MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup1 Structured version   Visualization version   GIF version

Theorem frlmup1 20915
Description: Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmup.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup.b 𝐵 = (Base‘𝐹)
frlmup.c 𝐶 = (Base‘𝑇)
frlmup.v · = ( ·𝑠𝑇)
frlmup.e 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
frlmup.t (𝜑𝑇 ∈ LMod)
frlmup.i (𝜑𝐼𝑋)
frlmup.r (𝜑𝑅 = (Scalar‘𝑇))
frlmup.a (𝜑𝐴:𝐼𝐶)
Assertion
Ref Expression
frlmup1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Distinct variable groups:   𝑥,𝑅   𝑥,𝐼   𝑥,𝐹   𝑥,𝐵   𝑥,𝐶   𝑥, ·   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥   𝑥,𝑇
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem frlmup1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmup.b . 2 𝐵 = (Base‘𝐹)
2 eqid 2738 . 2 ( ·𝑠𝐹) = ( ·𝑠𝐹)
3 frlmup.v . 2 · = ( ·𝑠𝑇)
4 eqid 2738 . 2 (Scalar‘𝐹) = (Scalar‘𝐹)
5 eqid 2738 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
6 eqid 2738 . 2 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
7 frlmup.r . . . 4 (𝜑𝑅 = (Scalar‘𝑇))
8 frlmup.t . . . . 5 (𝜑𝑇 ∈ LMod)
95lmodring 20046 . . . . 5 (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring)
108, 9syl 17 . . . 4 (𝜑 → (Scalar‘𝑇) ∈ Ring)
117, 10eqeltrd 2839 . . 3 (𝜑𝑅 ∈ Ring)
12 frlmup.i . . 3 (𝜑𝐼𝑋)
13 frlmup.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
1413frlmlmod 20866 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝐹 ∈ LMod)
1511, 12, 14syl2anc 583 . 2 (𝜑𝐹 ∈ LMod)
1613frlmsca 20870 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑅 = (Scalar‘𝐹))
1711, 12, 16syl2anc 583 . . 3 (𝜑𝑅 = (Scalar‘𝐹))
187, 17eqtr3d 2780 . 2 (𝜑 → (Scalar‘𝑇) = (Scalar‘𝐹))
19 frlmup.c . . 3 𝐶 = (Base‘𝑇)
20 eqid 2738 . . 3 (+g𝐹) = (+g𝐹)
21 eqid 2738 . . 3 (+g𝑇) = (+g𝑇)
22 lmodgrp 20045 . . . 4 (𝐹 ∈ LMod → 𝐹 ∈ Grp)
2315, 22syl 17 . . 3 (𝜑𝐹 ∈ Grp)
24 lmodgrp 20045 . . . 4 (𝑇 ∈ LMod → 𝑇 ∈ Grp)
258, 24syl 17 . . 3 (𝜑𝑇 ∈ Grp)
26 eleq1w 2821 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
2726anbi2d 628 . . . . . 6 (𝑧 = 𝑥 → ((𝜑𝑧𝐵) ↔ (𝜑𝑥𝐵)))
28 oveq1 7262 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧f · 𝐴) = (𝑥f · 𝐴))
2928oveq2d 7271 . . . . . . 7 (𝑧 = 𝑥 → (𝑇 Σg (𝑧f · 𝐴)) = (𝑇 Σg (𝑥f · 𝐴)))
3029eleq1d 2823 . . . . . 6 (𝑧 = 𝑥 → ((𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶 ↔ (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶))
3127, 30imbi12d 344 . . . . 5 (𝑧 = 𝑥 → (((𝜑𝑧𝐵) → (𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶) ↔ ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶)))
32 eqid 2738 . . . . . 6 (0g𝑇) = (0g𝑇)
33 lmodcmn 20086 . . . . . . . 8 (𝑇 ∈ LMod → 𝑇 ∈ CMnd)
348, 33syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
3534adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝑇 ∈ CMnd)
3612adantr 480 . . . . . 6 ((𝜑𝑧𝐵) → 𝐼𝑋)
378ad2antrr 722 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑇 ∈ LMod)
38 simprl 767 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘𝑅))
397fveq2d 6760 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4039ad2antrr 722 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
4138, 40eleqtrd 2841 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑇)))
42 simprr 769 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → 𝑦𝐶)
43 eqid 2738 . . . . . . . . 9 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
4419, 5, 3, 43lmodvscl 20055 . . . . . . . 8 ((𝑇 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑇)) ∧ 𝑦𝐶) → (𝑥 · 𝑦) ∈ 𝐶)
4537, 41, 42, 44syl3anc 1369 . . . . . . 7 (((𝜑𝑧𝐵) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦𝐶)) → (𝑥 · 𝑦) ∈ 𝐶)
46 eqid 2738 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4713, 46, 1frlmbasf 20877 . . . . . . . 8 ((𝐼𝑋𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
4812, 47sylan 579 . . . . . . 7 ((𝜑𝑧𝐵) → 𝑧:𝐼⟶(Base‘𝑅))
49 frlmup.a . . . . . . . 8 (𝜑𝐴:𝐼𝐶)
5049adantr 480 . . . . . . 7 ((𝜑𝑧𝐵) → 𝐴:𝐼𝐶)
51 inidm 4149 . . . . . . 7 (𝐼𝐼) = 𝐼
