MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efi4p Structured version   Visualization version   GIF version

Theorem efi4p 15269
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
efi4p (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem efi4p
StepHypRef Expression
1 ax-icn 10331 . . . 4 i ∈ ℂ
2 mulcl 10356 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 680 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efi4p.1 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
54ef4p 15245 . . 3 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) = ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
63, 5syl 17 . 2 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
7 ax-1cn 10330 . . . . . 6 1 ∈ ℂ
8 addcl 10354 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
97, 3, 8sylancr 581 . . . . 5 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) ∈ ℂ)
103sqcld 13325 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ∈ ℂ)
1110halfcld 11627 . . . . 5 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) ∈ ℂ)
12 3nn0 11662 . . . . . . 7 3 ∈ ℕ0
13 expcl 13196 . . . . . . 7 (((i · 𝐴) ∈ ℂ ∧ 3 ∈ ℕ0) → ((i · 𝐴)↑3) ∈ ℂ)
143, 12, 13sylancl 580 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) ∈ ℂ)
15 6cn 11469 . . . . . . 7 6 ∈ ℂ
16 6re 11468 . . . . . . . 8 6 ∈ ℝ
17 6pos 11492 . . . . . . . 8 0 < 6
1816, 17gt0ne0ii 10911 . . . . . . 7 6 ≠ 0
19 divcl 11039 . . . . . . 7 ((((i · 𝐴)↑3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → (((i · 𝐴)↑3) / 6) ∈ ℂ)
2015, 18, 19mp3an23 1526 . . . . . 6 (((i · 𝐴)↑3) ∈ ℂ → (((i · 𝐴)↑3) / 6) ∈ ℂ)
2114, 20syl 17 . . . . 5 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) ∈ ℂ)
229, 11, 21addassd 10399 . . . 4 (𝐴 ∈ ℂ → (((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) = ((1 + (i · 𝐴)) + ((((i · 𝐴)↑2) / 2) + (((i · 𝐴)↑3) / 6))))
237a1i 11 . . . . 5 (𝐴 ∈ ℂ → 1 ∈ ℂ)
2423, 3, 11, 21add4d 10604 . . . 4 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) + ((((i · 𝐴)↑2) / 2) + (((i · 𝐴)↑3) / 6))) = ((1 + (((i · 𝐴)↑2) / 2)) + ((i · 𝐴) + (((i · 𝐴)↑3) / 6))))
25 2nn0 11661 . . . . . . . . . . 11 2 ∈ ℕ0
26 mulexp 13217 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
271, 25, 26mp3an13 1525 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
28 i2 13284 . . . . . . . . . . . 12 (i↑2) = -1
2928oveq1i 6932 . . . . . . . . . . 11 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2)))
31 sqcl 13243 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
3231mulm1d 10827 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
3327, 30, 323eqtrd 2817 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
3433oveq1d 6937 . . . . . . . 8 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) = (-(𝐴↑2) / 2))
35 2cn 11450 . . . . . . . . . 10 2 ∈ ℂ
36 2ne0 11486 . . . . . . . . . 10 2 ≠ 0
37 divneg 11067 . . . . . . . . . 10 (((𝐴↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
3835, 36, 37mp3an23 1526 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
3931, 38syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
4034, 39eqtr4d 2816 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) = -((𝐴↑2) / 2))
4140oveq2d 6938 . . . . . 6 (𝐴 ∈ ℂ → (1 + (((i · 𝐴)↑2) / 2)) = (1 + -((𝐴↑2) / 2)))
4231halfcld 11627 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ)
43 negsub 10671 . . . . . . 7 ((1 ∈ ℂ ∧ ((𝐴↑2) / 2) ∈ ℂ) → (1 + -((𝐴↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
447, 42, 43sylancr 581 . . . . . 6 (𝐴 ∈ ℂ → (1 + -((𝐴↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
4541, 44eqtrd 2813 . . . . 5 (𝐴 ∈ ℂ → (1 + (((i · 𝐴)↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
46 mulexp 13217 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → ((i · 𝐴)↑3) = ((i↑3) · (𝐴↑3)))
