MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsummulc2 Structured version   Visualization version   GIF version

Theorem fsummulc2 15832
Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsummulc2.1 (𝜑𝐴 ∈ Fin)
fsummulc2.2 (𝜑𝐶 ∈ ℂ)
fsummulc2.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsummulc2 (𝜑 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsummulc2
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsummulc2.2 . . . 4 (𝜑𝐶 ∈ ℂ)
21mul01d 11489 . . 3 (𝜑 → (𝐶 · 0) = 0)
3 sumeq1 15737 . . . . . 6 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
4 sum0 15769 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
53, 4eqtrdi 2796 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = 0)
65oveq2d 7464 . . . 4 (𝐴 = ∅ → (𝐶 · Σ𝑘𝐴 𝐵) = (𝐶 · 0))
7 sumeq1 15737 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 (𝐶 · 𝐵) = Σ𝑘 ∈ ∅ (𝐶 · 𝐵))
8 sum0 15769 . . . . 5 Σ𝑘 ∈ ∅ (𝐶 · 𝐵) = 0
97, 8eqtrdi 2796 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐶 · 𝐵) = 0)
106, 9eqeq12d 2756 . . 3 (𝐴 = ∅ → ((𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵) ↔ (𝐶 · 0) = 0))
112, 10syl5ibrcom 247 . 2 (𝜑 → (𝐴 = ∅ → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
12 addcl 11266 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛 + 𝑚) ∈ ℂ)
1312adantl 481 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑛 + 𝑚) ∈ ℂ)
141adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐶 ∈ ℂ)
15 adddi 11273 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐶 · (𝑛 + 𝑚)) = ((𝐶 · 𝑛) + (𝐶 · 𝑚)))
16153expb 1120 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝐶 · (𝑛 + 𝑚)) = ((𝐶 · 𝑛) + (𝐶 · 𝑚)))
1714, 16sylan 579 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝐶 · (𝑛 + 𝑚)) = ((𝐶 · 𝑛) + (𝐶 · 𝑚)))
18 simprl 770 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
19 nnuz 12946 . . . . . . . . 9 ℕ = (ℤ‘1)
2018, 19eleqtrdi 2854 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
21 fsummulc2.3 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2221fmpttd 7149 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2322ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑘𝐴𝐵):𝐴⟶ℂ)
24 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
2524adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
26 f1of 6862 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2725, 26syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
28 fco 6771 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2923, 27, 28syl2anc 583 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
30 simpr 484 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ (1...(♯‘𝐴)))
3129, 30ffvelcdmd 7119 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
3227, 30ffvelcdmd 7119 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
33 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑘𝐴)
341adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
3534, 21mulcld 11310 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐶 · 𝐵) ∈ ℂ)
36 eqid 2740 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐶 · 𝐵)) = (𝑘𝐴 ↦ (𝐶 · 𝐵))
3736fvmpt2 7040 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ (𝐶 · 𝐵) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · 𝐵))
3833, 35, 37syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · 𝐵))
39 eqid 2740 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
4039fvmpt2 7040 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
4133, 21, 40syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
4241oveq2d 7464 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐶 · ((𝑘𝐴𝐵)‘𝑘)) = (𝐶 · 𝐵))
4338, 42eqtr4d 2783 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘𝐴𝐵)‘𝑘)))
4443ralrimiva 3152 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘𝐴𝐵)‘𝑘)))
4544ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘𝐴𝐵)‘𝑘)))
46 nffvmpt1 6931 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛))
47 nfcv 2908 . . . . . . . . . . . . 13 𝑘𝐶
48 nfcv 2908 . . . . . . . . . . . . 13 𝑘 ·
49 nffvmpt1 6931 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
5047, 48, 49nfov 7478 . . . . . . . . . . . 12 𝑘(𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛)))
5146, 50nfeq 2922 . . . . . . . . . . 11 𝑘((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛)))
52 fveq2 6920 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
53 fveq2 6920 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
5453oveq2d 7464 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → (𝐶 · ((𝑘𝐴𝐵)‘𝑘)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛))))