5245, 48, 50, 36, 36, 51off 7529 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧f · 𝐴):𝐼𝐶)
53 ovexd 7290 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) ∈ V)
5452ffund 6588 . . . . . . 7 ((𝜑𝑧𝐵) → Fun (𝑧f · 𝐴))
55 fvexd 6771 . . . . . . 7 ((𝜑𝑧𝐵) → (0g𝑇) ∈ V)
56 eqid 2738 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
5713, 56, 1frlmbasfsupp 20875 . . . . . . . . . 10 ((𝐼𝑋𝑧𝐵) → 𝑧 finSupp (0g𝑅))
5812, 57sylan 579 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g𝑅))
597fveq2d 6760 . . . . . . . . . . . 12 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑇)))
6059eqcomd 2744 . . . . . . . . . . 11 (𝜑 → (0g‘(Scalar‘𝑇)) = (0g𝑅))
6160breq2d 5082 . . . . . . . . . 10 (𝜑 → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6261adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → (𝑧 finSupp (0g‘(Scalar‘𝑇)) ↔ 𝑧 finSupp (0g𝑅)))
6358, 62mpbird 256 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝑧 finSupp (0g‘(Scalar‘𝑇)))
6463fsuppimpd 9065 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin)
65 ssidd 3940 . . . . . . . 8 ((𝜑𝑧𝐵) → (𝑧 supp (0g‘(Scalar‘𝑇))) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
668ad2antrr 722 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → 𝑇 ∈ LMod)
67 eqid 2738 . . . . . . . . . 10 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
6819, 5, 3, 67, 32lmod0vs 20071 . . . . . . . . 9 ((𝑇 ∈ LMod ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
6966, 68sylancom 587 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ 𝑤𝐶) → ((0g‘(Scalar‘𝑇)) · 𝑤) = (0g𝑇))
70 fvexd 6771 . . . . . . . 8 ((𝜑𝑧𝐵) → (0g‘(Scalar‘𝑇)) ∈ V)
7165, 69, 48, 50, 36, 70suppssof1 7986 . . . . . . 7 ((𝜑𝑧𝐵) → ((𝑧f · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))
72 suppssfifsupp 9073 . . . . . . 7 ((((𝑧f · 𝐴) ∈ V ∧ Fun (𝑧f · 𝐴) ∧ (0g𝑇) ∈ V) ∧ ((𝑧 supp (0g‘(Scalar‘𝑇))) ∈ Fin ∧ ((𝑧f · 𝐴) supp (0g𝑇)) ⊆ (𝑧 supp (0g‘(Scalar‘𝑇))))) → (𝑧f · 𝐴) finSupp (0g𝑇))
7353, 54, 55, 64, 71, 72syl32anc 1376 . . . . . 6 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) finSupp (0g𝑇))
7419, 32, 35, 36, 52, 73gsumcl 19431 . . . . 5 ((𝜑𝑧𝐵) → (𝑇 Σg (𝑧f · 𝐴)) ∈ 𝐶)
7531, 74chvarvv 2003 . . . 4 ((𝜑𝑥𝐵) → (𝑇 Σg (𝑥f · 𝐴)) ∈ 𝐶)
76 frlmup.e . . . 4 𝐸 = (𝑥𝐵 ↦ (𝑇 Σg (𝑥f · 𝐴)))
7775, 76fmptd 6970 . . 3 (𝜑𝐸:𝐵𝐶)
7834adantr 480 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑇 ∈ CMnd)
7912adantr 480 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑋)
80 eleq1w 2821 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝐵𝑦𝐵))
8180anbi2d 628 . . . . . . . 8 (𝑧 = 𝑦 → ((𝜑𝑧𝐵) ↔ (𝜑𝑦𝐵)))
82 oveq1 7262 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧f · 𝐴) = (𝑦f · 𝐴))
8382feq1d 6569 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧f · 𝐴):𝐼𝐶 ↔ (𝑦f · 𝐴):𝐼𝐶))
8481, 83imbi12d 344 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧f · 𝐴):𝐼𝐶) ↔ ((𝜑𝑦𝐵) → (𝑦f · 𝐴):𝐼𝐶)))
8584, 52chvarvv 2003 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦f · 𝐴):𝐼𝐶)
8685adantrr 713 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴):𝐼𝐶)
8752adantrl 712 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴):𝐼𝐶)
8882breq1d 5080 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧f · 𝐴) finSupp (0g𝑇) ↔ (𝑦f · 𝐴) finSupp (0g𝑇)))
8981, 88imbi12d 344 . . . . . . 7 (𝑧 = 𝑦 → (((𝜑𝑧𝐵) → (𝑧f · 𝐴) finSupp (0g𝑇)) ↔ ((𝜑𝑦𝐵) → (𝑦f · 𝐴) finSupp (0g𝑇))))
9089, 73chvarvv 2003 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦f · 𝐴) finSupp (0g𝑇))
9190adantrr 713 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴) finSupp (0g𝑇))
9273adantrl 712 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴) finSupp (0g𝑇))
9319, 32, 21, 78, 79, 86, 87, 91, 92gsumadd 19439 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))) = ((𝑇 Σg (𝑦f · 𝐴))(+g𝑇)(𝑇 Σg (𝑧f · 𝐴))))
941, 20lmodvacl 20052 . . . . . . . 8 ((𝐹 ∈ LMod ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
95943expb 1118 . . . . . . 7 ((𝐹 ∈ LMod ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
9615, 95sylan 579 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) ∈ 𝐵)
