MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsummulc2 Structured version   Visualization version   GIF version

Theorem fsummulc2 15726
Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsummulc2.1 (πœ‘ β†’ 𝐴 ∈ Fin)
fsummulc2.2 (πœ‘ β†’ 𝐢 ∈ β„‚)
fsummulc2.3 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
Assertion
Ref Expression
fsummulc2 (πœ‘ β†’ (𝐢 Β· Ξ£π‘˜ ∈ 𝐴 𝐡) = Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡))
Distinct variable groups:   𝐴,π‘˜   𝐢,π‘˜   πœ‘,π‘˜
Allowed substitution hint:   𝐡(π‘˜)

Proof of Theorem fsummulc2
Dummy variables 𝑓 π‘š 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsummulc2.2 . . . 4 (πœ‘ β†’ 𝐢 ∈ β„‚)
21mul01d 11409 . . 3 (πœ‘ β†’ (𝐢 Β· 0) = 0)
3 sumeq1 15631 . . . . . 6 (𝐴 = βˆ… β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ βˆ… 𝐡)
4 sum0 15663 . . . . . 6 Ξ£π‘˜ ∈ βˆ… 𝐡 = 0
53, 4eqtrdi 2788 . . . . 5 (𝐴 = βˆ… β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = 0)
65oveq2d 7421 . . . 4 (𝐴 = βˆ… β†’ (𝐢 Β· Ξ£π‘˜ ∈ 𝐴 𝐡) = (𝐢 Β· 0))
7 sumeq1 15631 . . . . 5 (𝐴 = βˆ… β†’ Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡) = Ξ£π‘˜ ∈ βˆ… (𝐢 Β· 𝐡))
8 sum0 15663 . . . . 5 Ξ£π‘˜ ∈ βˆ… (𝐢 Β· 𝐡) = 0
97, 8eqtrdi 2788 . . . 4 (𝐴 = βˆ… β†’ Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡) = 0)
106, 9eqeq12d 2748 . . 3 (𝐴 = βˆ… β†’ ((𝐢 Β· Ξ£π‘˜ ∈ 𝐴 𝐡) = Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡) ↔ (𝐢 Β· 0) = 0))
112, 10syl5ibrcom 246 . 2 (πœ‘ β†’ (𝐴 = βˆ… β†’ (𝐢 Β· Ξ£π‘˜ ∈ 𝐴 𝐡) = Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡)))
12 addcl 11188 . . . . . . . . 9 ((𝑛 ∈ β„‚ ∧ π‘š ∈ β„‚) β†’ (𝑛 + π‘š) ∈ β„‚)
1312adantl 482 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ (𝑛 ∈ β„‚ ∧ π‘š ∈ β„‚)) β†’ (𝑛 + π‘š) ∈ β„‚)
141adantr 481 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝐢 ∈ β„‚)
15 adddi 11195 . . . . . . . . . 10 ((𝐢 ∈ β„‚ ∧ 𝑛 ∈ β„‚ ∧ π‘š ∈ β„‚) β†’ (𝐢 Β· (𝑛 + π‘š)) = ((𝐢 Β· 𝑛) + (𝐢 Β· π‘š)))
16153expb 1120 . . . . . . . . 9 ((𝐢 ∈ β„‚ ∧ (𝑛 ∈ β„‚ ∧ π‘š ∈ β„‚)) β†’ (𝐢 Β· (𝑛 + π‘š)) = ((𝐢 Β· 𝑛) + (𝐢 Β· π‘š)))
1714, 16sylan 580 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ (𝑛 ∈ β„‚ ∧ π‘š ∈ β„‚)) β†’ (𝐢 Β· (𝑛 + π‘š)) = ((𝐢 Β· 𝑛) + (𝐢 Β· π‘š)))
18 simprl 769 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ β„•)
19 nnuz 12861 . . . . . . . . 9 β„• = (β„€β‰₯β€˜1)
2018, 19eleqtrdi 2843 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜1))
21 fsummulc2.3 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
2221fmpttd 7111 . . . . . . . . . . 11 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
2322ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
24 simprr 771 . . . . . . . . . . . 12 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)
2524adantr 481 . . . . . . . . . . 11 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)
26 f1of 6830 . . . . . . . . . . 11 (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
2725, 26syl 17 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
28 fco 6738 . . . . . . . . . 10 (((π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚ ∧ 𝑓:(1...(β™―β€˜π΄))⟢𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
2923, 27, 28syl2anc 584 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓):(1...(β™―β€˜π΄))βŸΆβ„‚)
30 simpr 485 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ 𝑛 ∈ (1...(β™―β€˜π΄)))
3129, 30ffvelcdmd 7084 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) ∈ β„‚)
3227, 30ffvelcdmd 7084 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (π‘“β€˜π‘›) ∈ 𝐴)
33 simpr 485 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ π‘˜ ∈ 𝐴)
341adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐢 ∈ β„‚)
3534, 21mulcld 11230 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝐢 Β· 𝐡) ∈ β„‚)
36 eqid 2732 . . . . . . . . . . . . . . 15 (π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡)) = (π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))
3736fvmpt2 7006 . . . . . . . . . . . . . 14 ((π‘˜ ∈ 𝐴 ∧ (𝐢 Β· 𝐡) ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘˜) = (𝐢 Β· 𝐡))
3833, 35, 37syl2anc 584 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘˜) = (𝐢 Β· 𝐡))
