MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  demoivreALT Structured version   Visualization version   GIF version

Theorem demoivreALT 15546
Description: Alternate proof of demoivre 15545. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
demoivreALT ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))

Proof of Theorem demoivreALT
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7143 . . . . 5 (𝑥 = 0 → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑0))
2 oveq1 7142 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝐴) = (0 · 𝐴))
32fveq2d 6649 . . . . . 6 (𝑥 = 0 → (cos‘(𝑥 · 𝐴)) = (cos‘(0 · 𝐴)))
42fveq2d 6649 . . . . . . 7 (𝑥 = 0 → (sin‘(𝑥 · 𝐴)) = (sin‘(0 · 𝐴)))
54oveq2d 7151 . . . . . 6 (𝑥 = 0 → (i · (sin‘(𝑥 · 𝐴))) = (i · (sin‘(0 · 𝐴))))
63, 5oveq12d 7153 . . . . 5 (𝑥 = 0 → ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) = ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴)))))
71, 6eqeq12d 2814 . . . 4 (𝑥 = 0 → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) ↔ (((cos‘𝐴) + (i · (sin‘𝐴)))↑0) = ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴))))))
87imbi2d 344 . . 3 (𝑥 = 0 → ((𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴))))) ↔ (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑0) = ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴)))))))
9 oveq2 7143 . . . . 5 (𝑥 = 𝑘 → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘))
10 oveq1 7142 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 𝐴) = (𝑘 · 𝐴))
1110fveq2d 6649 . . . . . 6 (𝑥 = 𝑘 → (cos‘(𝑥 · 𝐴)) = (cos‘(𝑘 · 𝐴)))
1210fveq2d 6649 . . . . . . 7 (𝑥 = 𝑘 → (sin‘(𝑥 · 𝐴)) = (sin‘(𝑘 · 𝐴)))
1312oveq2d 7151 . . . . . 6 (𝑥 = 𝑘 → (i · (sin‘(𝑥 · 𝐴))) = (i · (sin‘(𝑘 · 𝐴))))
1411, 13oveq12d 7153 . . . . 5 (𝑥 = 𝑘 → ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))))
159, 14eqeq12d 2814 . . . 4 (𝑥 = 𝑘 → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) ↔ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))))
1615imbi2d 344 . . 3 (𝑥 = 𝑘 → ((𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴))))) ↔ (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))))))
17 oveq2 7143 . . . . 5 (𝑥 = (𝑘 + 1) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)))
18 oveq1 7142 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝑥 · 𝐴) = ((𝑘 + 1) · 𝐴))
1918fveq2d 6649 . . . . . 6 (𝑥 = (𝑘 + 1) → (cos‘(𝑥 · 𝐴)) = (cos‘((𝑘 + 1) · 𝐴)))
2018fveq2d 6649 . . . . . . 7 (𝑥 = (𝑘 + 1) → (sin‘(𝑥 · 𝐴)) = (sin‘((𝑘 + 1) · 𝐴)))
2120oveq2d 7151 . . . . . 6 (𝑥 = (𝑘 + 1) → (i · (sin‘(𝑥 · 𝐴))) = (i · (sin‘((𝑘 + 1) · 𝐴))))
2219, 21oveq12d 7153 . . . . 5 (𝑥 = (𝑘 + 1) → ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))
2317, 22eqeq12d 2814 . . . 4 (𝑥 = (𝑘 + 1) → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) ↔ (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴))))))
2423imbi2d 344 . . 3 (𝑥 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴))))) ↔ (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))))
25 oveq2 7143 . . . . 5 (𝑥 = 𝑁 → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁))
26 oveq1 7142 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝐴) = (𝑁 · 𝐴))
2726fveq2d 6649 . . . . . 6 (𝑥 = 𝑁 → (cos‘(𝑥 · 𝐴)) = (cos‘(𝑁 · 𝐴)))
2826fveq2d 6649 . . . . . . 7 (𝑥 = 𝑁 → (sin‘(𝑥 · 𝐴)) = (sin‘(𝑁 · 𝐴)))
2928oveq2d 7151 . . . . . 6 (𝑥 = 𝑁 → (i · (sin‘(𝑥 · 𝐴))) = (i · (sin‘(𝑁 · 𝐴))))
3027, 29oveq12d 7153 . . . . 5 (𝑥 = 𝑁 → ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
3125, 30eqeq12d 2814 . . . 4 (𝑥 = 𝑁 → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) ↔ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))))
3231imbi2d 344 . . 3 (𝑥 = 𝑁 → ((𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴))))) ↔ (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))))
33 coscl 15472 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
34 ax-icn 10585 . . . . . . 7 i ∈ ℂ
35 sincl 15471 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
36 mulcl 10610 . . . . . . 7 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
3734, 35, 36sylancr 590 . . . . . 6 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) ∈ ℂ)
38 addcl 10608 . . . . . 6 (((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → ((cos‘𝐴) + (i · (sin‘𝐴))) ∈ ℂ)
3933, 37, 38syl2anc 587 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴) + (i · (sin‘𝐴))) ∈ ℂ)
40 exp0 13429 . . . . 5 (((cos‘𝐴) + (i · (sin‘𝐴))) ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑0) = 1)
4139, 40syl 17 . . . 4 (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑0) = 1)
42 mul02 10807 . . . . . . . 8 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