97 oveq1 7262 . . . . . . . 8 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑥f · 𝐴) = ((𝑦(+g𝐹)𝑧) ∘f · 𝐴))
9897oveq2d 7271 . . . . . . 7 (𝑥 = (𝑦(+g𝐹)𝑧) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
99 ovex 7288 . . . . . . 7 (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)) ∈ V
10098, 76, 99fvmpt 6857 . . . . . 6 ((𝑦(+g𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
10196, 100syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)))
10211adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 ∈ Ring)
103 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
104 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
105 eqid 2738 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
10613, 1, 102, 79, 103, 104, 105, 20frlmplusgval 20881 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐹)𝑧) = (𝑦f (+g𝑅)𝑧))
107106oveq1d 7270 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘f · 𝐴) = ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴))
10813, 46, 1frlmbasf 20877 . . . . . . . . . . . . 13 ((𝐼𝑋𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
10912, 108sylan 579 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → 𝑦:𝐼⟶(Base‘𝑅))
110109adantrr 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦:𝐼⟶(Base‘𝑅))
111110ffnd 6585 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦 Fn 𝐼)
11248adantrl 712 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧:𝐼⟶(Base‘𝑅))
113112ffnd 6585 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧 Fn 𝐼)
114111, 113, 79, 79, 51offn 7524 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f (+g𝑅)𝑧) Fn 𝐼)
11549ffnd 6585 . . . . . . . . . 10 (𝜑𝐴 Fn 𝐼)
116115adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴 Fn 𝐼)
117114, 116, 79, 79, 51offn 7524 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴) Fn 𝐼)
11885ffnd 6585 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑦f · 𝐴) Fn 𝐼)
119118adantrr 713 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦f · 𝐴) Fn 𝐼)
12052ffnd 6585 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) Fn 𝐼)
121120adantrl 712 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑧f · 𝐴) Fn 𝐼)
122119, 121, 79, 79, 51offn 7524 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)) Fn 𝐼)
1237fveq2d 6760 . . . . . . . . . . . . . 14 (𝜑 → (+g𝑅) = (+g‘(Scalar‘𝑇)))
124123ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (+g𝑅) = (+g‘(Scalar‘𝑇)))
125124oveqd 7272 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦𝑥)(+g𝑅)(𝑧𝑥)) = ((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)))
126125oveq1d 7270 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
1278ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
128110ffvelrnda 6943 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘𝑅))
12939ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
130128, 129eleqtrd 2841 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)))
131112ffvelrnda 6943 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
132131, 129eleqtrd 2841 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
13349adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴:𝐼𝐶)
134133ffvelrnda 6943 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
135 eqid 2738 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑇)) = (+g‘(Scalar‘𝑇))
13619, 21, 5, 3, 43, 135lmodvsdir 20062 . . . . . . . . . . . 12 ((𝑇 ∈ LMod ∧ ((𝑦𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
137127, 130, 132, 134, 136syl13anc 1370 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
138126, 137eqtrd 2778 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
139111adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 Fn 𝐼)
140113adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
14112ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
142 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
143 fnfvof 7528 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝑧 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦f (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