39 eqid 2732 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ 𝐴 ↦ 𝐡) = (π‘˜ ∈ 𝐴 ↦ 𝐡)
4039fvmpt2 7006 . . . . . . . . . . . . . . 15 ((π‘˜ ∈ 𝐴 ∧ 𝐡 ∈ β„‚) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = 𝐡)
4133, 21, 40syl2anc 584 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = 𝐡)
4241oveq2d 7421 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜)) = (𝐢 Β· 𝐡))
4338, 42eqtr4d 2775 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘˜) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜)))
4443ralrimiva 3146 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘˜) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜)))
4544ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘˜) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜)))
46 nffvmpt1 6899 . . . . . . . . . . . 12 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜(π‘“β€˜π‘›))
47 nfcv 2903 . . . . . . . . . . . . 13 β„²π‘˜πΆ
48 nfcv 2903 . . . . . . . . . . . . 13 β„²π‘˜ Β·
49 nffvmpt1 6899 . . . . . . . . . . . . 13 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›))
5047, 48, 49nfov 7435 . . . . . . . . . . . 12 β„²π‘˜(𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
5146, 50nfeq 2916 . . . . . . . . . . 11 β„²π‘˜((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜(π‘“β€˜π‘›)) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
52 fveq2 6888 . . . . . . . . . . . 12 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜(π‘“β€˜π‘›)))
53 fveq2 6888 . . . . . . . . . . . . 13 (π‘˜ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
5453oveq2d 7421 . . . . . . . . . . . 12 (π‘˜ = (π‘“β€˜π‘›) β†’ (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜)) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›))))
5552, 54eqeq12d 2748 . . . . . . . . . . 11 (π‘˜ = (π‘“β€˜π‘›) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘˜) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜)) ↔ ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜(π‘“β€˜π‘›)) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))))
5651, 55rspc 3600 . . . . . . . . . 10 ((π‘“β€˜π‘›) ∈ 𝐴 β†’ (βˆ€π‘˜ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘˜) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘˜)) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜(π‘“β€˜π‘›)) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))))
5732, 45, 56sylc 65 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜(π‘“β€˜π‘›)) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›))))
5826ad2antll 727 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
59 fvco3 6987 . . . . . . . . . 10 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡)) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜(π‘“β€˜π‘›)))
6058, 59sylan 580 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡)) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜(π‘“β€˜π‘›)))
61 fvco3 6987 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
6258, 61sylan 580 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
6362oveq2d 7421 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (𝐢 Β· (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›)) = (𝐢 Β· ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›))))
6457, 60, 633eqtr4d 2782 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡)) ∘ 𝑓)β€˜π‘›) = (𝐢 Β· (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›)))
6513, 17, 20, 31, 64seqdistr 14015 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (seq1( + , ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡)) ∘ 𝑓))β€˜(β™―β€˜π΄)) = (𝐢 Β· (seq1( + , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄))))
66 fveq2 6888 . . . . . . . 8 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜(π‘“β€˜π‘›)))
6735fmpttd 7111 . . . . . . . . . 10 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡)):π΄βŸΆβ„‚)
6867adantr 481 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡)):π΄βŸΆβ„‚)
6968ffvelcdmda 7083 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘š) ∈ β„‚)