4342fveq2d 6649 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(0 · 𝐴)) = (cos‘0))
44 cos0 15495 . . . . . . 7 (cos‘0) = 1
4543, 44eqtrdi 2849 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(0 · 𝐴)) = 1)
4642fveq2d 6649 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘(0 · 𝐴)) = (sin‘0))
47 sin0 15494 . . . . . . . . 9 (sin‘0) = 0
4846, 47eqtrdi 2849 . . . . . . . 8 (𝐴 ∈ ℂ → (sin‘(0 · 𝐴)) = 0)
4948oveq2d 7151 . . . . . . 7 (𝐴 ∈ ℂ → (i · (sin‘(0 · 𝐴))) = (i · 0))
5034mul01i 10819 . . . . . . 7 (i · 0) = 0
5149, 50eqtrdi 2849 . . . . . 6 (𝐴 ∈ ℂ → (i · (sin‘(0 · 𝐴))) = 0)
5245, 51oveq12d 7153 . . . . 5 (𝐴 ∈ ℂ → ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴)))) = (1 + 0))
53 ax-1cn 10584 . . . . . 6 1 ∈ ℂ
5453addid1i 10816 . . . . 5 (1 + 0) = 1
5552, 54eqtrdi 2849 . . . 4 (𝐴 ∈ ℂ → ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴)))) = 1)
5641, 55eqtr4d 2836 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑0) = ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴)))))
57 expp1 13432 . . . . . . . . 9 ((((cos‘𝐴) + (i · (sin‘𝐴))) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
5839, 57sylan 583 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
5958ancoms 462 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
6059adantr 484 . . . . . 6 (((𝑘 ∈ ℕ0𝐴 ∈ ℂ) ∧ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
61 oveq1 7142 . . . . . . 7 ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
6261adantl 485 . . . . . 6 (((𝑘 ∈ ℕ0𝐴 ∈ ℂ) ∧ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))) → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
63 nn0cn 11895 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
64 mulcl 10610 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑘 · 𝐴) ∈ ℂ)
6563, 64sylan 583 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (𝑘 · 𝐴) ∈ ℂ)
66 sinadd 15509 . . . . . . . . . . . 12 (((𝑘 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (sin‘((𝑘 · 𝐴) + 𝐴)) = (((sin‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
6765, 66sylancom 591 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (sin‘((𝑘 · 𝐴) + 𝐴)) = (((sin‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
6833adantl 485 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (cos‘𝐴) ∈ ℂ)
69 sincl 15471 . . . . . . . . . . . . . 14 ((𝑘 · 𝐴) ∈ ℂ → (sin‘(𝑘 · 𝐴)) ∈ ℂ)
7065, 69syl 17 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (sin‘(𝑘 · 𝐴)) ∈ ℂ)
71 mulcom 10612 . . . . . . . . . . . . 13 (((cos‘𝐴) ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) = ((sin‘(𝑘 · 𝐴)) · (cos‘𝐴)))
7268, 70, 71syl2anc 587 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) = ((sin‘(𝑘 · 𝐴)) · (cos‘𝐴)))
7372oveq1d 7150 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) = (((sin‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
74 mulcl 10610 . . . . . . . . . . . . 13 (((cos‘𝐴) ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
7568, 70, 74syl2anc 587 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
76 coscl 15472 . . . . . . . . . . . . . 14 ((𝑘 · 𝐴) ∈ ℂ → (cos‘(𝑘 · 𝐴)) ∈ ℂ)
7765, 76syl 17 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (cos‘(𝑘 · 𝐴)) ∈ ℂ)
7835adantl 485 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (sin‘𝐴) ∈ ℂ)
79 mulcl 10610 . . . . . . . . . . . . 13 (((cos‘(𝑘 · 𝐴)) ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) ∈ ℂ)
8077, 78, 79syl2anc 587 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) ∈ ℂ)
81 addcom 10815 . . . . . . . . . . . 12 ((((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ ∧ ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) ∈ ℂ) → (((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) = (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
8275, 80, 81syl2anc 587 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) = (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
8367, 73, 823eqtr2d 2839 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (sin‘((𝑘 · 𝐴) + 𝐴)) = (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
8483oveq2d 7151 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i · (sin‘((𝑘 · 𝐴) + 𝐴))) = (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
8584oveq2d 7151 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘((𝑘 · 𝐴) + 𝐴)) + (i · (sin‘((𝑘 · 𝐴) + 𝐴)))) = ((cos‘((𝑘 · 𝐴) + 𝐴)) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
86 adddir 10621 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
87 mulid2 10629 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
8887oveq2d 7151 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((𝑘 · 𝐴) + (1 · 𝐴)) = ((𝑘 · 𝐴) + 𝐴))
