MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqoddm1div8 Structured version   Visualization version   GIF version

Theorem sqoddm1div8 14184
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))

Proof of Theorem sqoddm1div8
StepHypRef Expression
1 oveq1 7376 . . . . . 6 (𝑀 = ((2 · 𝑁) + 1) → (𝑀↑2) = (((2 · 𝑁) + 1)↑2))
2 2z 12541 . . . . . . . . . 10 2 ∈ ℤ
32a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ∈ ℤ)
4 id 22 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
53, 4zmulcld 12620 . . . . . . . 8 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
65zcnd 12615 . . . . . . 7 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
7 binom21 14160 . . . . . . 7 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
86, 7syl 17 . . . . . 6 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
91, 8sylan9eqr 2786 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (𝑀↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
109oveq1d 7384 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((𝑀↑2) − 1) = (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1))
11 2cnd 12240 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 2 ∈ ℂ)
12 zcn 12510 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1311, 12sqmuld 14099 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
14 sq2 14138 . . . . . . . . . . . 12 (2↑2) = 4
1514a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (2↑2) = 4)
1615oveq1d 7384 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2)))
1713, 16eqtrd 2764 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 · 𝑁)↑2) = (4 · (𝑁↑2)))
18 mulass 11132 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
1918eqcomd 2735 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · (2 · 𝑁)) = ((2 · 2) · 𝑁))
2011, 11, 12, 19syl3anc 1373 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 · (2 · 𝑁)) = ((2 · 2) · 𝑁))
21 2t2e4 12321 . . . . . . . . . . . 12 (2 · 2) = 4
2221a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (2 · 2) = 4)
2322oveq1d 7384 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · 2) · 𝑁) = (4 · 𝑁))
2420, 23eqtrd 2764 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 · (2 · 𝑁)) = (4 · 𝑁))
2517, 24oveq12d 7387 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
2625oveq1d 7384 . . . . . . 7 (𝑁 ∈ ℤ → ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) = (((4 · (𝑁↑2)) + (4 · 𝑁)) + 1))
2726oveq1d 7384 . . . . . 6 (𝑁 ∈ ℤ → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1))
28 4z 12543 . . . . . . . . . . 11 4 ∈ ℤ
2928a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 4 ∈ ℤ)
30 zsqcl 14070 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
3129, 30zmulcld 12620 . . . . . . . . 9 (𝑁 ∈ ℤ → (4 · (𝑁↑2)) ∈ ℤ)
3231zcnd 12615 . . . . . . . 8 (𝑁 ∈ ℤ → (4 · (𝑁↑2)) ∈ ℂ)
3329, 4zmulcld 12620 . . . . . . . . 9 (𝑁 ∈ ℤ → (4 · 𝑁) ∈ ℤ)
3433zcnd 12615 . . . . . . . 8 (𝑁 ∈ ℤ → (4 · 𝑁) ∈ ℂ)
3532, 34addcld 11169 . . . . . . 7 (𝑁 ∈ ℤ → ((4 · (𝑁↑2)) + (4 · 𝑁)) ∈ ℂ)
36 pncan1 11578 . . . . . . 7 (((4 · (𝑁↑2)) + (4 · 𝑁)) ∈ ℂ → ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3735, 36syl 17 . . . . . 6 (𝑁 ∈ ℤ → ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3827, 37eqtrd 2764 . . . . 5 (𝑁 ∈ ℤ → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3938adantr 480 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4010, 39eqtrd 2764 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((𝑀↑2) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4140oveq1d 7384 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8))
42 4cn 12247 . . . . . . 7 4 ∈ ℂ
4342a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 4 ∈ ℂ)
4430zcnd 12615 . . . . . 6 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℂ)
4543, 44, 12adddid 11174 . . . . 5 (𝑁 ∈ ℤ → (4 · ((𝑁↑2) + 𝑁)) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4645eqcomd 2735 . . . 4 (𝑁 ∈ ℤ → ((4 · (𝑁↑2)) + (4 · 𝑁)) = (4 · ((𝑁↑2) + 𝑁)))
4746oveq1d 7384 . . 3 (𝑁 ∈ ℤ → (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / 8))
4847adantr 480 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / 8))
49 4t2e8 12325 . . . . . . 7 (4 · 2) = 8
5049a1i 11 . . . . . 6 (𝑁 ∈ ℤ → (4 · 2) = 8)
5150eqcomd 2735 . . . . 5 (𝑁 ∈ ℤ → 8 = (4 · 2))
5251oveq2d 7385 . . . 4 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)))
5330, 4zaddcld 12618 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) ∈ ℤ)
5453zcnd 12615 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) ∈ ℂ)
55 2cnne0 12367 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
5655a1i 11 . . . . 5 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
57 4ne0 12270 . . . . . . 7 4 ≠ 0
5842, 57pm3.2i 470 . . . . . 6 (4 ∈ ℂ ∧ 4 ≠ 0)
5958a1i 11 . . . . 5 (𝑁 ∈ ℤ → (4 ∈ ℂ ∧ 4 ≠ 0))
60 divcan5 11860 . . . . 5 ((((𝑁↑2) + 𝑁) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)) = (((𝑁↑2) + 𝑁) / 2))
6154, 56, 59, 60syl3anc 1373 . . . 4 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)) = (((𝑁↑2) + 𝑁) / 2))
6212sqvald 14084 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁↑2) = (𝑁 · 𝑁))
6362oveq1d 7384 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) = ((𝑁 · 𝑁) + 𝑁))
6412mulridd 11167 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁)
6564eqcomd 2735 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 = (𝑁 · 1))
6665oveq2d 7385 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) + 𝑁) = ((𝑁 · 𝑁) + (𝑁 · 1)))
67 1cnd 11145 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℂ)
68 adddi 11133 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 · (𝑁 + 1)) = ((𝑁 · 𝑁) + (𝑁 · 1)))
6968eqcomd 2735 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 · 𝑁) + (𝑁 · 1)) = (𝑁 · (𝑁 + 1)))
7012, 12, 67, 69syl3anc 1373 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) + (𝑁 · 1)) = (𝑁 · (𝑁 + 1)))
7163, 66, 703eqtrd 2768 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) = (𝑁 · (𝑁 + 1)))
7271oveq1d 7384 . . . 4 (𝑁 ∈ ℤ → (((𝑁↑2) + 𝑁) / 2) = ((𝑁 · (𝑁 + 1)) / 2))
7352, 61, 723eqtrd 2768 . . 3 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
7473adantr 480 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
7541, 48, 743eqtrd 2768 1 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381   / cdiv 11811  2c2 12217  4c4 12219  8c8 12223  cz 12505  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-exp 14003
This theorem is referenced by:  sqoddm1div8z  16300
  Copyright terms: Public domain W3C validator