MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efi4p Structured version   Visualization version   GIF version

Theorem efi4p 16019
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
efi4p (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem efi4p
StepHypRef Expression
1 ax-icn 11110 . . . 4 i ∈ ℂ
2 mulcl 11135 . . . 4 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 688 . . 3 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efi4p.1 . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
54ef4p 15995 . . 3 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) = ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
63, 5syl 17 . 2 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
7 ax-1cn 11109 . . . . . 6 1 ∈ ℂ
8 addcl 11133 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
97, 3, 8sylancr 587 . . . . 5 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) ∈ ℂ)
103sqcld 14049 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) ∈ ℂ)
1110halfcld 12398 . . . . 5 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) ∈ ℂ)
12 3nn0 12431 . . . . . . 7 3 ∈ ℕ0
13 expcl 13985 . . . . . . 7 (((i · 𝐴) ∈ ℂ ∧ 3 ∈ ℕ0) → ((i · 𝐴)↑3) ∈ ℂ)
143, 12, 13sylancl 586 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) ∈ ℂ)
15 6cn 12244 . . . . . . 7 6 ∈ ℂ
16 6re 12243 . . . . . . . 8 6 ∈ ℝ
17 6pos 12263 . . . . . . . 8 0 < 6
1816, 17gt0ne0ii 11691 . . . . . . 7 6 ≠ 0
19 divcl 11819 . . . . . . 7 ((((i · 𝐴)↑3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → (((i · 𝐴)↑3) / 6) ∈ ℂ)
2015, 18, 19mp3an23 1453 . . . . . 6 (((i · 𝐴)↑3) ∈ ℂ → (((i · 𝐴)↑3) / 6) ∈ ℂ)
2114, 20syl 17 . . . . 5 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) ∈ ℂ)
229, 11, 21addassd 11177 . . . 4 (𝐴 ∈ ℂ → (((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) = ((1 + (i · 𝐴)) + ((((i · 𝐴)↑2) / 2) + (((i · 𝐴)↑3) / 6))))
237a1i 11 . . . . 5 (𝐴 ∈ ℂ → 1 ∈ ℂ)
2423, 3, 11, 21add4d 11383 . . . 4 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) + ((((i · 𝐴)↑2) / 2) + (((i · 𝐴)↑3) / 6))) = ((1 + (((i · 𝐴)↑2) / 2)) + ((i · 𝐴) + (((i · 𝐴)↑3) / 6))))
25 2nn0 12430 . . . . . . . . . . 11 2 ∈ ℕ0
26 mulexp 14007 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
271, 25, 26mp3an13 1452 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
28 i2 14106 . . . . . . . . . . . 12 (i↑2) = -1
2928oveq1i 7367 . . . . . . . . . . 11 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2)))
31 sqcl 14023 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
3231mulm1d 11607 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
3327, 30, 323eqtrd 2780 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
3433oveq1d 7372 . . . . . . . 8 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) = (-(𝐴↑2) / 2))
35 2cn 12228 . . . . . . . . . 10 2 ∈ ℂ
36 2ne0 12257 . . . . . . . . . 10 2 ≠ 0
37 divneg 11847 . . . . . . . . . 10 (((𝐴↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
3835, 36, 37mp3an23 1453 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
3931, 38syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → -((𝐴↑2) / 2) = (-(𝐴↑2) / 2))
4034, 39eqtr4d 2779 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴)↑2) / 2) = -((𝐴↑2) / 2))
4140oveq2d 7373 . . . . . 6 (𝐴 ∈ ℂ → (1 + (((i · 𝐴)↑2) / 2)) = (1 + -((𝐴↑2) / 2)))
4231halfcld 12398 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑2) / 2) ∈ ℂ)
43 negsub 11449 . . . . . . 7 ((1 ∈ ℂ ∧ ((𝐴↑2) / 2) ∈ ℂ) → (1 + -((𝐴↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
447, 42, 43sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (1 + -((𝐴↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
