MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absefib Structured version   Visualization version   GIF version

Theorem absefib 16117
Description: A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
absefib (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))

Proof of Theorem absefib
StepHypRef Expression
1 ef0 16008 . . . . 5 (exp‘0) = 1
21eqeq2i 2746 . . . 4 ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ (exp‘-(ℑ‘𝐴)) = 1)
3 imcl 15028 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
43renegcld 11554 . . . . 5 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
5 0re 11124 . . . . 5 0 ∈ ℝ
6 reef11 16038 . . . . 5 ((-(ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
74, 5, 6sylancl 586 . . . 4 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
82, 7bitr3id 285 . . 3 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = 1 ↔ -(ℑ‘𝐴) = 0))
93recnd 11150 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
109negeq0d 11474 . . 3 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 ↔ -(ℑ‘𝐴) = 0))
118, 10bitr4d 282 . 2 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = 1 ↔ (ℑ‘𝐴) = 0))
12 ax-icn 11075 . . . . . 6 i ∈ ℂ
13 mulcl 11100 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1412, 13mpan 690 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
15 absef 16116 . . . . 5 ((i · 𝐴) ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘(ℜ‘(i · 𝐴))))
1614, 15syl 17 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘(ℜ‘(i · 𝐴))))
17 recl 15027 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1817recnd 11150 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
19 mulcl 11100 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
2012, 9, 19sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
21 replim 15033 . . . . . . . . . 10 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2218, 20, 21comraddd 11337 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 = ((i · (ℑ‘𝐴)) + (ℜ‘𝐴)))
2322oveq2d 7371 . . . . . . . 8 (𝐴 ∈ ℂ → (i · 𝐴) = (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))))
24 adddi 11105 . . . . . . . . . 10 ((i ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
2512, 20, 18, 24mp3an2i 1468 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
26 ixi 11756 . . . . . . . . . . . 12 (i · i) = -1
2726oveq1i 7365 . . . . . . . . . . 11 ((i · i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴))
28 mulass 11104 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
2912, 12, 9, 28mp3an12i 1467 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
309mulm1d 11579 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
3127, 29, 303eqtr3a 2792 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (i · (ℑ‘𝐴))) = -(ℑ‘𝐴))
3231oveq1d 7370 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3325, 32eqtrd 2768 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3423, 33eqtrd 2768 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3534fveq2d 6835 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(i · 𝐴)) = (ℜ‘(-(ℑ‘𝐴) + (i · (ℜ‘𝐴)))))
364, 17crred 15148 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(-(ℑ‘𝐴) + (i · (ℜ‘𝐴)))) = -(ℑ‘𝐴))
3735, 36eqtrd 2768 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘(i · 𝐴)) = -(ℑ‘𝐴))
3837fveq2d 6835 . . . 4 (𝐴 ∈ ℂ → (exp‘(ℜ‘(i · 𝐴))) = (exp‘-(ℑ‘𝐴)))
3916, 38eqtrd 2768 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘-(ℑ‘𝐴)))
4039eqeq1d 2735 . 2 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · 𝐴))) = 1 ↔ (exp‘-(ℑ‘𝐴)) = 1))
41 reim0b 15036 . 2 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
4211, 40, 413bitr4rd 312 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017  ici 11018   + caddc 11019   · cmul 11021  -cneg 11355  cre 15014  cim 15015  abscabs 15151  expce 15978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-rp 12901  df-ico 13261  df-fz 13418  df-fzo 13565  df-fl 13706  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-ef 15984  df-sin 15986  df-cos 15987
This theorem is referenced by:  sineq0  26470  sineq0ALT  45043
  Copyright terms: Public domain W3C validator