MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absefib Structured version   Visualization version   GIF version

Theorem absefib 16221
Description: A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
absefib (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))

Proof of Theorem absefib
StepHypRef Expression
1 ef0 16112 . . . . 5 (exp‘0) = 1
21eqeq2i 2749 . . . 4 ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ (exp‘-(ℑ‘𝐴)) = 1)
3 imcl 15135 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
43renegcld 11669 . . . . 5 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
5 0re 11242 . . . . 5 0 ∈ ℝ
6 reef11 16142 . . . . 5 ((-(ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
74, 5, 6sylancl 586 . . . 4 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
82, 7bitr3id 285 . . 3 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = 1 ↔ -(ℑ‘𝐴) = 0))
93recnd 11268 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
109negeq0d 11591 . . 3 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 ↔ -(ℑ‘𝐴) = 0))
118, 10bitr4d 282 . 2 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = 1 ↔ (ℑ‘𝐴) = 0))
12 ax-icn 11193 . . . . . 6 i ∈ ℂ
13 mulcl 11218 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1412, 13mpan 690 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
15 absef 16220 . . . . 5 ((i · 𝐴) ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘(ℜ‘(i · 𝐴))))
1614, 15syl 17 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘(ℜ‘(i · 𝐴))))
17 recl 15134 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1817recnd 11268 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
19 mulcl 11218 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
2012, 9, 19sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
21 replim 15140 . . . . . . . . . 10 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2218, 20, 21comraddd 11454 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 = ((i · (ℑ‘𝐴)) + (ℜ‘𝐴)))
2322oveq2d 7426 . . . . . . . 8 (𝐴 ∈ ℂ → (i · 𝐴) = (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))))
24 adddi 11223 . . . . . . . . . 10 ((i ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
2512, 20, 18, 24mp3an2i 1468 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
26 ixi 11871 . . . . . . . . . . . 12 (i · i) = -1
2726oveq1i 7420 . . . . . . . . . . 11 ((i · i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴))
28 mulass 11222 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
2912, 12, 9, 28mp3an12i 1467 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
309mulm1d 11694 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
3127, 29, 303eqtr3a 2795 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (i · (ℑ‘𝐴))) = -(ℑ‘𝐴))
3231oveq1d 7425 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3325, 32eqtrd 2771 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3423, 33eqtrd 2771 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3534fveq2d 6885 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(i · 𝐴)) = (ℜ‘(-(ℑ‘𝐴) + (i · (ℜ‘𝐴)))))
364, 17crred 15255 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(-(ℑ‘𝐴) + (i · (ℜ‘𝐴)))) = -(ℑ‘𝐴))
3735, 36eqtrd 2771 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘(i · 𝐴)) = -(ℑ‘𝐴))
3837fveq2d 6885 . . . 4 (𝐴 ∈ ℂ → (exp‘(ℜ‘(i · 𝐴))) = (exp‘-(ℑ‘𝐴)))
3916, 38eqtrd 2771 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘-(ℑ‘𝐴)))
4039eqeq1d 2738 . 2 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · 𝐴))) = 1 ↔ (exp‘-(ℑ‘𝐴)) = 1))
41 reim0b 15143 . 2 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
4211, 40, 413bitr4rd 312 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135  ici 11136   + caddc 11137   · cmul 11139  -cneg 11472  cre 15121  cim 15122  abscabs 15258  expce 16082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091
This theorem is referenced by:  sineq0  26490  sineq0ALT  44928
  Copyright terms: Public domain W3C validator