4541, 44eqtrd 2776 . . . . 5 (𝐴 ∈ ℂ → (1 + (((i · 𝐴)↑2) / 2)) = (1 − ((𝐴↑2) / 2)))
46 mulexp 14007 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → ((i · 𝐴)↑3) = ((i↑3) · (𝐴↑3)))
471, 12, 46mp3an13 1452 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) = ((i↑3) · (𝐴↑3)))
48 i3 14107 . . . . . . . . . . 11 (i↑3) = -i
4948oveq1i 7367 . . . . . . . . . 10 ((i↑3) · (𝐴↑3)) = (-i · (𝐴↑3))
5047, 49eqtrdi 2792 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴)↑3) = (-i · (𝐴↑3)))
5150oveq1d 7372 . . . . . . . 8 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) = ((-i · (𝐴↑3)) / 6))
52 expcl 13985 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
5312, 52mpan2 689 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑3) ∈ ℂ)
54 negicn 11402 . . . . . . . . . 10 -i ∈ ℂ
5515, 18pm3.2i 471 . . . . . . . . . 10 (6 ∈ ℂ ∧ 6 ≠ 0)
56 divass 11831 . . . . . . . . . 10 ((-i ∈ ℂ ∧ (𝐴↑3) ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0)) → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
5754, 55, 56mp3an13 1452 . . . . . . . . 9 ((𝐴↑3) ∈ ℂ → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
5853, 57syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → ((-i · (𝐴↑3)) / 6) = (-i · ((𝐴↑3) / 6)))
59 divcl 11819 . . . . . . . . . . 11 (((𝐴↑3) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → ((𝐴↑3) / 6) ∈ ℂ)
6015, 18, 59mp3an23 1453 . . . . . . . . . 10 ((𝐴↑3) ∈ ℂ → ((𝐴↑3) / 6) ∈ ℂ)
6153, 60syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑3) / 6) ∈ ℂ)
62 mulneg12 11593 . . . . . . . . 9 ((i ∈ ℂ ∧ ((𝐴↑3) / 6) ∈ ℂ) → (-i · ((𝐴↑3) / 6)) = (i · -((𝐴↑3) / 6)))
631, 61, 62sylancr 587 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · ((𝐴↑3) / 6)) = (i · -((𝐴↑3) / 6)))
6451, 58, 633eqtrd 2780 . . . . . . 7 (𝐴 ∈ ℂ → (((i · 𝐴)↑3) / 6) = (i · -((𝐴↑3) / 6)))
6564oveq2d 7373 . . . . . 6 (𝐴 ∈ ℂ → ((i · 𝐴) + (((i · 𝐴)↑3) / 6)) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
6661negcld 11499 . . . . . . 7 (𝐴 ∈ ℂ → -((𝐴↑3) / 6) ∈ ℂ)
67 adddi 11140 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ -((𝐴↑3) / 6) ∈ ℂ) → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
681, 67mp3an1 1448 . . . . . . 7 ((𝐴 ∈ ℂ ∧ -((𝐴↑3) / 6) ∈ ℂ) → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
6966, 68mpdan 685 . . . . . 6 (𝐴 ∈ ℂ → (i · (𝐴 + -((𝐴↑3) / 6))) = ((i · 𝐴) + (i · -((𝐴↑3) / 6))))
70 negsub 11449 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((𝐴↑3) / 6) ∈ ℂ) → (𝐴 + -((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 6)))
7161, 70mpdan 685 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 + -((𝐴↑3) / 6)) = (𝐴 − ((𝐴↑3) / 6)))
7271oveq2d 7373 . . . . . 6 (𝐴 ∈ ℂ → (i · (𝐴 + -((𝐴↑3) / 6))) = (i · (𝐴 − ((𝐴↑3) / 6))))
7365, 69, 723eqtr2d 2782 . . . . 5 (𝐴 ∈ ℂ → ((i · 𝐴) + (((i · 𝐴)↑3) / 6)) = (i · (𝐴 − ((𝐴↑3) / 6))))
7445, 73oveq12d 7375 . . . 4 (𝐴 ∈ ℂ → ((1 + (((i · 𝐴)↑2) / 2)) + ((i · 𝐴) + (((i · 𝐴)↑3) / 6))) = ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))))
7522, 24, 743eqtrd 2780 . . 3 (𝐴 ∈ ℂ → (((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) = ((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))))
7675oveq1d 7372 . 2 (𝐴 ∈ ℂ → ((((1 + (i · 𝐴)) + (((i · 𝐴)↑2) / 2)) + (((i · 𝐴)↑3) / 6)) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
776, 76eqtrd 2776 1 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  3c3 12209  4c4 12210  6c6 12212  0cn0 12413  cuz 12763  cexp 13967  !cfa 14173  Σcsu 15570  expce 15944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-fac 14174  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950
This theorem is referenced by:  resin4p  16020  recos4p  16021
  Copyright terms: Public domain W3C validator