MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnlmod Structured version   Visualization version   GIF version

Theorem cnlmod 25047
Description: The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.)
Hypothesis
Ref Expression
cnlmod.w 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
Assertion
Ref Expression
cnlmod 𝑊 ∈ LMod

Proof of Theorem cnlmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11173 . 2 0 ∈ ℂ
2 cnlmod.w . . . . . 6 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
32cnlmodlem1 25043 . . . . 5 (Base‘𝑊) = ℂ
43eqcomi 2739 . . . 4 ℂ = (Base‘𝑊)
54a1i 11 . . 3 (0 ∈ ℂ → ℂ = (Base‘𝑊))
62cnlmodlem2 25044 . . . . 5 (+g𝑊) = +
76eqcomi 2739 . . . 4 + = (+g𝑊)
87a1i 11 . . 3 (0 ∈ ℂ → + = (+g𝑊))
9 addcl 11157 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1093adant1 1130 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
11 addass 11162 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1211adantl 481 . . 3 ((0 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
13 id 22 . . 3 (0 ∈ ℂ → 0 ∈ ℂ)
14 addlid 11364 . . . 4 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
1514adantl 481 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
16 negcl 11428 . . . 4 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
1716adantl 481 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -𝑥 ∈ ℂ)
18 id 22 . . . . . 6 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
1916, 18addcomd 11383 . . . . 5 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
2019adantl 481 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
21 negid 11476 . . . . 5 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
2221adantl 481 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + -𝑥) = 0)
2320, 22eqtrd 2765 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = 0)
245, 8, 10, 12, 13, 15, 17, 23isgrpd 18897 . 2 (0 ∈ ℂ → 𝑊 ∈ Grp)
254a1i 11 . . 3 (𝑊 ∈ Grp → ℂ = (Base‘𝑊))
267a1i 11 . . 3 (𝑊 ∈ Grp → + = (+g𝑊))
272cnlmodlem3 25045 . . . . 5 (Scalar‘𝑊) = ℂfld
2827eqcomi 2739 . . . 4 fld = (Scalar‘𝑊)
2928a1i 11 . . 3 (𝑊 ∈ Grp → ℂfld = (Scalar‘𝑊))
302cnlmod4 25046 . . . . 5 ( ·𝑠𝑊) = ·
3130eqcomi 2739 . . . 4 · = ( ·𝑠𝑊)
3231a1i 11 . . 3 (𝑊 ∈ Grp → · = ( ·𝑠𝑊))
33 cnfldbas 21275 . . . 4 ℂ = (Base‘ℂfld)
3433a1i 11 . . 3 (𝑊 ∈ Grp → ℂ = (Base‘ℂfld))
35 cnfldadd 21277 . . . 4 + = (+g‘ℂfld)
3635a1i 11 . . 3 (𝑊 ∈ Grp → + = (+g‘ℂfld))
37 cnfldmul 21279 . . . 4 · = (.r‘ℂfld)
3837a1i 11 . . 3 (𝑊 ∈ Grp → · = (.r‘ℂfld))
39 cnfld1 21312 . . . 4 1 = (1r‘ℂfld)
4039a1i 11 . . 3 (𝑊 ∈ Grp → 1 = (1r‘ℂfld))
41 cnring 21309 . . . 4 fld ∈ Ring
4241a1i 11 . . 3 (𝑊 ∈ Grp → ℂfld ∈ Ring)
43 id 22 . . 3 (𝑊 ∈ Grp → 𝑊 ∈ Grp)
44 mulcl 11159 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
45443adant1 1130 . . 3 ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
46 adddi 11164 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4746adantl 481 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
48 adddir 11172 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4948adantl 481 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
50 mulass 11163 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
5150adantl 481 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
52 mullid 11180 . . . 4 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
5352adantl 481 . . 3 ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥)
5425, 26, 29, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53islmodd 20779 . 2 (𝑊 ∈ Grp → 𝑊 ∈ LMod)
551, 24, 54mp2b 10 1 𝑊 ∈ LMod
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3915  {cpr 4594  cop 4598  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  -cneg 11413  ndxcnx 17170  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  Grpcgrp 18872  1rcur 20097  Ringcrg 20149  LModclmod 20773  fldccnfld 21271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-cmn 19719  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-lmod 20775  df-cnfld 21272
This theorem is referenced by:  cnstrcvs  25048
  Copyright terms: Public domain W3C validator