MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr Structured version   Visualization version   GIF version

Theorem lmmbr 23862
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 21834. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
Assertion
Ref Expression
lmmbr (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem lmmbr
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lmmbr.3 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 lmmbr.2 . . . . 5 𝐽 = (MetOpen‘𝐷)
32mopntopon 23046 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
41, 3syl 17 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
54lmbr 21863 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
6 rpxr 12386 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
72blopn 23107 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑥) ∈ 𝐽)
86, 7syl3an3 1162 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑥) ∈ 𝐽)
9 blcntr 23020 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑥))
10 eleq2 2878 . . . . . . . . . . . . . 14 (𝑢 = (𝑃(ball‘𝐷)𝑥) → (𝑃𝑢𝑃 ∈ (𝑃(ball‘𝐷)𝑥)))
11 feq3 6470 . . . . . . . . . . . . . . 15 (𝑢 = (𝑃(ball‘𝐷)𝑥) → ((𝐹𝑦):𝑦𝑢 ↔ (𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1211rexbidv 3256 . . . . . . . . . . . . . 14 (𝑢 = (𝑃(ball‘𝐷)𝑥) → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢 ↔ ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1310, 12imbi12d 348 . . . . . . . . . . . . 13 (𝑢 = (𝑃(ball‘𝐷)𝑥) → ((𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
1413rspcva 3569 . . . . . . . . . . . 12 (((𝑃(ball‘𝐷)𝑥) ∈ 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) → (𝑃 ∈ (𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1514impancom 455 . . . . . . . . . . 11 (((𝑃(ball‘𝐷)𝑥) ∈ 𝐽𝑃 ∈ (𝑃(ball‘𝐷)𝑥)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
168, 9, 15syl2anc 587 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
17163expa 1115 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1817adantlrl 719 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ 𝑥 ∈ ℝ+) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1918impancom 455 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
2019ralrimiv 3148 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) → ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))
212mopni2 23100 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑃𝑢) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢)
22 r19.29 3216 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑥 ∈ ℝ+ (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢))
23 fss 6501 . . . . . . . . . . . . . . . 16 (((𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → (𝐹𝑦):𝑦𝑢)
2423expcom 417 . . . . . . . . . . . . . . 15 ((𝑃(ball‘𝐷)𝑥) ⊆ 𝑢 → ((𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → (𝐹𝑦):𝑦𝑢))
2524reximdv 3232 . . . . . . . . . . . . . 14 ((𝑃(ball‘𝐷)𝑥) ⊆ 𝑢 → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))
2625impcom 411 . . . . . . . . . . . . 13 ((∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
2726rexlimivw 3241 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ+ (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
2822, 27syl 17 . . . . . . . . . . 11 ((∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
2921, 28sylan2 595 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑃𝑢)) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
30293exp2 1351 . . . . . . . . 9 (∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → (𝐷 ∈ (∞Met‘𝑋) → (𝑢𝐽 → (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
3130impcom 411 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → (𝑢𝐽 → (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
3231adantlr 714 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → (𝑢𝐽 → (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
3332ralrimiv 3148 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))
3420, 33impbida 800 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
3534pm5.32da 582 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
36 df-3an 1086 . . . 4 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
37 df-3an 1086 . . . 4 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
3835, 36, 373bitr4g 317 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
391, 38syl 17 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
405, 39bitrd 282 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  wss 3881   class class class wbr 5030  ran crn 5520  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  pm cpm 8390  cc 10524  *cxr 10663  cuz 12231  +crp 12377  ∞Metcxmet 20076  ballcbl 20078  MetOpencmopn 20081  TopOnctopon 21515  𝑡clm 21831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-lm 21834
This theorem is referenced by:  lmmbr2  23863  lmcau  23917
  Copyright terms: Public domain W3C validator