144139, 140, 141, 142, 143syl22anc 835 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦f (+g𝑅)𝑧)‘𝑥) = ((𝑦𝑥)(+g𝑅)(𝑧𝑥)))
145144oveq1d 7270 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦𝑥)(+g𝑅)(𝑧𝑥)) · (𝐴𝑥)))
146115ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
147 fnfvof 7528 . . . . . . . . . . . 12 (((𝑦 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑦f · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
148139, 146, 141, 142, 147syl22anc 835 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦f · 𝐴)‘𝑥) = ((𝑦𝑥) · (𝐴𝑥)))
149 fnfvof 7528 . . . . . . . . . . . 12 (((𝑧 Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
150140, 146, 141, 142, 149syl22anc 835 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
151148, 150oveq12d 7273 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)) = (((𝑦𝑥) · (𝐴𝑥))(+g𝑇)((𝑧𝑥) · (𝐴𝑥))))
152138, 145, 1513eqtr4d 2788 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
153114adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦f (+g𝑅)𝑧) Fn 𝐼)
154 fnfvof 7528 . . . . . . . . . 10 ((((𝑦f (+g𝑅)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
155153, 146, 141, 142, 154syl22anc 835 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f (+g𝑅)𝑧)‘𝑥) · (𝐴𝑥)))
156119adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦f · 𝐴) Fn 𝐼)
157121adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧f · 𝐴) Fn 𝐼)
158 fnfvof 7528 . . . . . . . . . 10 ((((𝑦f · 𝐴) Fn 𝐼 ∧ (𝑧f · 𝐴) Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
159156, 157, 141, 142, 158syl22anc 835 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥) = (((𝑦f · 𝐴)‘𝑥)(+g𝑇)((𝑧f · 𝐴)‘𝑥)))
160152, 155, 1593eqtr4d 2788 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦f (+g𝑅)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))‘𝑥))
161117, 122, 160eqfnfvd 6894 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦f (+g𝑅)𝑧) ∘f · 𝐴) = ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)))
162107, 161eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝐹)𝑧) ∘f · 𝐴) = ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴)))
163162oveq2d 7271 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑇 Σg ((𝑦(+g𝐹)𝑧) ∘f · 𝐴)) = (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))))
164101, 163eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = (𝑇 Σg ((𝑦f · 𝐴) ∘f (+g𝑇)(𝑧f · 𝐴))))
165 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥f · 𝐴) = (𝑦f · 𝐴))
166165oveq2d 7271 . . . . . . 7 (𝑥 = 𝑦 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑦f · 𝐴)))
167 ovex 7288 . . . . . . 7 (𝑇 Σg (𝑦f · 𝐴)) ∈ V
168166, 76, 167fvmpt 6857 . . . . . 6 (𝑦𝐵 → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
169168ad2antrl 724 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑦) = (𝑇 Σg (𝑦f · 𝐴)))
170 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥f · 𝐴) = (𝑧f · 𝐴))
171170oveq2d 7271 . . . . . . 7 (𝑥 = 𝑧 → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg (𝑧f · 𝐴)))
172 ovex 7288 . . . . . . 7 (𝑇 Σg (𝑧f · 𝐴)) ∈ V
173171, 76, 172fvmpt 6857 . . . . . 6 (𝑧𝐵 → (𝐸𝑧) = (𝑇 Σg (𝑧f · 𝐴)))
174173ad2antll 725 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸𝑧) = (𝑇 Σg (𝑧f · 𝐴)))
175169, 174oveq12d 7273 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝐸𝑦)(+g𝑇)(𝐸𝑧)) = ((𝑇 Σg (𝑦f · 𝐴))(+g𝑇)(𝑇 Σg (𝑧f · 𝐴))))
17693, 164, 1753eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝐸‘(𝑦(+g𝐹)𝑧)) = ((𝐸𝑦)(+g𝑇)(𝐸𝑧)))
1771, 19, 20, 21, 23, 25, 77, 176isghmd 18758 . 2 (𝜑𝐸 ∈ (𝐹 GrpHom 𝑇))
1788adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑇 ∈ LMod)
17912adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐼𝑋)
18018fveq2d 6760 . . . . . . . 8 (𝜑 → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
181180eleq2d 2824 . . . . . . 7 (𝜑 → (𝑦 ∈ (Base‘(Scalar‘𝑇)) ↔ 𝑦 ∈ (Base‘(Scalar‘𝐹))))
182181biimpar 477 . . . . . 6 ((𝜑𝑦 ∈ (Base‘(Scalar‘𝐹))) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
