MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3d1 Structured version   Visualization version   GIF version

Theorem 2lgslem3d1 27347
Description: Lemma 4 for 2lgslem3 27348. (Contributed by AV, 15-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3d1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)

Proof of Theorem 2lgslem3d1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12425 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 12257 . . . . 5 8 ∈ ℕ
3 nnrp 12939 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 13856 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7)))
61, 4, 5sylancl 586 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7)))
7 simpr 484 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 12428 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 12259 . . . . . . . . . . . 12 8 ∈ ℂ
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 11171 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 7384 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 7) = ((8 · 𝑘) + 7))
1413eqeq2d 2740 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 7) ↔ 𝑃 = ((8 · 𝑘) + 7)))
1514biimpa 476 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑃 = ((8 · 𝑘) + 7))
16 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3d 27343 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 7)) → 𝑁 = ((2 · 𝑘) + 2))
187, 15, 17syl2an2r 685 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑁 = ((2 · 𝑘) + 2))
19 oveq1 7376 . . . . . 6 (𝑁 = ((2 · 𝑘) + 2) → (𝑁 mod 2) = (((2 · 𝑘) + 2) mod 2))
20 2t1e2 12320 . . . . . . . . . . . 12 (2 · 1) = 2
2120eqcomi 2738 . . . . . . . . . . 11 2 = (2 · 1)
2221a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 = (2 · 1))
2322oveq2d 7385 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 2) = ((2 · 𝑘) + (2 · 1)))
24 2cnd 12240 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
25 1cnd 11145 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
26 adddi 11133 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1)))
2726eqcomd 2735 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1)))
2824, 8, 25, 27syl3anc 1373 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1)))
298, 25addcld 11169 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
3024, 29mulcomd 11171 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) = ((𝑘 + 1) · 2))
3123, 28, 303eqtrd 2768 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 2) = ((𝑘 + 1) · 2))
3231oveq1d 7384 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 2) mod 2) = (((𝑘 + 1) · 2) mod 2))
33 peano2nn0 12458 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3433nn0zd 12531 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℤ)
35 2rp 12932 . . . . . . . 8 2 ∈ ℝ+
36 mulmod0 13815 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 2 ∈ ℝ+) → (((𝑘 + 1) · 2) mod 2) = 0)
3734, 35, 36sylancl 586 . . . . . . 7 (𝑘 ∈ ℕ0 → (((𝑘 + 1) · 2) mod 2) = 0)
3832, 37eqtrd 2764 . . . . . 6 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 2) mod 2) = 0)
3919, 38sylan9eqr 2786 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 2)) → (𝑁 mod 2) = 0)
407, 18, 39syl2an2r 685 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → (𝑁 mod 2) = 0)
4140rexlimdva2 3136 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7) → (𝑁 mod 2) = 0))
426, 41syld 47 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → (𝑁 mod 2) = 0))
4342imp 406 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  4c4 12219  7c7 12222  8c8 12223  0cn0 12418  cz 12505  +crp 12927  cfl 13728   mod cmo 13807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fl 13730  df-mod 13808
This theorem is referenced by:  2lgslem3  27348
  Copyright terms: Public domain W3C validator