MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absefib Structured version   Visualization version   GIF version

Theorem absefib 16173
Description: A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
absefib (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))

Proof of Theorem absefib
StepHypRef Expression
1 ef0 16064 . . . . 5 (exp‘0) = 1
21eqeq2i 2743 . . . 4 ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ (exp‘-(ℑ‘𝐴)) = 1)
3 imcl 15084 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
43renegcld 11612 . . . . 5 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
5 0re 11183 . . . . 5 0 ∈ ℝ
6 reef11 16094 . . . . 5 ((-(ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
74, 5, 6sylancl 586 . . . 4 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
82, 7bitr3id 285 . . 3 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = 1 ↔ -(ℑ‘𝐴) = 0))
93recnd 11209 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
109negeq0d 11532 . . 3 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 ↔ -(ℑ‘𝐴) = 0))
118, 10bitr4d 282 . 2 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = 1 ↔ (ℑ‘𝐴) = 0))
12 ax-icn 11134 . . . . . 6 i ∈ ℂ
13 mulcl 11159 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1412, 13mpan 690 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
15 absef 16172 . . . . 5 ((i · 𝐴) ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘(ℜ‘(i · 𝐴))))
1614, 15syl 17 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘(ℜ‘(i · 𝐴))))
17 recl 15083 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1817recnd 11209 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
19 mulcl 11159 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
2012, 9, 19sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
21 replim 15089 . . . . . . . . . 10 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2218, 20, 21comraddd 11395 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 = ((i · (ℑ‘𝐴)) + (ℜ‘𝐴)))
2322oveq2d 7406 . . . . . . . 8 (𝐴 ∈ ℂ → (i · 𝐴) = (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))))
24 adddi 11164 . . . . . . . . . 10 ((i ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
2512, 20, 18, 24mp3an2i 1468 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
26 ixi 11814 . . . . . . . . . . . 12 (i · i) = -1
2726oveq1i 7400 . . . . . . . . . . 11 ((i · i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴))
28 mulass 11163 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
2912, 12, 9, 28mp3an12i 1467 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
309mulm1d 11637 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
3127, 29, 303eqtr3a 2789 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (i · (ℑ‘𝐴))) = -(ℑ‘𝐴))
3231oveq1d 7405 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3325, 32eqtrd 2765 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3423, 33eqtrd 2765 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3534fveq2d 6865 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(i · 𝐴)) = (ℜ‘(-(ℑ‘𝐴) + (i · (ℜ‘𝐴)))))
364, 17crred 15204 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(-(ℑ‘𝐴) + (i · (ℜ‘𝐴)))) = -(ℑ‘𝐴))
3735, 36eqtrd 2765 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘(i · 𝐴)) = -(ℑ‘𝐴))
3837fveq2d 6865 . . . 4 (𝐴 ∈ ℂ → (exp‘(ℜ‘(i · 𝐴))) = (exp‘-(ℑ‘𝐴)))
3916, 38eqtrd 2765 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘-(ℑ‘𝐴)))
4039eqeq1d 2732 . 2 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · 𝐴))) = 1 ↔ (exp‘-(ℑ‘𝐴)) = 1))
41 reim0b 15092 . 2 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
4211, 40, 413bitr4rd 312 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  -cneg 11413  cre 15070  cim 15071  abscabs 15207  expce 16034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043
This theorem is referenced by:  sineq0  26440  sineq0ALT  44933
  Copyright terms: Public domain W3C validator