Step | Hyp | Ref
| Expression |
1 | | fsummulc2.2 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℂ) |
2 | 1 | mul01d 11174 |
. . 3
⊢ (𝜑 → (𝐶 · 0) = 0) |
3 | | sumeq1 15398 |
. . . . . 6
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
4 | | sum0 15431 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
5 | 3, 4 | eqtrdi 2796 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
6 | 5 | oveq2d 7287 |
. . . 4
⊢ (𝐴 = ∅ → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = (𝐶 · 0)) |
7 | | sumeq1 15398 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵) = Σ𝑘 ∈ ∅ (𝐶 · 𝐵)) |
8 | | sum0 15431 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (𝐶 · 𝐵) = 0 |
9 | 7, 8 | eqtrdi 2796 |
. . . 4
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵) = 0) |
10 | 6, 9 | eqeq12d 2756 |
. . 3
⊢ (𝐴 = ∅ → ((𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵) ↔ (𝐶 · 0) = 0)) |
11 | 2, 10 | syl5ibrcom 246 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵))) |
12 | | addcl 10954 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛 + 𝑚) ∈ ℂ) |
13 | 12 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑛 + 𝑚) ∈ ℂ) |
14 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝐶 ∈ ℂ) |
15 | | adddi 10961 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐶 · (𝑛 + 𝑚)) = ((𝐶 · 𝑛) + (𝐶 · 𝑚))) |
16 | 15 | 3expb 1119 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝐶 · (𝑛 + 𝑚)) = ((𝐶 · 𝑛) + (𝐶 · 𝑚))) |
17 | 14, 16 | sylan 580 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝐶 · (𝑛 + 𝑚)) = ((𝐶 · 𝑛) + (𝐶 · 𝑚))) |
18 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
19 | | nnuz 12620 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
20 | 18, 19 | eleqtrdi 2851 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) |
21 | | fsummulc2.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
22 | 21 | fmpttd 6986 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
23 | 22 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
24 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
25 | 24 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
26 | | f1of 6714 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
27 | 25, 26 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
28 | | fco 6622 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
29 | 23, 27, 28 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
30 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ (1...(♯‘𝐴))) |
31 | 29, 30 | ffvelrnd 6959 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ) |
32 | 27, 30 | ffvelrnd 6959 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓‘𝑛) ∈ 𝐴) |
33 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
34 | 1 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
35 | 34, 21 | mulcld 10996 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
36 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) |
37 | 36 | fvmpt2 6883 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝐴 ∧ (𝐶 · 𝐵) ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · 𝐵)) |
38 | 33, 35, 37 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · 𝐵)) |
39 | | eqid 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
40 | 39 | fvmpt2 6883 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
41 | 33, 21, 40 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
42 | 41 | oveq2d 7287 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = (𝐶 · 𝐵)) |
43 | 38, 42 | eqtr4d 2783 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘))) |
44 | 43 | ralrimiva 3110 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘))) |
45 | 44 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘))) |
46 | | nffvmpt1 6782 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛)) |
47 | | nfcv 2909 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝐶 |
48 | | nfcv 2909 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘
· |
49 | | nffvmpt1 6782 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) |
50 | 47, 48, 49 | nfov 7301 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
51 | 46, 50 | nfeq 2922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛)) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
52 | | fveq2 6771 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛))) |
53 | | fveq2 6771 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
54 | 53 | oveq2d 7287 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)))) |
55 | 52, 54 | eqeq12d 2756 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑛) → (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) ↔ ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛)) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))))) |
56 | 51, 55 | rspc 3548 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛)) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))))) |
57 | 32, 45, 56 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛)) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)))) |
58 | 26 | ad2antll 726 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
59 | | fvco3 6864 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛))) |
60 | 58, 59 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛))) |
61 | | fvco3 6864 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
62 | 58, 61 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
63 | 62 | oveq2d 7287 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐶 · (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛)) = (𝐶 · ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)))) |
64 | 57, 60, 63 | 3eqtr4d 2790 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = (𝐶 · (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛))) |
65 | 13, 17, 20, 31, 64 | seqdistr 13772 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓))‘(♯‘𝐴)) = (𝐶 · (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)))) |
66 | | fveq2 6771 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛))) |
67 | 35 | fmpttd 6986 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ) |
68 | 67 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ) |
69 | 68 | ffvelrnda 6958 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚) ∈ ℂ) |
70 | 66, 18, 24, 69, 60 | fsum 15430 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓))‘(♯‘𝐴))) |
71 | | fveq2 6771 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
72 | 22 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
73 | 72 | ffvelrnda 6958 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
74 | 71, 18, 24, 73, 62 | fsum 15430 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) |
75 | 74 | oveq2d 7287 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐶 · Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐶 · (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)))) |
76 | 65, 70, 75 | 3eqtr4rd 2791 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐶 · Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚)) |
77 | | sumfc 15419 |
. . . . . . 7
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐵 |
78 | 77 | oveq2i 7282 |
. . . . . 6
⊢ (𝐶 · Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) |
79 | | sumfc 15419 |
. . . . . 6
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵) |
80 | 76, 78, 79 | 3eqtr3g 2803 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
81 | 80 | expr 457 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵))) |
82 | 81 | exlimdv 1940 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵))) |
83 | 82 | expimpd 454 |
. 2
⊢ (𝜑 → (((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵))) |
84 | | fsummulc2.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
85 | | fz1f1o 15420 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
86 | 84, 85 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
87 | 11, 83, 86 | mpjaod 857 |
1
⊢ (𝜑 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |