MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3d1 Structured version   Visualization version   GIF version

Theorem 2lgslem3d1 27447
Description: Lemma 4 for 2lgslem3 27448. (Contributed by AV, 15-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3d1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)

Proof of Theorem 2lgslem3d1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12533 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 12361 . . . . 5 8 ∈ ℕ
3 nnrp 13046 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 13956 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7)))
61, 4, 5sylancl 586 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7)))
7 simpr 484 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 12536 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 12363 . . . . . . . . . . . 12 8 ∈ ℂ
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 11282 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 7446 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 7) = ((8 · 𝑘) + 7))
1413eqeq2d 2748 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 7) ↔ 𝑃 = ((8 · 𝑘) + 7)))
1514biimpa 476 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑃 = ((8 · 𝑘) + 7))
16 2lgslem2.n . . . . . . 7 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3d 27443 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 7)) → 𝑁 = ((2 · 𝑘) + 2))
187, 15, 17syl2an2r 685 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → 𝑁 = ((2 · 𝑘) + 2))
19 oveq1 7438 . . . . . 6 (𝑁 = ((2 · 𝑘) + 2) → (𝑁 mod 2) = (((2 · 𝑘) + 2) mod 2))
20 2t1e2 12429 . . . . . . . . . . . 12 (2 · 1) = 2
2120eqcomi 2746 . . . . . . . . . . 11 2 = (2 · 1)
2221a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 = (2 · 1))
2322oveq2d 7447 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 2) = ((2 · 𝑘) + (2 · 1)))
24 2cnd 12344 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 2 ∈ ℂ)
25 1cnd 11256 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → 1 ∈ ℂ)
26 adddi 11244 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1)))
2726eqcomd 2743 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1)))
2824, 8, 25, 27syl3anc 1373 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + (2 · 1)) = (2 · (𝑘 + 1)))
298, 25addcld 11280 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
3024, 29mulcomd 11282 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (2 · (𝑘 + 1)) = ((𝑘 + 1) · 2))
3123, 28, 303eqtrd 2781 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 2) = ((𝑘 + 1) · 2))
3231oveq1d 7446 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 2) mod 2) = (((𝑘 + 1) · 2) mod 2))
33 peano2nn0 12566 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3433nn0zd 12639 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℤ)
35 2rp 13039 . . . . . . . 8 2 ∈ ℝ+
36 mulmod0 13917 . . . . . . . 8 (((𝑘 + 1) ∈ ℤ ∧ 2 ∈ ℝ+) → (((𝑘 + 1) · 2) mod 2) = 0)
3734, 35, 36sylancl 586 . . . . . . 7 (𝑘 ∈ ℕ0 → (((𝑘 + 1) · 2) mod 2) = 0)
3832, 37eqtrd 2777 . . . . . 6 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 2) mod 2) = 0)
3919, 38sylan9eqr 2799 . . . . 5 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 2)) → (𝑁 mod 2) = 0)
407, 18, 39syl2an2r 685 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 7)) → (𝑁 mod 2) = 0)
4140rexlimdva2 3157 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 7) → (𝑁 mod 2) = 0))
426, 41syld 47 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 7 → (𝑁 mod 2) = 0))
4342imp 406 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  4c4 12323  7c7 12326  8c8 12327  0cn0 12526  cz 12613  +crp 13034  cfl 13830   mod cmo 13909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fl 13832  df-mod 13910
This theorem is referenced by:  2lgslem3  27448
  Copyright terms: Public domain W3C validator