| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnlmod | Structured version Visualization version GIF version | ||
| Description: The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.) |
| Ref | Expression |
|---|---|
| cnlmod.w | ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) |
| Ref | Expression |
|---|---|
| cnlmod | ⊢ 𝑊 ∈ LMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11126 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | cnlmod.w | . . . . . 6 ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
| 3 | 2 | cnlmodlem1 25052 | . . . . 5 ⊢ (Base‘𝑊) = ℂ |
| 4 | 3 | eqcomi 2738 | . . . 4 ⊢ ℂ = (Base‘𝑊) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (0 ∈ ℂ → ℂ = (Base‘𝑊)) |
| 6 | 2 | cnlmodlem2 25053 | . . . . 5 ⊢ (+g‘𝑊) = + |
| 7 | 6 | eqcomi 2738 | . . . 4 ⊢ + = (+g‘𝑊) |
| 8 | 7 | a1i 11 | . . 3 ⊢ (0 ∈ ℂ → + = (+g‘𝑊)) |
| 9 | addcl 11110 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
| 10 | 9 | 3adant1 1130 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
| 11 | addass 11115 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((0 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 13 | id 22 | . . 3 ⊢ (0 ∈ ℂ → 0 ∈ ℂ) | |
| 14 | addlid 11317 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
| 16 | negcl 11381 | . . . 4 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -𝑥 ∈ ℂ) |
| 18 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → 𝑥 ∈ ℂ) | |
| 19 | 16, 18 | addcomd 11336 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
| 20 | 19 | adantl 481 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
| 21 | negid 11429 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + -𝑥) = 0) |
| 23 | 20, 22 | eqtrd 2764 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = 0) |
| 24 | 5, 8, 10, 12, 13, 15, 17, 23 | isgrpd 18855 | . 2 ⊢ (0 ∈ ℂ → 𝑊 ∈ Grp) |
| 25 | 4 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂ = (Base‘𝑊)) |
| 26 | 7 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → + = (+g‘𝑊)) |
| 27 | 2 | cnlmodlem3 25054 | . . . . 5 ⊢ (Scalar‘𝑊) = ℂfld |
| 28 | 27 | eqcomi 2738 | . . . 4 ⊢ ℂfld = (Scalar‘𝑊) |
| 29 | 28 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂfld = (Scalar‘𝑊)) |
| 30 | 2 | cnlmod4 25055 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = · |
| 31 | 30 | eqcomi 2738 | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) |
| 32 | 31 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → · = ( ·𝑠 ‘𝑊)) |
| 33 | cnfldbas 21283 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂ = (Base‘ℂfld)) |
| 35 | cnfldadd 21285 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 36 | 35 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → + = (+g‘ℂfld)) |
| 37 | cnfldmul 21287 | . . . 4 ⊢ · = (.r‘ℂfld) | |
| 38 | 37 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → · = (.r‘ℂfld)) |
| 39 | cnfld1 21318 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
| 40 | 39 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → 1 = (1r‘ℂfld)) |
| 41 | cnring 21315 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 42 | 41 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂfld ∈ Ring) |
| 43 | id 22 | . . 3 ⊢ (𝑊 ∈ Grp → 𝑊 ∈ Grp) | |
| 44 | mulcl 11112 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 45 | 44 | 3adant1 1130 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 46 | adddi 11117 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
| 47 | 46 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 48 | adddir 11125 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
| 49 | 48 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 50 | mulass 11116 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
| 51 | 50 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 52 | mullid 11133 | . . . 4 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
| 53 | 52 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥) |
| 54 | 25, 26, 29, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53 | islmodd 20787 | . 2 ⊢ (𝑊 ∈ Grp → 𝑊 ∈ LMod) |
| 55 | 1, 24, 54 | mp2b 10 | 1 ⊢ 𝑊 ∈ LMod |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 {cpr 4581 〈cop 4585 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 -cneg 11366 ndxcnx 17122 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 Grpcgrp 18830 1rcur 20084 Ringcrg 20136 LModclmod 20781 ℂfldccnfld 21279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-cmn 19679 df-mgp 20044 df-ur 20085 df-ring 20138 df-cring 20139 df-lmod 20783 df-cnfld 21280 |
| This theorem is referenced by: cnstrcvs 25057 |
| Copyright terms: Public domain | W3C validator |