MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcube Structured version   Visualization version   GIF version

Theorem fsumcube 15414
Description: Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015.)
Assertion
Ref Expression
fsumcube (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
Distinct variable group:   𝑇,𝑘

Proof of Theorem fsumcube
StepHypRef Expression
1 3nn0 11916 . . 3 3 ∈ ℕ0
2 fsumkthpow 15410 . . 3 ((3 ∈ ℕ0𝑇 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1)))
31, 2mpan 688 . 2 (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1)))
4 df-4 11703 . . . . . 6 4 = (3 + 1)
54oveq1i 7166 . . . . 5 (4 BernPoly (𝑇 + 1)) = ((3 + 1) BernPoly (𝑇 + 1))
64oveq1i 7166 . . . . 5 (4 BernPoly 0) = ((3 + 1) BernPoly 0)
75, 6oveq12i 7168 . . . 4 ((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) = (((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0))
87, 4oveq12i 7168 . . 3 (((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) / 4) = ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1))
9 nn0cn 11908 . . . . . . . 8 (𝑇 ∈ ℕ0𝑇 ∈ ℂ)
10 peano2cn 10812 . . . . . . . 8 (𝑇 ∈ ℂ → (𝑇 + 1) ∈ ℂ)
119, 10syl 17 . . . . . . 7 (𝑇 ∈ ℕ0 → (𝑇 + 1) ∈ ℂ)
12 bpoly4 15413 . . . . . . 7 ((𝑇 + 1) ∈ ℂ → (4 BernPoly (𝑇 + 1)) = (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)))
1311, 12syl 17 . . . . . 6 (𝑇 ∈ ℕ0 → (4 BernPoly (𝑇 + 1)) = (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)))
14 4nn 11721 . . . . . . . . . . . . . 14 4 ∈ ℕ
15 0exp 13465 . . . . . . . . . . . . . 14 (4 ∈ ℕ → (0↑4) = 0)
1614, 15ax-mp 5 . . . . . . . . . . . . 13 (0↑4) = 0
17 3nn 11717 . . . . . . . . . . . . . . . 16 3 ∈ ℕ
18 0exp 13465 . . . . . . . . . . . . . . . 16 (3 ∈ ℕ → (0↑3) = 0)
1917, 18ax-mp 5 . . . . . . . . . . . . . . 15 (0↑3) = 0
2019oveq2i 7167 . . . . . . . . . . . . . 14 (2 · (0↑3)) = (2 · 0)
21 2t0e0 11807 . . . . . . . . . . . . . 14 (2 · 0) = 0
2220, 21eqtri 2844 . . . . . . . . . . . . 13 (2 · (0↑3)) = 0
2316, 22oveq12i 7168 . . . . . . . . . . . 12 ((0↑4) − (2 · (0↑3))) = (0 − 0)
24 0m0e0 11758 . . . . . . . . . . . 12 (0 − 0) = 0
2523, 24eqtri 2844 . . . . . . . . . . 11 ((0↑4) − (2 · (0↑3))) = 0
26 sq0 13556 . . . . . . . . . . 11 (0↑2) = 0
2725, 26oveq12i 7168 . . . . . . . . . 10 (((0↑4) − (2 · (0↑3))) + (0↑2)) = (0 + 0)
28 00id 10815 . . . . . . . . . 10 (0 + 0) = 0
2927, 28eqtri 2844 . . . . . . . . 9 (((0↑4) − (2 · (0↑3))) + (0↑2)) = 0
3029oveq1i 7166 . . . . . . . 8 ((((0↑4) − (2 · (0↑3))) + (0↑2)) − (1 / 30)) = (0 − (1 / 30))
31 0cn 10633 . . . . . . . . 9 0 ∈ ℂ
32 bpoly4 15413 . . . . . . . . 9 (0 ∈ ℂ → (4 BernPoly 0) = ((((0↑4) − (2 · (0↑3))) + (0↑2)) − (1 / 30)))
3331, 32ax-mp 5 . . . . . . . 8 (4 BernPoly 0) = ((((0↑4) − (2 · (0↑3))) + (0↑2)) − (1 / 30))
34 df-neg 10873 . . . . . . . 8 -(1 / 30) = (0 − (1 / 30))
3530, 33, 343eqtr4i 2854 . . . . . . 7 (4 BernPoly 0) = -(1 / 30)
3635a1i 11 . . . . . 6 (𝑇 ∈ ℕ0 → (4 BernPoly 0) = -(1 / 30))
3713, 36oveq12d 7174 . . . . 5 (𝑇 ∈ ℕ0 → ((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) = ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) − -(1 / 30)))
38 4nn0 11917 . . . . . . . . . . . 12 4 ∈ ℕ0
39 expcl 13448 . . . . . . . . . . . 12 (((𝑇 + 1) ∈ ℂ ∧ 4 ∈ ℕ0) → ((𝑇 + 1)↑4) ∈ ℂ)
4038, 39mpan2 689 . . . . . . . . . . 11 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑4) ∈ ℂ)
41 2cn 11713 . . . . . . . . . . . 12 2 ∈ ℂ
42 expcl 13448 . . . . . . . . . . . . 13 (((𝑇 + 1) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝑇 + 1)↑3) ∈ ℂ)
431, 42mpan2 689 . . . . . . . . . . . 12 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑3) ∈ ℂ)
