MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3d1 Structured version   Visualization version   GIF version

Theorem 2lgslem3d1 26751
Description: Lemma 4 for 2lgslem3 26752. (Contributed by AV, 15-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3d1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)

Proof of Theorem 2lgslem3d1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12420 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 12248 . . . . 5 8 ∈ ℕ
3 nnrp 12926 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 13820 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7)))
61, 4, 5sylancl 586 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7)))
7 simpr 485 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 12423 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 12250 . . . . . . . . . . . 12 8 ∈ ℂ
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 11176 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 482 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 7372 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 7) = ((8 · 𝑘) + 7))
1413eqeq2d 2747 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 7) ↔ 𝑃 = ((8 · 𝑘) + 7)))
1514biimpa 477 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑃 = ((8 · 𝑘) + 7))
16 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3d 26747 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 7)) → 𝑁 = ((2 · 𝑘) + 2))
187, 15, 17syl2an2r 683 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑁 = ((2 · 𝑘) + 2))
19 oveq1 7364 . . . . . 6 (𝑁 = ((2 · 𝑘) + 2) → (𝑁 mod 2) = (((2 · 𝑘) + 2) mod 2))
20 2t1e2 12316 . . . . . . . . . . . 12 (2 · 1) = 2
2120eqcomi 2745 . . . . . . . . . . 11 2 = (2 · 1)
2221a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 = (2 · 1))
2322oveq2d 7373 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 2) = ((2 · 𝑘) + (2 · 1)))
24 2cnd 12231 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
25 1cnd 11150 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
26 adddi 11140 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1)))
2726eqcomd 2742 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1)))
2824, 8, 25, 27syl3anc 1371 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1)))
298, 25addcld 11174 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
3024, 29mulcomd 11176 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) = ((𝑘 + 1) · 2))
3123, 28, 303eqtrd 2780 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 2) = ((𝑘 + 1) · 2))
3231oveq1d 7372 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 2) mod 2) = (((𝑘 + 1) · 2) mod 2))
33 peano2nn0 12453 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3433nn0zd 12525 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℤ)
35 2rp 12920 . . . . . . . 8 2 ∈ ℝ+
36 mulmod0 13782 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 2 ∈ ℝ+) → (((𝑘 + 1) · 2) mod 2) = 0)
3734, 35, 36sylancl 586 . . . . . . 7 (𝑘 ∈ ℕ0 → (((𝑘 + 1) · 2) mod 2) = 0)
3832, 37eqtrd 2776 . . . . . 6 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 2) mod 2) = 0)
3919, 38sylan9eqr 2798 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 2)) → (𝑁 mod 2) = 0)
407, 18, 39syl2an2r 683 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → (𝑁 mod 2) = 0)
4140rexlimdva2 3154 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7) → (𝑁 mod 2) = 0))
426, 41syld 47 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → (𝑁 mod 2) = 0))
4342imp 407 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  4c4 12210  7c7 12213  8c8 12214  0cn0 12413  cz 12499  +crp 12915  cfl 13695   mod cmo 13774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fl 13697  df-mod 13775
This theorem is referenced by:  2lgslem3  26752
  Copyright terms: Public domain W3C validator