5552, 54eqeq12d 2756 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘𝐴𝐵)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛)))))
5651, 55rspc 3623 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘𝐴𝐵)‘𝑘)) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛)))))
5732, 45, 56sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛))))
5826ad2antll 728 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
59 fvco3 7021 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
6058, 59sylan 579 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
61 fvco3 7021 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6258, 61sylan 579 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6362oveq2d 7464 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐶 · (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛))))
6457, 60, 633eqtr4d 2790 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = (𝐶 · (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛)))
6513, 17, 20, 31, 64seqdistr 14104 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , ((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓))‘(♯‘𝐴)) = (𝐶 · (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴))))
66 fveq2 6920 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
6735fmpttd 7149 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
6867adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
6968ffvelcdmda 7118 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) ∈ ℂ)
7066, 18, 24, 69, 60fsum 15768 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = (seq1( + , ((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓))‘(♯‘𝐴)))
71 fveq2 6920 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7222adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
7372ffvelcdmda 7118 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7471, 18, 24, 73, 62fsum 15768 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
7574oveq2d 7464 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐶 · (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴))))
7665, 70, 753eqtr4rd 2791 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚))
77 sumfc 15757 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
7877oveq2i 7459 . . . . . 6 (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐶 · Σ𝑘𝐴 𝐵)
79 sumfc 15757 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘𝐴 (𝐶 · 𝐵)
8076, 78, 793eqtr3g 2803 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
8180expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
8281exlimdv 1932 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
8382expimpd 453 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
84 fsummulc2.1 . . 3 (𝜑𝐴 ∈ Fin)
85 fz1f1o 15758 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
8684, 85syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
8711, 83, 86mpjaod 859 1 (𝜑 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wral 3067  c0 4352  cmpt 5249  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cn 12293  cuz 12903  ...cfz 13567  seqcseq 14052  chash 14379  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  fsummulc1  15833  fsumneg  15835  fsum2mul  15837  incexc2  15886  pwdif  15916  mertens  15934  binomrisefac  16090  fsumkthpow  16104  eirrlem  16252  pwp1fsum  16439  csbren  25452  trirn  25453  itg1addlem4  25753  itg1addlem4OLD  25754  itg1addlem5  25755  itg1mulc  25759  elqaalem3  26381  advlogexp  26715  fsumharmonic  27073  basellem8  27149  muinv  27254  fsumdvdsmul  27256  fsumdvdsmulOLD  27258  logfaclbnd  27284  dchrsum2  27330  sumdchr2  27332  rplogsumlem2  27547  rpvmasumlem  27549  dchrmusum2  27556  dchrvmasumlem1  27557  dchrvmasum2lem  27558  dchrvmasumlem2  27560  dchrvmasumiflem1  27563  rpvmasum2  27574  dchrisum0lem2  27580  mudivsum  27592  mulogsum  27594  mulog2sumlem1  27596  mulog2sumlem2  27597  mulog2sumlem3  27598  vmalogdivsum2  27600  logsqvma  27604  selberglem1  27607  selberglem2  27608  selberg  27610  selberg3lem1  27619  selberg4lem1  27622  selberg4  27623  selbergr  27630  selberg3r  27631  selberg34r  27633  pntsval2  27638  pntrlog2bndlem2  27640  pntrlog2bndlem3  27641  pntrlog2bndlem4  27642  pntrlog2bndlem6  27645  pntpbnd2  27649  pntlemk  27668  axsegconlem9  28958  ax5seglem1  28961  ax5seglem2  28962  ax5seglem9  28970  hgt750lemf  34630  hgt750lemb  34633  knoppndvlem11  36488  3factsumint4  41981  lcmineqlem6  41991  oddnumth  42299  jm2.22  42952  dvnprodlem2  45868  stoweidlem26  45947  stirlinglem12  46006  fourierdlem83  46110  etransclem46  46201  altgsumbcALT  48078  aacllem  48895
  Copyright terms: Public domain W3C validator