Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnlmod | Structured version Visualization version GIF version |
Description: The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.) |
Ref | Expression |
---|---|
cnlmod.w | ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) |
Ref | Expression |
---|---|
cnlmod | ⊢ 𝑊 ∈ LMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10898 | . 2 ⊢ 0 ∈ ℂ | |
2 | cnlmod.w | . . . . . 6 ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
3 | 2 | cnlmodlem1 24205 | . . . . 5 ⊢ (Base‘𝑊) = ℂ |
4 | 3 | eqcomi 2747 | . . . 4 ⊢ ℂ = (Base‘𝑊) |
5 | 4 | a1i 11 | . . 3 ⊢ (0 ∈ ℂ → ℂ = (Base‘𝑊)) |
6 | 2 | cnlmodlem2 24206 | . . . . 5 ⊢ (+g‘𝑊) = + |
7 | 6 | eqcomi 2747 | . . . 4 ⊢ + = (+g‘𝑊) |
8 | 7 | a1i 11 | . . 3 ⊢ (0 ∈ ℂ → + = (+g‘𝑊)) |
9 | addcl 10884 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
10 | 9 | 3adant1 1128 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
11 | addass 10889 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
12 | 11 | adantl 481 | . . 3 ⊢ ((0 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
13 | id 22 | . . 3 ⊢ (0 ∈ ℂ → 0 ∈ ℂ) | |
14 | addid2 11088 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
15 | 14 | adantl 481 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
16 | negcl 11151 | . . . 4 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
17 | 16 | adantl 481 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -𝑥 ∈ ℂ) |
18 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → 𝑥 ∈ ℂ) | |
19 | 16, 18 | addcomd 11107 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
20 | 19 | adantl 481 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
21 | negid 11198 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
22 | 21 | adantl 481 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + -𝑥) = 0) |
23 | 20, 22 | eqtrd 2778 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = 0) |
24 | 5, 8, 10, 12, 13, 15, 17, 23 | isgrpd 18516 | . 2 ⊢ (0 ∈ ℂ → 𝑊 ∈ Grp) |
25 | 4 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂ = (Base‘𝑊)) |
26 | 7 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → + = (+g‘𝑊)) |
27 | 2 | cnlmodlem3 24207 | . . . . 5 ⊢ (Scalar‘𝑊) = ℂfld |
28 | 27 | eqcomi 2747 | . . . 4 ⊢ ℂfld = (Scalar‘𝑊) |
29 | 28 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂfld = (Scalar‘𝑊)) |
30 | 2 | cnlmod4 24208 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = · |
31 | 30 | eqcomi 2747 | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) |
32 | 31 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → · = ( ·𝑠 ‘𝑊)) |
33 | cnfldbas 20514 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
34 | 33 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂ = (Base‘ℂfld)) |
35 | cnfldadd 20515 | . . . 4 ⊢ + = (+g‘ℂfld) | |
36 | 35 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → + = (+g‘ℂfld)) |
37 | cnfldmul 20516 | . . . 4 ⊢ · = (.r‘ℂfld) | |
38 | 37 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → · = (.r‘ℂfld)) |
39 | cnfld1 20535 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
40 | 39 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → 1 = (1r‘ℂfld)) |
41 | cnring 20532 | . . . 4 ⊢ ℂfld ∈ Ring | |
42 | 41 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂfld ∈ Ring) |
43 | id 22 | . . 3 ⊢ (𝑊 ∈ Grp → 𝑊 ∈ Grp) | |
44 | mulcl 10886 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
45 | 44 | 3adant1 1128 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
46 | adddi 10891 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
47 | 46 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
48 | adddir 10897 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
49 | 48 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
50 | mulass 10890 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
51 | 50 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
52 | mulid2 10905 | . . . 4 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
53 | 52 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥) |
54 | 25, 26, 29, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53 | islmodd 20044 | . 2 ⊢ (𝑊 ∈ Grp → 𝑊 ∈ LMod) |
55 | 1, 24, 54 | mp2b 10 | 1 ⊢ 𝑊 ∈ LMod |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 {cpr 4560 〈cop 4564 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 -cneg 11136 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 Grpcgrp 18492 1rcur 19652 Ringcrg 19698 LModclmod 20038 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-lmod 20040 df-cnfld 20511 |
This theorem is referenced by: cnstrcvs 24210 |
Copyright terms: Public domain | W3C validator |