44 mulcl 10621 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((𝑇 + 1)↑3) ∈ ℂ) → (2 · ((𝑇 + 1)↑3)) ∈ ℂ)
4541, 43, 44sylancr 589 . . . . . . . . . . 11 ((𝑇 + 1) ∈ ℂ → (2 · ((𝑇 + 1)↑3)) ∈ ℂ)
4640, 45subcld 10997 . . . . . . . . . 10 ((𝑇 + 1) ∈ ℂ → (((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) ∈ ℂ)
47 sqcl 13485 . . . . . . . . . 10 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑2) ∈ ℂ)
4846, 47addcld 10660 . . . . . . . . 9 ((𝑇 + 1) ∈ ℂ → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ)
4910, 48syl 17 . . . . . . . 8 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ)
509, 49syl 17 . . . . . . 7 (𝑇 ∈ ℕ0 → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ)
51 0nn0 11913 . . . . . . . . . 10 0 ∈ ℕ0
521, 51deccl 12114 . . . . . . . . 9 30 ∈ ℕ0
5352nn0cni 11910 . . . . . . . 8 30 ∈ ℂ
5452nn0rei 11909 . . . . . . . . 9 30 ∈ ℝ
55 10pos 12116 . . . . . . . . . 10 0 < 10
5617, 51, 51, 55declti 12137 . . . . . . . . 9 0 < 30
5754, 56gt0ne0ii 11176 . . . . . . . 8 30 ≠ 0
5853, 57reccli 11370 . . . . . . 7 (1 / 30) ∈ ℂ
59 subcl 10885 . . . . . . 7 ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ ∧ (1 / 30) ∈ ℂ) → (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) ∈ ℂ)
6050, 58, 59sylancl 588 . . . . . 6 (𝑇 ∈ ℕ0 → (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) ∈ ℂ)
61 subneg 10935 . . . . . 6 (((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) ∈ ℂ ∧ (1 / 30) ∈ ℂ) → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) − -(1 / 30)) = ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)))
6260, 58, 61sylancl 588 . . . . 5 (𝑇 ∈ ℕ0 → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) − -(1 / 30)) = ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)))
63 npcan 10895 . . . . . . . 8 ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ ∧ (1 / 30) ∈ ℂ) → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)))
6449, 58, 63sylancl 588 . . . . . . 7 (𝑇 ∈ ℂ → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)))
659, 64syl 17 . . . . . 6 (𝑇 ∈ ℕ0 → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)))
66 2p2e4 11773 . . . . . . . . . . 11 (2 + 2) = 4
6766eqcomi 2830 . . . . . . . . . 10 4 = (2 + 2)
6867oveq2i 7167 . . . . . . . . 9 ((𝑇 + 1)↑4) = ((𝑇 + 1)↑(2 + 2))
69 df-3 11702 . . . . . . . . . . 11 3 = (2 + 1)
7069oveq2i 7167 . . . . . . . . . 10 ((𝑇 + 1)↑3) = ((𝑇 + 1)↑(2 + 1))
7170oveq2i 7167 . . . . . . . . 9 (2 · ((𝑇 + 1)↑3)) = (2 · ((𝑇 + 1)↑(2 + 1)))
7268, 71oveq12i 7168 . . . . . . . 8 (((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) = (((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1))))
7372oveq1i 7166 . . . . . . 7 ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) = ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2))
74 2nn0 11915 . . . . . . . . . . . . 13 2 ∈ ℕ0
75 expadd 13472 . . . . . . . . . . . . 13 (((𝑇 + 1) ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((𝑇 + 1)↑(2 + 2)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)))
7674, 74, 75mp3an23 1449 . . . . . . . . . . . 12 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑(2 + 2)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)))
77 1nn0 11914 . . . . . . . . . . . . . 14 1 ∈ ℕ0
78 expadd 13472 . . . . . . . . . . . . . 14 (((𝑇 + 1) ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝑇 + 1)↑(2 + 1)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))
7974, 77, 78mp3an23 1449 . . . . . . . . . . . . 13 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑(2 + 1)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))
8079oveq2d 7172 . . . . . . . . . . . 12 ((𝑇 + 1) ∈ ℂ → (2 · ((𝑇 + 1)↑(2 + 1))) = (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1))))
