| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnlmod | Structured version Visualization version GIF version | ||
| Description: The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.) |
| Ref | Expression |
|---|---|
| cnlmod.w | ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) |
| Ref | Expression |
|---|---|
| cnlmod | ⊢ 𝑊 ∈ LMod |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11096 | . 2 ⊢ 0 ∈ ℂ | |
| 2 | cnlmod.w | . . . . . 6 ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
| 3 | 2 | cnlmodlem1 25056 | . . . . 5 ⊢ (Base‘𝑊) = ℂ |
| 4 | 3 | eqcomi 2739 | . . . 4 ⊢ ℂ = (Base‘𝑊) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (0 ∈ ℂ → ℂ = (Base‘𝑊)) |
| 6 | 2 | cnlmodlem2 25057 | . . . . 5 ⊢ (+g‘𝑊) = + |
| 7 | 6 | eqcomi 2739 | . . . 4 ⊢ + = (+g‘𝑊) |
| 8 | 7 | a1i 11 | . . 3 ⊢ (0 ∈ ℂ → + = (+g‘𝑊)) |
| 9 | addcl 11080 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
| 10 | 9 | 3adant1 1130 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
| 11 | addass 11085 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((0 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 13 | id 22 | . . 3 ⊢ (0 ∈ ℂ → 0 ∈ ℂ) | |
| 14 | addlid 11288 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥) |
| 16 | negcl 11352 | . . . 4 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -𝑥 ∈ ℂ) |
| 18 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → 𝑥 ∈ ℂ) | |
| 19 | 16, 18 | addcomd 11307 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
| 20 | 19 | adantl 481 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
| 21 | negid 11400 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + -𝑥) = 0) |
| 23 | 20, 22 | eqtrd 2765 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = 0) |
| 24 | 5, 8, 10, 12, 13, 15, 17, 23 | isgrpd 18863 | . 2 ⊢ (0 ∈ ℂ → 𝑊 ∈ Grp) |
| 25 | 4 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂ = (Base‘𝑊)) |
| 26 | 7 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → + = (+g‘𝑊)) |
| 27 | 2 | cnlmodlem3 25058 | . . . . 5 ⊢ (Scalar‘𝑊) = ℂfld |
| 28 | 27 | eqcomi 2739 | . . . 4 ⊢ ℂfld = (Scalar‘𝑊) |
| 29 | 28 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂfld = (Scalar‘𝑊)) |
| 30 | 2 | cnlmod4 25059 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = · |
| 31 | 30 | eqcomi 2739 | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) |
| 32 | 31 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → · = ( ·𝑠 ‘𝑊)) |
| 33 | cnfldbas 21288 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂ = (Base‘ℂfld)) |
| 35 | cnfldadd 21290 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 36 | 35 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → + = (+g‘ℂfld)) |
| 37 | cnfldmul 21292 | . . . 4 ⊢ · = (.r‘ℂfld) | |
| 38 | 37 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → · = (.r‘ℂfld)) |
| 39 | cnfld1 21323 | . . . 4 ⊢ 1 = (1r‘ℂfld) | |
| 40 | 39 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → 1 = (1r‘ℂfld)) |
| 41 | cnring 21320 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 42 | 41 | a1i 11 | . . 3 ⊢ (𝑊 ∈ Grp → ℂfld ∈ Ring) |
| 43 | id 22 | . . 3 ⊢ (𝑊 ∈ Grp → 𝑊 ∈ Grp) | |
| 44 | mulcl 11082 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 45 | 44 | 3adant1 1130 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 46 | adddi 11087 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
| 47 | 46 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 48 | adddir 11095 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
| 49 | 48 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 50 | mulass 11086 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
| 51 | 50 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 52 | mullid 11103 | . . . 4 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
| 53 | 52 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥) |
| 54 | 25, 26, 29, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53 | islmodd 20792 | . 2 ⊢ (𝑊 ∈ Grp → 𝑊 ∈ LMod) |
| 55 | 1, 24, 54 | mp2b 10 | 1 ⊢ 𝑊 ∈ LMod |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∪ cun 3898 {cpr 4576 〈cop 4580 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 0cc0 10998 1c1 10999 + caddc 11001 · cmul 11003 -cneg 11337 ndxcnx 17096 Basecbs 17112 +gcplusg 17153 .rcmulr 17154 Scalarcsca 17156 ·𝑠 cvsca 17157 Grpcgrp 18838 1rcur 20092 Ringcrg 20144 LModclmod 20786 ℂfldccnfld 21284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-cmn 19687 df-mgp 20052 df-ur 20093 df-ring 20146 df-cring 20147 df-lmod 20788 df-cnfld 21285 |
| This theorem is referenced by: cnstrcvs 25061 |
| Copyright terms: Public domain | W3C validator |