89883ad2ant3 1132 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 · 𝐴) + (1 · 𝐴)) = ((𝑘 · 𝐴) + 𝐴))
9086, 89eqtrd 2833 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
9163, 90syl3an1 1160 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
9253, 91mp3an2 1446 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
9392fveq2d 6649 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (cos‘((𝑘 + 1) · 𝐴)) = (cos‘((𝑘 · 𝐴) + 𝐴)))
9492fveq2d 6649 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (sin‘((𝑘 + 1) · 𝐴)) = (sin‘((𝑘 · 𝐴) + 𝐴)))
9594oveq2d 7151 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i · (sin‘((𝑘 + 1) · 𝐴))) = (i · (sin‘((𝑘 · 𝐴) + 𝐴))))
9693, 95oveq12d 7153 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))) = ((cos‘((𝑘 · 𝐴) + 𝐴)) + (i · (sin‘((𝑘 · 𝐴) + 𝐴)))))
97 mulcl 10610 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → (i · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
9834, 97mpan 689 . . . . . . . . . . . . 13 ((sin‘(𝑘 · 𝐴)) ∈ ℂ → (i · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
9965, 69, 983syl 18 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
10033, 37jca 515 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ))
101100adantl 485 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ))
102 muladd 11061 . . . . . . . . . . . 12 ((((cos‘(𝑘 · 𝐴)) ∈ ℂ ∧ (i · (sin‘(𝑘 · 𝐴))) ∈ ℂ) ∧ ((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ)) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴))))) + (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))))))
10377, 99, 101, 102syl21anc 836 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴))))) + (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))))))
10478, 34jctil 523 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ))
10570, 34jctil 523 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ))
106 mul4 10797 . . . . . . . . . . . . . . 15 (((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) ∧ (i ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ)) → ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴)))) = ((i · i) · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
107 ixi 11258 . . . . . . . . . . . . . . . 16 (i · i) = -1
108107oveq1i 7145 . . . . . . . . . . . . . . 15 ((i · i) · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) = (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))
109106, 108eqtrdi 2849 . . . . . . . . . . . . . 14 (((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) ∧ (i ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ)) → ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴)))) = (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
110104, 105, 109syl2anc 587 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴)))) = (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
111110oveq2d 7151 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴))))) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))))
112111oveq1d 7150 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴))))) + (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) + (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))))))
113 mul12 10794 . . . . . . . . . . . . . . . 16 (((cos‘(𝑘 · 𝐴)) ∈ ℂ ∧ i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) = (i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
11434, 113mp3an2 1446 . . . . . . . . . . . . . . 15 (((cos‘(𝑘 · 𝐴)) ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) = (i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
11577, 78, 114syl2anc 587 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) = (i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
116 mul12 10794 . . . . . . . . . . . . . . . 16 (((cos‘𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))) = (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
11734, 116mp3an2 1446 . . . . . . . . . . . . . . 15 (((cos‘𝐴) ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))) = (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
11868, 70, 117syl2anc 587 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))) = (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
119115, 118oveq12d 7153 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴))))) = ((i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) + (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
120 adddi 10615 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) ∈ ℂ ∧ ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ) → (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))) = ((i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) + (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