8176, 80oveq12d 7174 . . . . . . . . . . 11 ((𝑇 + 1) ∈ ℂ → (((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))))
8210, 81syl 17 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))))
8310sqcld 13509 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) ∈ ℂ)
8483mulid1d 10658 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · 1) = ((𝑇 + 1)↑2))
8584eqcomd 2827 . . . . . . . . . 10 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) = (((𝑇 + 1)↑2) · 1))
8682, 85oveq12d 7174 . . . . . . . . 9 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2)) = (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)))
8710exp1d 13506 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → ((𝑇 + 1)↑1) = (𝑇 + 1))
8887oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → (2 · ((𝑇 + 1)↑1)) = (2 · (𝑇 + 1)))
8988oveq2d 7172 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1))) = (((𝑇 + 1)↑2) · (2 · (𝑇 + 1))))
9089oveq2d 7172 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · (𝑇 + 1)))))
9187, 10eqeltrd 2913 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → ((𝑇 + 1)↑1) ∈ ℂ)
92 mul12 10805 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ ((𝑇 + 1)↑2) ∈ ℂ ∧ ((𝑇 + 1)↑1) ∈ ℂ) → (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1))) = (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1))))
9341, 83, 91, 92mp3an2i 1462 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1))) = (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1))))
9493oveq2d 7172 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1)))))
95 mulcl 10621 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (𝑇 + 1) ∈ ℂ) → (2 · (𝑇 + 1)) ∈ ℂ)
9641, 10, 95sylancr 589 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (2 · (𝑇 + 1)) ∈ ℂ)
9783, 83, 96subdid 11096 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · (𝑇 + 1)))))
9890, 94, 973eqtr4d 2866 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) = (((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))))
9998oveq1d 7171 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
10083, 96subcld 10997 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) ∈ ℂ)
101 ax-1cn 10595 . . . . . . . . . . . . 13 1 ∈ ℂ
102 adddi 10626 . . . . . . . . . . . . 13 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
103101, 102mp3an3 1446 . . . . . . . . . . . 12 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) ∈ ℂ) → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
10483, 100, 103syl2anc 586 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
10599, 104eqtr4d 2859 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)) = (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)))
106 adddi 10626 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑇 + 1)) = ((2 · 𝑇) + (2 · 1)))
10741, 101, 106mp3an13 1448 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → (2 · (𝑇 + 1)) = ((2 · 𝑇) + (2 · 1)))
108 2t1e2 11801 . . . . . . . . . . . . . . . . 17 (2 · 1) = 2
109108oveq2i 7167 . . . . . . . . . . . . . . . 16 ((2 · 𝑇) + (2 · 1)) = ((2 · 𝑇) + 2)
110107, 109syl6eq 2872 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → (2 · (𝑇 + 1)) = ((2 · 𝑇) + 2))
111110oveq1d 7171 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → ((2 · (𝑇 + 1)) − 1) = (((2 · 𝑇) + 2) − 1))
112 mulcl 10621 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (2 · 𝑇) ∈ ℂ)
11341, 112mpan 688 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → (2 · 𝑇) ∈ ℂ)
114 addsubass 10896 . . . . . . . . . . . . . . . . 17 (((2 · 𝑇) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + (2 − 1)))
