| Step | Hyp | Ref
| Expression |
| 1 | | lmmbr.3 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 2 | | lmmbr.2 |
. . . . 5
⊢ 𝐽 = (MetOpen‘𝐷) |
| 3 | 2 | mopntopon 24378 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | 1, 3 | syl 17 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | 4 | lmbr 23196 |
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)))) |
| 6 | | rpxr 13018 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ*) |
| 7 | 2 | blopn 24439 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑥) ∈ 𝐽) |
| 8 | 6, 7 | syl3an3 1165 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑥) ∈ 𝐽) |
| 9 | | blcntr 24352 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑥)) |
| 10 | | eleq2 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑃(ball‘𝐷)𝑥) → (𝑃 ∈ 𝑢 ↔ 𝑃 ∈ (𝑃(ball‘𝐷)𝑥))) |
| 11 | | feq3 6688 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (𝑃(ball‘𝐷)𝑥) → ((𝐹 ↾ 𝑦):𝑦⟶𝑢 ↔ (𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 12 | 11 | rexbidv 3164 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑃(ball‘𝐷)𝑥) → (∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢 ↔ ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 13 | 10, 12 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑃(ball‘𝐷)𝑥) → ((𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))) |
| 14 | 13 | rspcva 3599 |
. . . . . . . . . . . 12
⊢ (((𝑃(ball‘𝐷)𝑥) ∈ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)) → (𝑃 ∈ (𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 15 | 14 | impancom 451 |
. . . . . . . . . . 11
⊢ (((𝑃(ball‘𝐷)𝑥) ∈ 𝐽 ∧ 𝑃 ∈ (𝑃(ball‘𝐷)𝑥)) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 16 | 8, 9, 15 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) →
(∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 17 | 16 | 3expa 1118 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ℝ+) →
(∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 18 | 17 | adantlrl 720 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) ∧ 𝑥 ∈ ℝ+) →
(∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 19 | 18 | impancom 451 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)) → (𝑥 ∈ ℝ+ →
∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 20 | 19 | ralrimiv 3131 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) |
| 21 | 2 | mopni2 24432 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝐽 ∧ 𝑃 ∈ 𝑢) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) |
| 22 | | r19.29 3101 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑥 ∈ ℝ+ (∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢)) |
| 23 | | fss 6722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → (𝐹 ↾ 𝑦):𝑦⟶𝑢) |
| 24 | 23 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃(ball‘𝐷)𝑥) ⊆ 𝑢 → ((𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → (𝐹 ↾ 𝑦):𝑦⟶𝑢)) |
| 25 | 24 | reximdv 3155 |
. . . . . . . . . . . . . 14
⊢ ((𝑃(ball‘𝐷)𝑥) ⊆ 𝑢 → (∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)) |
| 26 | 25 | impcom 407 |
. . . . . . . . . . . . 13
⊢
((∃𝑦 ∈
ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢) |
| 27 | 26 | rexlimivw 3137 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
ℝ+ (∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢) |
| 28 | 22, 27 | syl 17 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢) |
| 29 | 21, 28 | sylan2 593 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢 ∈ 𝐽 ∧ 𝑃 ∈ 𝑢)) → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢) |
| 30 | 29 | 3exp2 1355 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → (𝐷 ∈ (∞Met‘𝑋) → (𝑢 ∈ 𝐽 → (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)))) |
| 31 | 30 | impcom 407 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → (𝑢 ∈ 𝐽 → (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢))) |
| 32 | 31 | adantlr 715 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → (𝑢 ∈ 𝐽 → (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢))) |
| 33 | 32 | ralrimiv 3131 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)) |
| 34 | 20, 33 | impbida 800 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋)) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 35 | 34 | pm5.32da 579 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))) |
| 36 | | df-3an 1088 |
. . . 4
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢))) |
| 37 | | df-3an 1088 |
. . . 4
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))) |
| 38 | 35, 36, 37 | 3bitr4g 314 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))) |
| 39 | 1, 38 | syl 17 |
. 2
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))) |
| 40 | 5, 39 | bitrd 279 |
1
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ran
ℤ≥(𝐹
↾ 𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))) |