12134, 120mp3an1 1445 . . . . . . . . . . . . . 14 ((((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) ∈ ℂ ∧ ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ) → (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))) = ((i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) + (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
12280, 75, 121syl2anc 587 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))) = ((i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) + (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
123119, 122eqtr4d 2836 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴))))) = (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
124123oveq2d 7151 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) + (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
125103, 112, 1243eqtrd 2837 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
126 mulcl 10610 . . . . . . . . . . . . . 14 (((sin‘𝐴) ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
12778, 70, 126syl2anc 587 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
128 mulm1 11070 . . . . . . . . . . . . 13 (((sin‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ → (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) = -((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))
129127, 128syl 17 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) = -((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))
130129oveq2d 7151 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + -((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
131130oveq1d 7150 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + -((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
132 mulcl 10610 . . . . . . . . . . . . 13 (((cos‘(𝑘 · 𝐴)) ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) ∈ ℂ)
13377, 68, 132syl2anc 587 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) ∈ ℂ)
134 negsub 10923 . . . . . . . . . . . 12 ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + -((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
135133, 127, 134syl2anc 587 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + -((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
136135oveq1d 7150 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + -((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
137125, 131, 1363eqtrd 2837 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
138 cosadd 15510 . . . . . . . . . . . 12 (((𝑘 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (cos‘((𝑘 · 𝐴) + 𝐴)) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘(𝑘 · 𝐴)) · (sin‘𝐴))))
13965, 138sylancom 591 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (cos‘((𝑘 · 𝐴) + 𝐴)) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘(𝑘 · 𝐴)) · (sin‘𝐴))))
140 mulcom 10612 . . . . . . . . . . . . 13 (((sin‘(𝑘 · 𝐴)) ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((sin‘(𝑘 · 𝐴)) · (sin‘𝐴)) = ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))
14170, 78, 140syl2anc 587 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((sin‘(𝑘 · 𝐴)) · (sin‘𝐴)) = ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))
142141oveq2d 7151 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘(𝑘 · 𝐴)) · (sin‘𝐴))) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
143139, 142eqtrd 2833 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (cos‘((𝑘 · 𝐴) + 𝐴)) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
144143oveq1d 7150 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘((𝑘 · 𝐴) + 𝐴)) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
145137, 144eqtr4d 2836 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((cos‘((𝑘 · 𝐴) + 𝐴)) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
14685, 96, 1453eqtr4rd 2844 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))
147146adantr 484 . . . . . 6 (((𝑘 ∈ ℕ0𝐴 ∈ ℂ) ∧ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))
14860, 62, 1473eqtrd 2837 . . . . 5 (((𝑘 ∈ ℕ0𝐴 ∈ ℂ) ∧ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))
149148exp31 423 . . . 4 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℂ → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))))
150149a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))) → (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))))
1518, 16, 24, 32, 56, 150nn0ind 12065 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))))
152151impcom 411 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860  0cn0 11885  cexp 13425  sincsin 15409  cosccos 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator