MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnlmod Structured version   Visualization version   GIF version

Theorem cnlmod 24647
Description: The set of complex numbers is a left module over itself. The vector operation is +, and the scalar product is ·. (Contributed by AV, 20-Sep-2021.)
Hypothesis
Ref Expression
cnlmod.w 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
Assertion
Ref Expression
cnlmod 𝑊 ∈ LMod

Proof of Theorem cnlmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11202 . 2 0 ∈ ℂ
2 cnlmod.w . . . . . 6 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
32cnlmodlem1 24643 . . . . 5 (Base‘𝑊) = ℂ
43eqcomi 2741 . . . 4 ℂ = (Base‘𝑊)
54a1i 11 . . 3 (0 ∈ ℂ → ℂ = (Base‘𝑊))
62cnlmodlem2 24644 . . . . 5 (+g𝑊) = +
76eqcomi 2741 . . . 4 + = (+g𝑊)
87a1i 11 . . 3 (0 ∈ ℂ → + = (+g𝑊))
9 addcl 11188 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1093adant1 1130 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
11 addass 11193 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1211adantl 482 . . 3 ((0 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
13 id 22 . . 3 (0 ∈ ℂ → 0 ∈ ℂ)
14 addlid 11393 . . . 4 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
1514adantl 482 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
16 negcl 11456 . . . 4 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
1716adantl 482 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → -𝑥 ∈ ℂ)
18 id 22 . . . . . 6 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
1916, 18addcomd 11412 . . . . 5 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
2019adantl 482 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
21 negid 11503 . . . . 5 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
2221adantl 482 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + -𝑥) = 0)
2320, 22eqtrd 2772 . . 3 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = 0)
245, 8, 10, 12, 13, 15, 17, 23isgrpd 18840 . 2 (0 ∈ ℂ → 𝑊 ∈ Grp)
254a1i 11 . . 3 (𝑊 ∈ Grp → ℂ = (Base‘𝑊))
267a1i 11 . . 3 (𝑊 ∈ Grp → + = (+g𝑊))
272cnlmodlem3 24645 . . . . 5 (Scalar‘𝑊) = ℂfld
2827eqcomi 2741 . . . 4 fld = (Scalar‘𝑊)
2928a1i 11 . . 3 (𝑊 ∈ Grp → ℂfld = (Scalar‘𝑊))
302cnlmod4 24646 . . . . 5 ( ·𝑠𝑊) = ·
3130eqcomi 2741 . . . 4 · = ( ·𝑠𝑊)
3231a1i 11 . . 3 (𝑊 ∈ Grp → · = ( ·𝑠𝑊))
33 cnfldbas 20940 . . . 4 ℂ = (Base‘ℂfld)
3433a1i 11 . . 3 (𝑊 ∈ Grp → ℂ = (Base‘ℂfld))
35 cnfldadd 20941 . . . 4 + = (+g‘ℂfld)
3635a1i 11 . . 3 (𝑊 ∈ Grp → + = (+g‘ℂfld))
37 cnfldmul 20942 . . . 4 · = (.r‘ℂfld)
3837a1i 11 . . 3 (𝑊 ∈ Grp → · = (.r‘ℂfld))
39 cnfld1 20962 . . . 4 1 = (1r‘ℂfld)
4039a1i 11 . . 3 (𝑊 ∈ Grp → 1 = (1r‘ℂfld))
41 cnring 20959 . . . 4 fld ∈ Ring
4241a1i 11 . . 3 (𝑊 ∈ Grp → ℂfld ∈ Ring)
43 id 22 . . 3 (𝑊 ∈ Grp → 𝑊 ∈ Grp)
44 mulcl 11190 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
45443adant1 1130 . . 3 ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
46 adddi 11195 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4746adantl 482 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
48 adddir 11201 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4948adantl 482 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
50 mulass 11194 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
5150adantl 482 . . 3 ((𝑊 ∈ Grp ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
52 mullid 11209 . . . 4 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
5352adantl 482 . . 3 ((𝑊 ∈ Grp ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥)
5425, 26, 29, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53islmodd 20469 . 2 (𝑊 ∈ Grp → 𝑊 ∈ LMod)
551, 24, 54mp2b 10 1 𝑊 ∈ LMod
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wcel 2106  cun 3945  {cpr 4629  cop 4633  cfv 6540  (class class class)co 7405  cc 11104  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  -cneg 11441  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  Grpcgrp 18815  1rcur 19998  Ringcrg 20049  LModclmod 20463  fldccnfld 20936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-cmn 19644  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-lmod 20465  df-cnfld 20937
This theorem is referenced by:  cnstrcvs  24648
  Copyright terms: Public domain W3C validator