MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqoddm1div8 Structured version   Visualization version   GIF version

Theorem sqoddm1div8 14146
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))

Proof of Theorem sqoddm1div8
StepHypRef Expression
1 oveq1 7364 . . . . . 6 (𝑀 = ((2 · 𝑁) + 1) → (𝑀↑2) = (((2 · 𝑁) + 1)↑2))
2 2z 12535 . . . . . . . . . 10 2 ∈ ℤ
32a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ∈ ℤ)
4 id 22 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
53, 4zmulcld 12613 . . . . . . . 8 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
65zcnd 12608 . . . . . . 7 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
7 binom21 14122 . . . . . . 7 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
86, 7syl 17 . . . . . 6 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
91, 8sylan9eqr 2798 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (𝑀↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
109oveq1d 7372 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((𝑀↑2) − 1) = (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1))
11 2cnd 12231 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 2 ∈ ℂ)
12 zcn 12504 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1311, 12sqmuld 14063 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
14 sq2 14101 . . . . . . . . . . . 12 (2↑2) = 4
1514a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (2↑2) = 4)
1615oveq1d 7372 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2)))
1713, 16eqtrd 2776 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 · 𝑁)↑2) = (4 · (𝑁↑2)))
18 mulass 11139 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
1918eqcomd 2742 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · (2 · 𝑁)) = ((2 · 2) · 𝑁))
2011, 11, 12, 19syl3anc 1371 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 · (2 · 𝑁)) = ((2 · 2) · 𝑁))
21 2t2e4 12317 . . . . . . . . . . . 12 (2 · 2) = 4
2221a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (2 · 2) = 4)
2322oveq1d 7372 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · 2) · 𝑁) = (4 · 𝑁))
2420, 23eqtrd 2776 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 · (2 · 𝑁)) = (4 · 𝑁))
2517, 24oveq12d 7375 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
2625oveq1d 7372 . . . . . . 7 (𝑁 ∈ ℤ → ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) = (((4 · (𝑁↑2)) + (4 · 𝑁)) + 1))
2726oveq1d 7372 . . . . . 6 (𝑁 ∈ ℤ → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1))
28 4z 12537 . . . . . . . . . . 11 4 ∈ ℤ
2928a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 4 ∈ ℤ)
30 zsqcl 14034 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
3129, 30zmulcld 12613 . . . . . . . . 9 (𝑁 ∈ ℤ → (4 · (𝑁↑2)) ∈ ℤ)
3231zcnd 12608 . . . . . . . 8 (𝑁 ∈ ℤ → (4 · (𝑁↑2)) ∈ ℂ)
3329, 4zmulcld 12613 . . . . . . . . 9 (𝑁 ∈ ℤ → (4 · 𝑁) ∈ ℤ)
3433zcnd 12608 . . . . . . . 8 (𝑁 ∈ ℤ → (4 · 𝑁) ∈ ℂ)
3532, 34addcld 11174 . . . . . . 7 (𝑁 ∈ ℤ → ((4 · (𝑁↑2)) + (4 · 𝑁)) ∈ ℂ)
36 pncan1 11579 . . . . . . 7 (((4 · (𝑁↑2)) + (4 · 𝑁)) ∈ ℂ → ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3735, 36syl 17 . . . . . 6 (𝑁 ∈ ℤ → ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3827, 37eqtrd 2776 . . . . 5 (𝑁 ∈ ℤ → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3938adantr 481 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4010, 39eqtrd 2776 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((𝑀↑2) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4140oveq1d 7372 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8))
42 4cn 12238 . . . . . . 7 4 ∈ ℂ
4342a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 4 ∈ ℂ)
4430zcnd 12608 . . . . . 6 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℂ)
4543, 44, 12adddid 11179 . . . . 5 (𝑁 ∈ ℤ → (4 · ((𝑁↑2) + 𝑁)) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4645eqcomd 2742 . . . 4 (𝑁 ∈ ℤ → ((4 · (𝑁↑2)) + (4 · 𝑁)) = (4 · ((𝑁↑2) + 𝑁)))
4746oveq1d 7372 . . 3 (𝑁 ∈ ℤ → (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / 8))
4847adantr 481 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / 8))
49 4t2e8 12321 . . . . . . 7 (4 · 2) = 8
5049a1i 11 . . . . . 6 (𝑁 ∈ ℤ → (4 · 2) = 8)
5150eqcomd 2742 . . . . 5 (𝑁 ∈ ℤ → 8 = (4 · 2))
5251oveq2d 7373 . . . 4 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)))
5330, 4zaddcld 12611 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) ∈ ℤ)
5453zcnd 12608 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) ∈ ℂ)
55 2cnne0 12363 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
5655a1i 11 . . . . 5 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
57 4ne0 12261 . . . . . . 7 4 ≠ 0
5842, 57pm3.2i 471 . . . . . 6 (4 ∈ ℂ ∧ 4 ≠ 0)
5958a1i 11 . . . . 5 (𝑁 ∈ ℤ → (4 ∈ ℂ ∧ 4 ≠ 0))
60 divcan5 11857 . . . . 5 ((((𝑁↑2) + 𝑁) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)) = (((𝑁↑2) + 𝑁) / 2))
6154, 56, 59, 60syl3anc 1371 . . . 4 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)) = (((𝑁↑2) + 𝑁) / 2))
6212sqvald 14048 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁↑2) = (𝑁 · 𝑁))
6362oveq1d 7372 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) = ((𝑁 · 𝑁) + 𝑁))
6412mulid1d 11172 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁)
6564eqcomd 2742 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 = (𝑁 · 1))
6665oveq2d 7373 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) + 𝑁) = ((𝑁 · 𝑁) + (𝑁 · 1)))
67 1cnd 11150 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℂ)
68 adddi 11140 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 · (𝑁 + 1)) = ((𝑁 · 𝑁) + (𝑁 · 1)))
6968eqcomd 2742 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 · 𝑁) + (𝑁 · 1)) = (𝑁 · (𝑁 + 1)))
7012, 12, 67, 69syl3anc 1371 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) + (𝑁 · 1)) = (𝑁 · (𝑁 + 1)))
7163, 66, 703eqtrd 2780 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) = (𝑁 · (𝑁 + 1)))
7271oveq1d 7372 . . . 4 (𝑁 ∈ ℤ → (((𝑁↑2) + 𝑁) / 2) = ((𝑁 · (𝑁 + 1)) / 2))
7352, 61, 723eqtrd 2780 . . 3 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
7473adantr 481 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
7541, 48, 743eqtrd 2780 1 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385   / cdiv 11812  2c2 12208  4c4 12210  8c8 12214  cz 12499  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-exp 13968
This theorem is referenced by:  sqoddm1div8z  16236
  Copyright terms: Public domain W3C validator