183182adantrr 713 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
18452adantrl 712 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧f · 𝐴):𝐼𝐶)
185184ffvelrnda 6943 . . . . 5 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) ∈ 𝐶)
18652feqmptd 6819 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑧f · 𝐴) = (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))
187186, 73eqbrtrrd 5094 . . . . . 6 ((𝜑𝑧𝐵) → (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)) finSupp (0g𝑇))
188187adantrl 712 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)) finSupp (0g𝑇))
18919, 5, 43, 32, 21, 3, 178, 179, 183, 185, 188gsumvsmul 20102 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥)))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))))
19015adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐹 ∈ LMod)
191 simprl 767 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
192 simprr 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧𝐵)
1931, 4, 2, 6lmodvscl 20055 . . . . . . . . . . . 12 ((𝐹 ∈ LMod ∧ 𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
194190, 191, 192, 193syl3anc 1369 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵)
19513, 46, 1frlmbasf 20877 . . . . . . . . . . 11 ((𝐼𝑋 ∧ (𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
196179, 194, 195syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧):𝐼⟶(Base‘𝑅))
197196ffnd 6585 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
198115adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝐴 Fn 𝐼)
199197, 198, 179, 179, 51offn 7524 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) Fn 𝐼)
200 dffn2 6586 . . . . . . . 8 (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) Fn 𝐼 ↔ ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴):𝐼⟶V)
201199, 200sylib 217 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴):𝐼⟶V)
202201feqmptd 6819 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) = (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥)))
2037fveq2d 6760 . . . . . . . . . . . 12 (𝜑 → (.r𝑅) = (.r‘(Scalar‘𝑇)))
204203ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (.r𝑅) = (.r‘(Scalar‘𝑇)))
205204oveqd 7272 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦(.r𝑅)(𝑧𝑥)) = (𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)))
206205oveq1d 7270 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)))
2078ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑇 ∈ LMod)
208 simplrl 773 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝐹)))
209180ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝐹)))
210208, 209eleqtrrd 2842 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘(Scalar‘𝑇)))
21148ffvelrnda 6943 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘𝑅))
21239ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝑇)))
213211, 212eleqtrd 2841 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
214213adantlrl 716 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)))
21549ffvelrnda 6943 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
216215adantlr 711 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝐴𝑥) ∈ 𝐶)
217 eqid 2738 . . . . . . . . . . 11 (.r‘(Scalar‘𝑇)) = (.r‘(Scalar‘𝑇))
21819, 5, 3, 43, 217lmodvsass 20063 . . . . . . . . . 10 ((𝑇 ∈ LMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑇)) ∧ (𝑧𝑥) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐴𝑥) ∈ 𝐶)) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
219207, 210, 214, 216, 218syl13anc 1370 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r‘(Scalar‘𝑇))(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
220206, 219eqtrd 2778 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
221197adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦( ·𝑠𝐹)𝑧) Fn 𝐼)
222115ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐴 Fn 𝐼)
22312ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝐼𝑋)
224 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑥𝐼)
