1d 6670 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧f · 𝐴):𝐼𝐶 ↔ (𝑦f · 𝐴):𝐼𝐶))
8481, 83imbi12d 344 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧f · 𝐴):𝐼𝐶) ↔ ((𝜑𝑦𝐵) → (𝑦f · 𝐴):𝐼𝐶)))
8584, 52chvarvv 1989 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦f · 𝐴):𝐼𝐶)
8685adantrr 717 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴):𝐼𝐶)
8752adantrl 716 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴):𝐼𝐶)
8882breq1d 5117 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧f · 𝐴) finSupp (0g𝑇) ↔ (𝑦f · 𝐴) finSupp (0g𝑇)))
8981, 88imbi12d 344 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧f · 𝐴) finSupp (0g𝑇)) ↔ ((𝜑𝑦𝐵) → (𝑦f · 𝐴) finSupp (0g𝑇))))
9089, 73chvarvv 1989 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦f · 𝐴) finSupp (0g𝑇))
9190adantrr 717 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴) finSupp (0g𝑇))
9273adantrl 716 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴) finSupp (0g𝑇))
9319, 32, 21, 78, 79, 86, 87, 91, 92gsumadd 19853 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))) = ((𝑇 Σg (𝑦f · 𝐴))(+g𝑇)(𝑇 Σg (𝑧f · 𝐴))))
941, 20lmodvacl 20781 . . . . . . . 8 ((𝐹 ∈ LMod ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
95943expb 1120 . . . . . . 7 ((𝐹 ∈ LMod ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
9615, 95sylan 580 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
97 oveq1 7394 . . . . . . . 8 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑥f · 𝐴) = ((𝑦(+g𝐹)𝑧) ∘f · 𝐴))
9897oveq2d 7403 . . . . . . 7 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
99 ovex 7420 . . . . . . 7 (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)) ∈ V
10098, 76, 99fvmpt 6968 . . . . . 6 ((𝑦(+g𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
10196, 100syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
10211adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 ∈ Ring)
103 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
104 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
105 eqid 2729 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
10613, 1, 102, 79, 103, 104, 105, 20frlmplusgval 21673 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) = (𝑦f (+g𝑅)𝑧))
107106oveq1d 7402 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘f · 𝐴) = ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴))
10813, 46, 1frlmbasf 21669 . . . . . . . . . . . . 13 ((𝐼𝑋𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
10912, 108sylan 580 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
110109adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦:𝐼⟶(Base‘𝑅))
111110ffnd 6689 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦 Fn 𝐼)
11248adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧:𝐼⟶(Base‘𝑅))
113112ffnd 6689 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧 Fn 𝐼)
114111, 113, 79, 79, 51offn 7666 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f (+g𝑅)𝑧) Fn 𝐼)
11549ffnd 6689 . . . . . . . . . 10 (𝜑𝐴 Fn 𝐼)
116115adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴 Fn 𝐼)
117114, 116, 79, 79, 51offn 7666 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴) Fn 𝐼)
11885ffnd 6689 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑦f · 𝐴) Fn 𝐼)
119118adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴) Fn 𝐼)
12052ffnd 6689 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) Fn 𝐼)
121120adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴) Fn 𝐼)
122119, 121, 79, 79, 51offn 7666 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)) Fn 𝐼)
1237fveq2d 6862 . . . . . . . . . . . . . 14 (𝜑 → (+g𝑅) = (+g‘(Scalar‘𝑇)))
124123ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (+g𝑅) = (+g‘(Scalar‘𝑇)))
125124oveqd 7404 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦𝑥)(+g𝑅)(𝑧𝑥)) = ((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)))
126125oveq1d 7402 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
1278ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
128110ffvelcdmda 7056 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘𝑅))
12939ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
130128, 129eleqtrd 2830 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)))
131112ffvelcdmda 7056 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
132131, 129eleqtrd 2830 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
13349adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴:𝐼𝐶)
134133ffvelcdmda 7056 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
135 eqid 2729 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑇)) = (+g‘(Scalar‘𝑇))
13619, 21, 5, 3, 43, 135lmodvsdir 20792 . . . . . . . . . . . 12 ((𝑇 ∈ LMod ∧ ((𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
137127, 130, 132, 134, 136syl13anc 1374 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
138126, 137eqtrd 2764 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
139111adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 Fn 𝐼)
140113adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
14112ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
142 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
143 fnfvof 7670 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝑧 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦f (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
