MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3d1 Structured version   Visualization version   GIF version

Theorem 2lgslem3d1 27312
Description: Lemma 4 for 2lgslem3 27313. (Contributed by AV, 15-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3d1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)

Proof of Theorem 2lgslem3d1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12391 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 12223 . . . . 5 8 ∈ ℕ
3 nnrp 12905 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 13822 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7)))
61, 4, 5sylancl 586 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7)))
7 simpr 484 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 12394 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 12225 . . . . . . . . . . . 12 8 ∈ ℂ
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 11136 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 7364 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 7) = ((8 · 𝑘) + 7))
1413eqeq2d 2740 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 7) ↔ 𝑃 = ((8 · 𝑘) + 7)))
1514biimpa 476 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑃 = ((8 · 𝑘) + 7))
16 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3d 27308 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 7)) → 𝑁 = ((2 · 𝑘) + 2))
187, 15, 17syl2an2r 685 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑁 = ((2 · 𝑘) + 2))
19 oveq1 7356 . . . . . 6 (𝑁 = ((2 · 𝑘) + 2) → (𝑁 mod 2) = (((2 · 𝑘) + 2) mod 2))
20 2t1e2 12286 . . . . . . . . . . . 12 (2 · 1) = 2
2120eqcomi 2738 . . . . . . . . . . 11 2 = (2 · 1)
2221a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 = (2 · 1))
2322oveq2d 7365 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 2) = ((2 · 𝑘) + (2 · 1)))
24 2cnd 12206 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
25 1cnd 11110 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
26 adddi 11098 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1)))
2726eqcomd 2735 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1)))
2824, 8, 25, 27syl3anc 1373 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1)))
298, 25addcld 11134 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
3024, 29mulcomd 11136 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) = ((𝑘 + 1) · 2))
3123, 28, 303eqtrd 2768 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 2) = ((𝑘 + 1) · 2))
3231oveq1d 7364 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 2) mod 2) = (((𝑘 + 1) · 2) mod 2))
33 peano2nn0 12424 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3433nn0zd 12497 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℤ)
35 2rp 12898 . . . . . . . 8 2 ∈ ℝ+
36 mulmod0 13781 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 2 ∈ ℝ+) → (((𝑘 + 1) · 2) mod 2) = 0)
3734, 35, 36sylancl 586 . . . . . . 7 (𝑘 ∈ ℕ0 → (((𝑘 + 1) · 2) mod 2) = 0)
3832, 37eqtrd 2764 . . . . . 6 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 2) mod 2) = 0)
3919, 38sylan9eqr 2786 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 2)) → (𝑁 mod 2) = 0)
407, 18, 39syl2an2r 685 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → (𝑁 mod 2) = 0)
4140rexlimdva2 3132 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7) → (𝑁 mod 2) = 0))
426, 41syld 47 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → (𝑁 mod 2) = 0))
4342imp 406 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  4c4 12185  7c7 12188  8c8 12189  0cn0 12384  cz 12471  +crp 12893  cfl 13694   mod cmo 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fl 13696  df-mod 13774
This theorem is referenced by:  2lgslem3  27313
  Copyright terms: Public domain W3C validator