471, 12, 46mp3an13 1525 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) = ((i↑3) · (𝐴↑3)))
48 i3 13285 . . . . . . . . . . 11 (i↑3) = -i
4948oveq1i 6932 . . . . . . . . . 10 ((i↑3) · (𝐴↑3)) = (-i · (𝐴↑3))
5047, 49syl6eq 2829 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) = (-i · (𝐴↑3)))
5150oveq1d 6937 . . . . . . . 8 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) = ((-i · (𝐴↑3)) / 6))
52 expcl 13196 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
5312, 52mpan2 681 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑3) ∈ ℂ)
54 negicn 10623 . . . . . . . . . 10 -i ∈ ℂ
5515, 18pm3.2i 464 . . . . . . . . . 10 (6 ∈ ℂ ∧ 6 ≠ 0)
56 divass 11051 . . . . . . . . . 10 ((-i ∈ ℂ ∧ (𝐴↑3) ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0)) → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
5754, 55, 56mp3an13 1525 . . . . . . . . 9 ((𝐴↑3) ∈ ℂ → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
5853, 57syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
59 divcl 11039 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → ((𝐴↑3) / 6) ∈ ℂ)
6015, 18, 59mp3an23 1526 . . . . . . . . . 10 ((𝐴↑3) ∈ ℂ → ((𝐴↑3) / 6) ∈ ℂ)
6153, 60syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑3) / 6) ∈ ℂ)
62 mulneg12 10813 . . . . . . . . 9 ((i ∈ ℂ ∧ ((𝐴↑3) / 6) ∈ ℂ) → (-i · ((𝐴↑3) / 6)) = (i · -((𝐴↑3) / 6)))
631, 61, 62sylancr 581 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · ((𝐴↑3) / 6)) = (i · -((𝐴↑3) / 6)))
6451, 58, 633eqtrd 2817 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) = (i · -((𝐴↑3) / 6)))
6564oveq2d 6938 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴) + (((i · 𝐴)↑3) / 6)) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
6661negcld 10721 . . . . . . 7 (𝐴 ∈ ℂ → -((𝐴↑3) / 6) ∈ ℂ)
67 adddi 10361 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ -((𝐴↑3) / 6) ∈ ℂ) → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
681, 67mp3an1 1521 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -((𝐴↑3) / 6) ∈ ℂ) → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
6966, 68mpdan 677 . . . . . 6 (𝐴 ∈ ℂ → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
70 negsub 10671 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝐴↑3) / 6) ∈ ℂ) → (𝐴 + -((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 6)))
7161, 70mpdan 677 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 + -((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 6)))
7271oveq2d 6938 . . . . . 6 (𝐴 ∈ ℂ → (i · (𝐴 + -((𝐴↑3) / 6))) = (i · (𝐴 − ((𝐴↑3) / 6))))
7365, 69, 723eqtr2d 2819 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴) + (((i · 𝐴)↑3) / 6)) = (i · (𝐴 − ((𝐴↑3) / 6))))
7445, 73oveq12d 6940 . . . 4 (𝐴 ∈ ℂ → ((1 + (((i · 𝐴)↑2) / 2)) + ((i · 𝐴) + (((i · 𝐴)↑3) / 6))) = ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))))
7522, 24, 743eqtrd 2817 . . 3 (𝐴 ∈ ℂ → (((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) = ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))))
7675oveq1d 6937 . 2 (𝐴 ∈ ℂ → ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
776, 76eqtrd 2813 1 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wne 2968  cmpt 4965  cfv 6135  (class class class)co 6922  cc 10270  0cc0 10272  1c1 10273  ici 10274   + caddc 10275   · cmul 10277  cmin 10606  -cneg 10607   / cdiv 11032  2c2 11430  3c3 11431  4c4 11432  6c6 11434  0cn0 11642  cuz 11992  cexp 13178  !cfa 13378  Σcsu 14824  expce 15194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-ico 12493  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-fac 13379  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200
This theorem is referenced by:  resin4p  15270  recos4p  15271
  Copyright terms: Public domain W3C validator