7066, 18, 24, 69, 60fsum 15662 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘š) = (seq1( + , ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡)) ∘ 𝑓))β€˜(β™―β€˜π΄)))
71 fveq2 6888 . . . . . . . . 9 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
7222adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
7372ffvelcdmda 7083 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) ∈ β„‚)
7471, 18, 24, 73, 62fsum 15662 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = (seq1( + , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)))
7574oveq2d 7421 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (𝐢 Β· Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š)) = (𝐢 Β· (seq1( + , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄))))
7665, 70, 753eqtr4rd 2783 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (𝐢 Β· Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š)) = Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘š))
77 sumfc 15651 . . . . . . 7 Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = Ξ£π‘˜ ∈ 𝐴 𝐡
7877oveq2i 7416 . . . . . 6 (𝐢 Β· Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š)) = (𝐢 Β· Ξ£π‘˜ ∈ 𝐴 𝐡)
79 sumfc 15651 . . . . . 6 Ξ£π‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ (𝐢 Β· 𝐡))β€˜π‘š) = Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡)
8076, 78, 793eqtr3g 2795 . . . . 5 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (𝐢 Β· Ξ£π‘˜ ∈ 𝐴 𝐡) = Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡))
8180expr 457 . . . 4 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ (𝐢 Β· Ξ£π‘˜ ∈ 𝐴 𝐡) = Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡)))
8281exlimdv 1936 . . 3 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ (𝐢 Β· Ξ£π‘˜ ∈ 𝐴 𝐡) = Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡)))
8382expimpd 454 . 2 (πœ‘ β†’ (((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴) β†’ (𝐢 Β· Ξ£π‘˜ ∈ 𝐴 𝐡) = Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡)))
84 fsummulc2.1 . . 3 (πœ‘ β†’ 𝐴 ∈ Fin)
85 fz1f1o 15652 . . 3 (𝐴 ∈ Fin β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
8684, 85syl 17 . 2 (πœ‘ β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
8711, 83, 86mpjaod 858 1 (πœ‘ β†’ (𝐢 Β· Ξ£π‘˜ ∈ 𝐴 𝐡) = Ξ£π‘˜ ∈ 𝐴 (𝐢 Β· 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∨ wo 845   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆ…c0 4321   ↦ cmpt 5230   ∘ ccom 5679  βŸΆwf 6536  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  β„‚cc 11104  0cc0 11106  1c1 11107   + caddc 11109   Β· cmul 11111  β„•cn 12208  β„€β‰₯cuz 12818  ...cfz 13480  seqcseq 13962  β™―chash 14286  Ξ£csu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  fsummulc1  15727  fsumneg  15729  fsum2mul  15731  incexc2  15780  pwdif  15810  mertens  15828  binomrisefac  15982  fsumkthpow  15996  eirrlem  16143  pwp1fsum  16330  csbren  24907  trirn  24908  itg1addlem4  25207  itg1addlem4OLD  25208  itg1addlem5  25209  itg1mulc  25213  elqaalem3  25825  advlogexp  26154  fsumharmonic  26505  basellem8  26581  muinv  26686  fsumdvdsmul  26688  logfaclbnd  26714  dchrsum2  26760  sumdchr2  26762  rplogsumlem2  26977  rpvmasumlem  26979  dchrmusum2  26986  dchrvmasumlem1  26987  dchrvmasum2lem  26988  dchrvmasumlem2  26990  dchrvmasumiflem1  26993  rpvmasum2  27004  dchrisum0lem2  27010  mudivsum  27022  mulogsum  27024  mulog2sumlem1  27026  mulog2sumlem2  27027  mulog2sumlem3  27028  vmalogdivsum2  27030  logsqvma  27034  selberglem1  27037  selberglem2  27038  selberg  27040  selberg3lem1  27049  selberg4lem1  27052  selberg4  27053  selbergr  27060  selberg3r  27061  selberg34r  27063  pntsval2  27068  pntrlog2bndlem2  27070  pntrlog2bndlem3  27071  pntrlog2bndlem4  27072  pntrlog2bndlem6  27075  pntpbnd2  27079  pntlemk  27098  axsegconlem9  28172  ax5seglem1  28175  ax5seglem2  28176  ax5seglem9  28184  hgt750lemf  33653  hgt750lemb  33656  knoppndvlem11  35386  3factsumint4  40877  lcmineqlem6  40887  oddnumth  41204  jm2.22  41719  dvnprodlem2  44649  stoweidlem26  44728  stirlinglem12  44787  fourierdlem83  44891  etransclem46  44982  altgsumbcALT  46982  aacllem  47801
  Copyright terms: Public domain W3C validator