MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnlmod Structured version   Visualization version   GIF version

Theorem cnlmod 23991
Description: The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.)
Hypothesis
Ref Expression
cnlmod.w 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
Assertion
Ref Expression
cnlmod 𝑊 ∈ LMod

Proof of Theorem cnlmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10790 . 2 0 ∈ ℂ
2 cnlmod.w . . . . . 6 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
32cnlmodlem1 23987 . . . . 5 (Base‘𝑊) = ℂ
43eqcomi 2745 . . . 4 ℂ = (Base‘𝑊)
54a1i 11 . . 3 (0 ∈ ℂ → ℂ = (Base‘𝑊))
62cnlmodlem2 23988 . . . . 5 (+g𝑊) = +
76eqcomi 2745 . . . 4 + = (+g𝑊)
87a1i 11 . . 3 (0 ∈ ℂ → + = (+g𝑊))
9 addcl 10776 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1093adant1 1132 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
11 addass 10781 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1211adantl 485 . . 3 ((0 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
13 id 22 . . 3 (0 ∈ ℂ → 0 ∈ ℂ)
14 addid2 10980 . . . 4 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
1514adantl 485 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
16 negcl 11043 . . . 4 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
1716adantl 485 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -𝑥 ∈ ℂ)
18 id 22 . . . . . 6 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
1916, 18addcomd 10999 . . . . 5 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
2019adantl 485 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
21 negid 11090 . . . . 5 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
2221adantl 485 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + -𝑥) = 0)
2320, 22eqtrd 2771 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = 0)
245, 8, 10, 12, 13, 15, 17, 23isgrpd 18343 . 2 (0 ∈ ℂ → 𝑊 ∈ Grp)
254a1i 11 . . 3 (𝑊 ∈ Grp → ℂ = (Base‘𝑊))
267a1i 11 . . 3 (𝑊 ∈ Grp → + = (+g𝑊))
272cnlmodlem3 23989 . . . . 5 (Scalar‘𝑊) = ℂfld
2827eqcomi 2745 . . . 4 fld = (Scalar‘𝑊)
2928a1i 11 . . 3 (𝑊 ∈ Grp → ℂfld = (Scalar‘𝑊))
302cnlmod4 23990 . . . . 5 ( ·𝑠𝑊) = ·
3130eqcomi 2745 . . . 4 · = ( ·𝑠𝑊)
3231a1i 11 . . 3 (𝑊 ∈ Grp → · = ( ·𝑠𝑊))
33 cnfldbas 20321 . . . 4 ℂ = (Base‘ℂfld)
3433a1i 11 . . 3 (𝑊 ∈ Grp → ℂ = (Base‘ℂfld))
35 cnfldadd 20322 . . . 4 + = (+g‘ℂfld)
3635a1i 11 . . 3 (𝑊 ∈ Grp → + = (+g‘ℂfld))
37 cnfldmul 20323 . . . 4 · = (.r‘ℂfld)
3837a1i 11 . . 3 (𝑊 ∈ Grp → · = (.r‘ℂfld))
39 cnfld1 20342 . . . 4 1 = (1r‘ℂfld)
4039a1i 11 . . 3 (𝑊 ∈ Grp → 1 = (1r‘ℂfld))
41 cnring 20339 . . . 4 fld ∈ Ring
4241a1i 11 . . 3 (𝑊 ∈ Grp → ℂfld ∈ Ring)
43 id 22 . . 3 (𝑊 ∈ Grp → 𝑊 ∈ Grp)
44 mulcl 10778 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
45443adant1 1132 . . 3 ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
46 adddi 10783 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4746adantl 485 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
48 adddir 10789 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4948adantl 485 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
50 mulass 10782 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
5150adantl 485 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
52 mulid2 10797 . . . 4 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
5352adantl 485 . . 3 ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥)
5425, 26, 29, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53islmodd 19859 . 2 (𝑊 ∈ Grp → 𝑊 ∈ LMod)
551, 24, 54mp2b 10 1 𝑊 ∈ LMod
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1089   = wceq 1543  wcel 2112  cun 3851  {cpr 4529  cop 4533  cfv 6358  (class class class)co 7191  cc 10692  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699  -cneg 11028  ndxcnx 16663  Basecbs 16666  +gcplusg 16749  .rcmulr 16750  Scalarcsca 16752   ·𝑠 cvsca 16753  Grpcgrp 18319  1rcur 19470  Ringcrg 19516  LModclmod 19853  fldccnfld 20317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-cmn 19126  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-lmod 19855  df-cnfld 20318
This theorem is referenced by:  cnstrcvs  23992
  Copyright terms: Public domain W3C validator