Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3d1 Structured version   Visualization version   GIF version

Theorem 2lgslem3d1 25990
 Description: Lemma 4 for 2lgslem3 25991. (Contributed by AV, 15-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3d1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)

Proof of Theorem 2lgslem3d1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11901 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 11729 . . . . 5 8 ∈ ℕ
3 nnrp 12397 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 13287 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7)))
61, 4, 5sylancl 589 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7)))
7 simpr 488 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 11904 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 11731 . . . . . . . . . . . 12 8 ∈ ℂ
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 10660 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 485 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 7164 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 7) = ((8 · 𝑘) + 7))
1413eqeq2d 2835 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 7) ↔ 𝑃 = ((8 · 𝑘) + 7)))
1514biimpa 480 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑃 = ((8 · 𝑘) + 7))
16 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3d 25986 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 7)) → 𝑁 = ((2 · 𝑘) + 2))
187, 15, 17syl2an2r 684 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑁 = ((2 · 𝑘) + 2))
19 oveq1 7156 . . . . . 6 (𝑁 = ((2 · 𝑘) + 2) → (𝑁 mod 2) = (((2 · 𝑘) + 2) mod 2))
20 2t1e2 11797 . . . . . . . . . . . 12 (2 · 1) = 2
2120eqcomi 2833 . . . . . . . . . . 11 2 = (2 · 1)
2221a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 = (2 · 1))
2322oveq2d 7165 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 2) = ((2 · 𝑘) + (2 · 1)))
24 2cnd 11712 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
25 1cnd 10634 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
26 adddi 10624 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1)))
2726eqcomd 2830 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1)))
2824, 8, 25, 27syl3anc 1368 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1)))
298, 25addcld 10658 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
3024, 29mulcomd 10660 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) = ((𝑘 + 1) · 2))
3123, 28, 303eqtrd 2863 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 2) = ((𝑘 + 1) · 2))
3231oveq1d 7164 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 2) mod 2) = (((𝑘 + 1) · 2) mod 2))
33 peano2nn0 11934 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3433nn0zd 12082 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℤ)
35 2rp 12391 . . . . . . . 8 2 ∈ ℝ+
36 mulmod0 13249 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 2 ∈ ℝ+) → (((𝑘 + 1) · 2) mod 2) = 0)
3734, 35, 36sylancl 589 . . . . . . 7 (𝑘 ∈ ℕ0 → (((𝑘 + 1) · 2) mod 2) = 0)
3832, 37eqtrd 2859 . . . . . 6 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 2) mod 2) = 0)
3919, 38sylan9eqr 2881 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 2)) → (𝑁 mod 2) = 0)
407, 18, 39syl2an2r 684 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → (𝑁 mod 2) = 0)
4140rexlimdva2 3279 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7) → (𝑁 mod 2) = 0))
426, 41syld 47 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → (𝑁 mod 2) = 0))
4342imp 410 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∃wrex 3134  ‘cfv 6343  (class class class)co 7149  ℂcc 10533  0cc0 10535  1c1 10536   + caddc 10538   · cmul 10540   − cmin 10868   / cdiv 11295  ℕcn 11634  2c2 11689  4c4 11691  7c7 11694  8c8 11695  ℕ0cn0 11894  ℤcz 11978  ℝ+crp 12386  ⌊cfl 13164   mod cmo 13241 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-ico 12741  df-fl 13166  df-mod 13242 This theorem is referenced by:  2lgslem3  25991
 Copyright terms: Public domain W3C validator