![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnlmod | Structured version Visualization version GIF version |
Description: The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.) |
Ref | Expression |
---|---|
cnlmod.w | ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) |
Ref | Expression |
---|---|
cnlmod | ⊢ 𝑊 ∈ LMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10484 | . 2 ⊢ 0 ∈ ℂ | |
2 | cnlmod.w | . . . . . 6 ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
3 | 2 | cnlmodlem1 23428 | . . . . 5 ⊢ (Base‘𝑊) = ℂ |
4 | 3 | eqcomi 2804 | . . . 4 ⊢ ℂ = (Base‘𝑊) |
5 | 4 | a1i 11 | . . 3 ⊢ (0 ∈ ℂ → ℂ = (Base‘𝑊)) |
6 | 2 | cnlmodlem2 23429 | . . . . 5 ⊢ (+g‘𝑊) = + |
7 | 6 | eqcomi 2804 | . . . 4 ⊢ + = (+g‘𝑊) |
8 | 7 | a1i 11 | . . 3 ⊢ (0 ∈ ℂ → + = (+g‘𝑊)) |
9 | addcl 10470 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
10 | 9 | 3adant1 1123 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
11 | addass 10475 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
12 | 11 | adantl 482 | . . 3 ⊢ ((0 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
13 | id 22 | . . 3 ⊢ (0 ∈ ℂ → 0 ∈ ℂ) | |
14 | addid2 10675 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
15 | 14 | adantl 482 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
16 | negcl 10738 | . . . 4 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
17 | 16 | adantl 482 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -𝑥 ∈ ℂ) |
18 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → 𝑥 ∈ ℂ) | |
19 | 16, 18 | addcomd 10694 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
20 | 19 | adantl 482 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
21 | negid 10786 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
22 | 21 | adantl 482 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + -𝑥) = 0) |
23 | 20, 22 | eqtrd 2831 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = 0) |
24 | 5, 8, 10, 12, 13, 15, 17, 23 | isgrpd 17888 | . 2 ⊢ (0 ∈ ℂ → 𝑊 ∈ Grp) |
25 | 4 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂ = (Base‘𝑊)) |
26 | 7 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → + = (+g‘𝑊)) |
27 | 2 | cnlmodlem3 23430 | . . . . 5 ⊢ (Scalar‘𝑊) = ℂfld |
28 | 27 | eqcomi 2804 | . . . 4 ⊢ ℂfld = (Scalar‘𝑊) |
29 | 28 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂfld = (Scalar‘𝑊)) |
30 | 2 | cnlmod4 23431 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = · |
31 | 30 | eqcomi 2804 | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) |
32 | 31 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → · = ( ·𝑠 ‘𝑊)) |
33 | cnfldbas 20236 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
34 | 33 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂ = (Base‘ℂfld)) |
35 | cnfldadd 20237 | . . . 4 ⊢ + = (+g‘ℂfld) | |
36 | 35 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → + = (+g‘ℂfld)) |
37 | cnfldmul 20238 | . . . 4 ⊢ · = (.r‘ℂfld) | |
38 | 37 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → · = (.r‘ℂfld)) |
39 | cnfld1 20257 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
40 | 39 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → 1 = (1r‘ℂfld)) |
41 | cnring 20254 | . . . 4 ⊢ ℂfld ∈ Ring | |
42 | 41 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂfld ∈ Ring) |
43 | id 22 | . . 3 ⊢ (𝑊 ∈ Grp → 𝑊 ∈ Grp) | |
44 | mulcl 10472 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
45 | 44 | 3adant1 1123 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
46 | adddi 10477 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
47 | 46 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
48 | adddir 10483 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
49 | 48 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
50 | mulass 10476 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
51 | 50 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
52 | mulid2 10491 | . . . 4 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
53 | 52 | adantl 482 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥) |
54 | 25, 26, 29, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53 | islmodd 19335 | . 2 ⊢ (𝑊 ∈ Grp → 𝑊 ∈ LMod) |
55 | 1, 24, 54 | mp2b 10 | 1 ⊢ 𝑊 ∈ LMod |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ∪ cun 3861 {cpr 4478 〈cop 4482 ‘cfv 6230 (class class class)co 7021 ℂcc 10386 0cc0 10388 1c1 10389 + caddc 10391 · cmul 10393 -cneg 10723 ndxcnx 16314 Basecbs 16317 +gcplusg 16399 .rcmulr 16400 Scalarcsca 16402 ·𝑠 cvsca 16403 Grpcgrp 17866 1rcur 18946 Ringcrg 18992 LModclmod 19329 ℂfldccnfld 20232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 ax-addf 10467 ax-mulf 10468 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-1st 7550 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-oadd 7962 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-3 11554 df-4 11555 df-5 11556 df-6 11557 df-7 11558 df-8 11559 df-9 11560 df-n0 11751 df-z 11835 df-dec 11953 df-uz 12099 df-fz 12748 df-struct 16319 df-ndx 16320 df-slot 16321 df-base 16323 df-sets 16324 df-plusg 16412 df-mulr 16413 df-starv 16414 df-sca 16415 df-vsca 16416 df-tset 16418 df-ple 16419 df-ds 16421 df-unif 16422 df-0g 16549 df-mgm 17686 df-sgrp 17728 df-mnd 17739 df-grp 17869 df-cmn 18640 df-mgp 18935 df-ur 18947 df-ring 18994 df-cring 18995 df-lmod 19331 df-cnfld 20233 |
This theorem is referenced by: cnstrcvs 23433 |
Copyright terms: Public domain | W3C validator |