144139, 140, 141, 142, 143syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦f (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
145144oveq1d 7402 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)))
146115ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
147 fnfvof 7670 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦f · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
148139, 146, 141, 142, 147syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦f · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
149 fnfvof 7670 . . . . . . . . . . . 12 (((𝑧 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
150140, 146, 141, 142, 149syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
151148, 150oveq12d 7405 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
152138, 145, 1513eqtr4d 2774 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
153114adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦f (+g𝑅)𝑧) Fn 𝐼)
154 fnfvof 7670 . . . . . . . . . 10 ((((𝑦f (+g𝑅)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
155153, 146, 141, 142, 154syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
156119adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦f · 𝐴) Fn 𝐼)
157121adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧f · 𝐴) Fn 𝐼)
158 fnfvof 7670 . . . . . . . . . 10 ((((𝑦f · 𝐴) Fn 𝐼 ∧ (𝑧f · 𝐴) Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
159156, 157, 141, 142, 158syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
160152, 155, 1593eqtr4d 2774 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥))
161117, 122, 160eqfnfvd 7006 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴) = ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)))
162107, 161eqtrd 2764 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘f · 𝐴) = ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)))
163162oveq2d 7403 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)) = (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))))
164101, 163eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))))
165 oveq1 7394 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥f · 𝐴) = (𝑦f · 𝐴))
166165oveq2d 7403 . . . . . . 7 (𝑥 = 𝑦 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑦f · 𝐴)))
167 ovex 7420 . . . . . . 7 (𝑇 Σg (𝑦f · 𝐴)) ∈ V
168166, 76, 167fvmpt 6968 . . . . . 6 (𝑦𝐵 → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
169168ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
170 oveq1 7394 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥f · 𝐴) = (𝑧f · 𝐴))
171170oveq2d 7403 . . . . . . 7 (𝑥 = 𝑧 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑧f · 𝐴)))
172 ovex 7420 . . . . . . 7 (𝑇 Σg (𝑧f · 𝐴)) ∈ V
173171, 76, 172fvmpt 6968 . . . . . 6 (𝑧𝐵 → (𝐸𝑧) = (𝑇 Σg (𝑧f · 𝐴)))
174173ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑧) = (𝑇 Σg (𝑧f · 𝐴)))
175169, 174oveq12d 7405 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝐸𝑦)(+g𝑇)(𝐸𝑧)) = ((𝑇 Σg (𝑦f · 𝐴))(+g𝑇)(𝑇 Σg (𝑧f · 𝐴))))
17693, 164, 1753eqtr4d 2774 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = ((𝐸𝑦)(+g𝑇)(𝐸𝑧)))
1771, 19, 20, 21, 23, 25, 77, 176isghmd 19157 . 2 (𝜑𝐸 ∈ (𝐹 GrpHom 𝑇))
1788adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑇 ∈ LMod)
17912adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐼𝑋)
18018fveq2d 6862 . . . . . . . 8 (𝜑 → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
181180eleq2d 2814 . . . . . . 7 (𝜑 → (𝑦 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑦 ∈ (Base‘(Scalar‘𝐹))))
182181biimpar 477 . . . . . 6 ((𝜑𝑦 ∈ (Base‘(Scalar‘𝐹))) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
183182adantrr 717 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
18452adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧f · 𝐴):𝐼𝐶)
185184ffvelcdmda 7056 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) ∈ 𝐶)
18652feqmptd 6929 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) = (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))
187186, 73eqbrtrrd 5131 . . . . . 6 ((𝜑𝑧𝐵) → (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)) finSupp (0g𝑇))
188187adantrl 716 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)) finSupp (0g𝑇))
18919, 5, 43, 32, 21, 3, 178, 179, 183, 185, 188gsumvsmul 20832 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥)))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))))
19015adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐹 ∈ LMod)
191 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
192 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧𝐵)
1931, 4, 2, 6lmodvscl 20784 . . . . . . . . . . . 12 ((𝐹 ∈ LMod ∧ 𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
194190, 191, 192, 193syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
19513, 46, 1frlmbasf 21669 . . . . . . . . . . 11 ((𝐼𝑋 ∧ (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
196179, 194, 195syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
197196ffnd 6689 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
198115adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐴 Fn 𝐼)
199197, 198, 179, 179, 51offn 7666 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) Fn 𝐼)
200 dffn2 6690 . . . . . . . 8 (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) Fn 𝐼 ↔ ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴):𝐼⟶V)