11541, 101, 114mp3an23 1449 . . . . . . . . . . . . . . . 16 ((2 · 𝑇) ∈ ℂ → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + (2 − 1)))
116113, 115syl 17 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + (2 − 1)))
117 2m1e1 11764 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
118117oveq2i 7167 . . . . . . . . . . . . . . 15 ((2 · 𝑇) + (2 − 1)) = ((2 · 𝑇) + 1)
119116, 118syl6eq 2872 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + 1))
120111, 119eqtrd 2856 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((2 · (𝑇 + 1)) − 1) = ((2 · 𝑇) + 1))
121120oveq2d 7172 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = (((𝑇 + 1)↑2) − ((2 · 𝑇) + 1)))
122 subsub 10916 . . . . . . . . . . . . . 14 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (2 · (𝑇 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1))
123101, 122mp3an3 1446 . . . . . . . . . . . . 13 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (2 · (𝑇 + 1)) ∈ ℂ) → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1))
12483, 96, 123syl2anc 586 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1))
125 sqcl 13485 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → (𝑇↑2) ∈ ℂ)
126 peano2cn 10812 . . . . . . . . . . . . . 14 ((2 · 𝑇) ∈ ℂ → ((2 · 𝑇) + 1) ∈ ℂ)
127113, 126syl 17 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((2 · 𝑇) + 1) ∈ ℂ)
128 binom21 13581 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) = (((𝑇↑2) + (2 · 𝑇)) + 1))
129 addass 10624 . . . . . . . . . . . . . . . 16 (((𝑇↑2) ∈ ℂ ∧ (2 · 𝑇) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑇↑2) + (2 · 𝑇)) + 1) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
130101, 129mp3an3 1446 . . . . . . . . . . . . . . 15 (((𝑇↑2) ∈ ℂ ∧ (2 · 𝑇) ∈ ℂ) → (((𝑇↑2) + (2 · 𝑇)) + 1) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
131125, 113, 130syl2anc 586 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (((𝑇↑2) + (2 · 𝑇)) + 1) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
132128, 131eqtrd 2856 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
133125, 127, 132mvrraddd 11052 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − ((2 · 𝑇) + 1)) = (𝑇↑2))
134121, 124, 1333eqtr3d 2864 . . . . . . . . . . 11 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1) = (𝑇↑2))
135134oveq2d 7172 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = (((𝑇 + 1)↑2) · (𝑇↑2)))
13683, 125mulcomd 10662 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · (𝑇↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
137105, 135, 1363eqtrd 2860 . . . . . . . . 9 (𝑇 ∈ ℂ → (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
13886, 137eqtrd 2856 . . . . . . . 8 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
1399, 138syl 17 . . . . . . 7 (𝑇 ∈ ℕ0 → ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
14073, 139syl5eq 2868 . . . . . 6 (𝑇 ∈ ℕ0 → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
14165, 140eqtrd 2856 . . . . 5 (𝑇 ∈ ℕ0 → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
14237, 62, 1413eqtrd 2860 . . . 4 (𝑇 ∈ ℕ0 → ((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
143142oveq1d 7171 . . 3 (𝑇 ∈ ℕ0 → (((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) / 4) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
1448, 143syl5eqr 2870 . 2 (𝑇 ∈ ℕ0 → ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1)) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
1453, 144eqtrd 2856 1 (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  4c4 11695  0cn0 11898  cdc 12099  ...cfz 12893  cexp 13430  Σcsu 15042   BernPoly cbp 15400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-bpoly 15401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator