MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr Structured version   Visualization version   GIF version

Theorem lmmbr 25165
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows to use objects more general than sequences when convenient; see the comment in df-lm 23123. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
Assertion
Ref Expression
lmmbr (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem lmmbr
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lmmbr.3 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 lmmbr.2 . . . . 5 𝐽 = (MetOpen‘𝐷)
32mopntopon 24334 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
41, 3syl 17 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
54lmbr 23152 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
6 rpxr 12968 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
72blopn 24395 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑥) ∈ 𝐽)
86, 7syl3an3 1165 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑥) ∈ 𝐽)
9 blcntr 24308 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑥))
10 eleq2 2818 . . . . . . . . . . . . . 14 (𝑢 = (𝑃(ball‘𝐷)𝑥) → (𝑃𝑢𝑃 ∈ (𝑃(ball‘𝐷)𝑥)))
11 feq3 6671 . . . . . . . . . . . . . . 15 (𝑢 = (𝑃(ball‘𝐷)𝑥) → ((𝐹𝑦):𝑦𝑢 ↔ (𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1211rexbidv 3158 . . . . . . . . . . . . . 14 (𝑢 = (𝑃(ball‘𝐷)𝑥) → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢 ↔ ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1310, 12imbi12d 344 . . . . . . . . . . . . 13 (𝑢 = (𝑃(ball‘𝐷)𝑥) → ((𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
1413rspcva 3589 . . . . . . . . . . . 12 (((𝑃(ball‘𝐷)𝑥) ∈ 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) → (𝑃 ∈ (𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1514impancom 451 . . . . . . . . . . 11 (((𝑃(ball‘𝐷)𝑥) ∈ 𝐽𝑃 ∈ (𝑃(ball‘𝐷)𝑥)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
168, 9, 15syl2anc 584 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
17163expa 1118 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1817adantlrl 720 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ 𝑥 ∈ ℝ+) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1918impancom 451 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
2019ralrimiv 3125 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) → ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))
212mopni2 24388 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑃𝑢) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢)
22 r19.29 3095 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑥 ∈ ℝ+ (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢))
23 fss 6707 . . . . . . . . . . . . . . . 16 (((𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → (𝐹𝑦):𝑦𝑢)
2423expcom 413 . . . . . . . . . . . . . . 15 ((𝑃(ball‘𝐷)𝑥) ⊆ 𝑢 → ((𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → (𝐹𝑦):𝑦𝑢))
2524reximdv 3149 . . . . . . . . . . . . . 14 ((𝑃(ball‘𝐷)𝑥) ⊆ 𝑢 → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))
2625impcom 407 . . . . . . . . . . . . 13 ((∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
2726rexlimivw 3131 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ+ (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
2822, 27syl 17 . . . . . . . . . . 11 ((∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
2921, 28sylan2 593 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑃𝑢)) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
30293exp2 1355 . . . . . . . . 9 (∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → (𝐷 ∈ (∞Met‘𝑋) → (𝑢𝐽 → (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
3130impcom 407 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → (𝑢𝐽 → (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
3231adantlr 715 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → (𝑢𝐽 → (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
3332ralrimiv 3125 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))
3420, 33impbida 800 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
3534pm5.32da 579 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
36 df-3an 1088 . . . 4 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
37 df-3an 1088 . . . 4 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
3835, 36, 373bitr4g 314 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
391, 38syl 17 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
405, 39bitrd 279 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  pm cpm 8803  cc 11073  *cxr 11214  cuz 12800  +crp 12958  ∞Metcxmet 21256  ballcbl 21258  MetOpencmopn 21261  TopOnctopon 22804  𝑡clm 23120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-lm 23123
This theorem is referenced by:  lmmbr2  25166  lmcau  25220
  Copyright terms: Public domain W3C validator