225 fnfvof 7528 . . . . . . . . . 10 ((((𝑦( ·𝑠𝐹)𝑧) Fn 𝐼𝐴 Fn 𝐼) ∧ (𝐼𝑋𝑥𝐼)) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
226221, 222, 223, 224, 225syl22anc 835 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)))
22717fveq2d 6760 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
228227ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
229208, 228eleqtrrd 2842 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑦 ∈ (Base‘𝑅))
230 simplrr 774 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧𝐵)
231 eqid 2738 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
23213, 1, 46, 223, 229, 230, 224, 2, 231frlmvscaval 20885 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑦( ·𝑠𝐹)𝑧)‘𝑥) = (𝑦(.r𝑅)(𝑧𝑥)))
233232oveq1d 7270 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧)‘𝑥) · (𝐴𝑥)) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
234226, 233eqtrd 2778 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = ((𝑦(.r𝑅)(𝑧𝑥)) · (𝐴𝑥)))
23548ffnd 6585 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝑧 Fn 𝐼)
236235adantrl 712 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → 𝑧 Fn 𝐼)
237236adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → 𝑧 Fn 𝐼)
238237, 222, 223, 224, 149syl22anc 835 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → ((𝑧f · 𝐴)‘𝑥) = ((𝑧𝑥) · (𝐴𝑥)))
239238oveq2d 7271 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (𝑦 · ((𝑧f · 𝐴)‘𝑥)) = (𝑦 · ((𝑧𝑥) · (𝐴𝑥))))
240220, 234, 2393eqtr4d 2788 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) ∧ 𝑥𝐼) → (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥) = (𝑦 · ((𝑧f · 𝐴)‘𝑥)))
241240mpteq2dva 5170 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑥𝐼 ↦ (((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)‘𝑥)) = (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥))))
242202, 241eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴) = (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥))))
243242oveq2d 7271 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ (𝑦 · ((𝑧f · 𝐴)‘𝑥)))))
244184feqmptd 6819 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑧f · 𝐴) = (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))
245244oveq2d 7271 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg (𝑧f · 𝐴)) = (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥))))
246245oveq2d 7271 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝑇 Σg (𝑧f · 𝐴))) = (𝑦 · (𝑇 Σg (𝑥𝐼 ↦ ((𝑧f · 𝐴)‘𝑥)))))
247189, 243, 2463eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
248 oveq1 7262 . . . . . 6 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑥f · 𝐴) = ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴))
249248oveq2d 7271 . . . . 5 (𝑥 = (𝑦( ·𝑠𝐹)𝑧) → (𝑇 Σg (𝑥f · 𝐴)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
250 ovex 7288 . . . . 5 (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)) ∈ V
251249, 76, 250fvmpt 6857 . . . 4 ((𝑦( ·𝑠𝐹)𝑧) ∈ 𝐵 → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
252194, 251syl 17 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑇 Σg ((𝑦( ·𝑠𝐹)𝑧) ∘f · 𝐴)))
253173oveq2d 7271 . . . 4 (𝑧𝐵 → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
254253ad2antll 725 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝑦 · (𝐸𝑧)) = (𝑦 · (𝑇 Σg (𝑧f · 𝐴))))
255247, 252, 2543eqtr4d 2788 . 2 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑧𝐵)) → (𝐸‘(𝑦( ·𝑠𝐹)𝑧)) = (𝑦 · (𝐸𝑧)))
2561, 2, 3, 4, 5, 6, 15, 8, 18, 177, 255islmhmd 20216 1 (𝜑𝐸 ∈ (𝐹 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509   supp csupp 7948  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Grpcgrp 18492  CMndccmn 19301  Ringcrg 19698  LModclmod 20038   LMHom clmhm 20196   freeLMod cfrlm 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lmhm 20199  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864
This theorem is referenced by:  frlmup3  20917  frlmup4  20918  islindf5  20956  indlcim  20957  lnrfg  40860
  Copyright terms: Public domain W3C validator