201199, 200sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴):𝐼⟶V)
202201feqmptd 6929 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) = (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥)))
2037fveq2d 6862 . . . . . . . . . . . 12 (𝜑 → (.r𝑅) = (.r‘(Scalar‘𝑇)))
204203ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (.r𝑅) = (.r‘(Scalar‘𝑇)))
205204oveqd 7404 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦(.r𝑅)(𝑧𝑥)) = (𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)))
206205oveq1d 7402 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
2078ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
208 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
209180ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
210208, 209eleqtrrd 2831 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
21148ffvelcdmda 7056 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
21239ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
213211, 212eleqtrd 2830 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
214213adantlrl 720 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
21549ffvelcdmda 7056 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
216215adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
217 eqid 2729 . . . . . . . . . . 11 (.r‘(Scalar‘𝑇)) = (.r‘(Scalar‘𝑇))
21819, 5, 3, 43, 217lmodvsass 20793 . . . . . . . . . 10 ((𝑇 ∈ LMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
219207, 210, 214, 216, 218syl13anc 1374 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
220206, 219eqtrd 2764 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
221197adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
222115ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
22312ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
224 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
225 fnfvof 7670 . . . . . . . . . 10 ((((𝑦( ·𝑠𝐹)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
226221, 222, 223, 224, 225syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
22717fveq2d 6862 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
228227ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
229208, 228eleqtrrd 2831 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘𝑅))
230 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧𝐵)
231 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
23213, 1, 46, 223, 229, 230, 224, 2, 231frlmvscaval 21677 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦( ·𝑠𝐹)𝑧)‘𝑥) = (𝑦(.r𝑅)(𝑧𝑥)))
233232oveq1d 7402 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
234226, 233eqtrd 2764 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
23548ffnd 6689 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝑧 Fn 𝐼)
236235adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧 Fn 𝐼)
237236adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
238237, 222, 223, 224, 149syl22anc 838 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
239238oveq2d 7403 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦 · ((𝑧f · 𝐴)‘𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
240220, 234, 2393eqtr4d 2774 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (𝑦 · ((𝑧f · 𝐴)‘𝑥)))
241240mpteq2dva 5200 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥)) = (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥))))
242202, 241eqtrd 2764 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) = (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥))))
243242oveq2d 7403 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥)))))
244184feqmptd 6929 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧f · 𝐴) = (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))
245244oveq2d 7403 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑧f · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥))))
246245oveq2d 7403 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝑇 Σg (𝑧f · 𝐴))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))))
247189, 243, 2463eqtr4d 2774 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
248 oveq1 7394 . . . . . 6 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑥f · 𝐴) = ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴))
249248oveq2d 7403 . . . . 5 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
250 ovex 7420 . . . . 5 (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) ∈ V
251249, 76, 250fvmpt 6968 . . . 4 ((𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
252194, 251syl 17 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
253173oveq2d 7403 . . . 4 (𝑧𝐵 → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
254253ad2antll 729 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
255247, 252, 2543eqtr4d 2774 . 2 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑦 · (𝐸𝑧)))
2561, 2, 3, 4, 5, 6, 15, 8, 18, 177, 255islmhmd 20946 1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  Grpcgrp 18865  CMndccmn 19710  Ringcrg 20142  LModclmod 20766   LMHom clmhm 20926   freeLMod cfrlm 21655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lmhm 20929  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656
This theorem is referenced by:  frlmup3  21709  frlmup4  21710  islindf5  21748  indlcim  21749  lnrfg  43108
  Copyright terms: Public domain W3C validator