MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcube Structured version   Visualization version   GIF version

Theorem fsumcube 15986
Description: Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015.)
Assertion
Ref Expression
fsumcube (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
Distinct variable group:   𝑇,𝑘

Proof of Theorem fsumcube
StepHypRef Expression
1 3nn0 12472 . . 3 3 ∈ ℕ0
2 fsumkthpow 15982 . . 3 ((3 ∈ ℕ0𝑇 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1)))
31, 2mpan 688 . 2 (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1)))
4 df-4 12259 . . . . . 6 4 = (3 + 1)
54oveq1i 7403 . . . . 5 (4 BernPoly (𝑇 + 1)) = ((3 + 1) BernPoly (𝑇 + 1))
64oveq1i 7403 . . . . 5 (4 BernPoly 0) = ((3 + 1) BernPoly 0)
75, 6oveq12i 7405 . . . 4 ((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) = (((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0))
87, 4oveq12i 7405 . . 3 (((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) / 4) = ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1))
9 nn0cn 12464 . . . . . . . 8 (𝑇 ∈ ℕ0𝑇 ∈ ℂ)
10 peano2cn 11368 . . . . . . . 8 (𝑇 ∈ ℂ → (𝑇 + 1) ∈ ℂ)
119, 10syl 17 . . . . . . 7 (𝑇 ∈ ℕ0 → (𝑇 + 1) ∈ ℂ)
12 bpoly4 15985 . . . . . . 7 ((𝑇 + 1) ∈ ℂ → (4 BernPoly (𝑇 + 1)) = (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)))
1311, 12syl 17 . . . . . 6 (𝑇 ∈ ℕ0 → (4 BernPoly (𝑇 + 1)) = (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)))
14 4nn 12277 . . . . . . . . . . . . . 14 4 ∈ ℕ
15 0exp 14045 . . . . . . . . . . . . . 14 (4 ∈ ℕ → (0↑4) = 0)
1614, 15ax-mp 5 . . . . . . . . . . . . 13 (0↑4) = 0
17 3nn 12273 . . . . . . . . . . . . . . . 16 3 ∈ ℕ
18 0exp 14045 . . . . . . . . . . . . . . . 16 (3 ∈ ℕ → (0↑3) = 0)
1917, 18ax-mp 5 . . . . . . . . . . . . . . 15 (0↑3) = 0
2019oveq2i 7404 . . . . . . . . . . . . . 14 (2 · (0↑3)) = (2 · 0)
21 2t0e0 12363 . . . . . . . . . . . . . 14 (2 · 0) = 0
2220, 21eqtri 2759 . . . . . . . . . . . . 13 (2 · (0↑3)) = 0
2316, 22oveq12i 7405 . . . . . . . . . . . 12 ((0↑4) − (2 · (0↑3))) = (0 − 0)
24 0m0e0 12314 . . . . . . . . . . . 12 (0 − 0) = 0
2523, 24eqtri 2759 . . . . . . . . . . 11 ((0↑4) − (2 · (0↑3))) = 0
26 sq0 14138 . . . . . . . . . . 11 (0↑2) = 0
2725, 26oveq12i 7405 . . . . . . . . . 10 (((0↑4) − (2 · (0↑3))) + (0↑2)) = (0 + 0)
28 00id 11371 . . . . . . . . . 10 (0 + 0) = 0
2927, 28eqtri 2759 . . . . . . . . 9 (((0↑4) − (2 · (0↑3))) + (0↑2)) = 0
3029oveq1i 7403 . . . . . . . 8 ((((0↑4) − (2 · (0↑3))) + (0↑2)) − (1 / 30)) = (0 − (1 / 30))
31 0cn 11188 . . . . . . . . 9 0 ∈ ℂ
32 bpoly4 15985 . . . . . . . . 9 (0 ∈ ℂ → (4 BernPoly 0) = ((((0↑4) − (2 · (0↑3))) + (0↑2)) − (1 / 30)))
3331, 32ax-mp 5 . . . . . . . 8 (4 BernPoly 0) = ((((0↑4) − (2 · (0↑3))) + (0↑2)) − (1 / 30))
34 df-neg 11429 . . . . . . . 8 -(1 / 30) = (0 − (1 / 30))
3530, 33, 343eqtr4i 2769 . . . . . . 7 (4 BernPoly 0) = -(1 / 30)
3635a1i 11 . . . . . 6 (𝑇 ∈ ℕ0 → (4 BernPoly 0) = -(1 / 30))
3713, 36oveq12d 7411 . . . . 5 (𝑇 ∈ ℕ0 → ((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) = ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) − -(1 / 30)))
38 4nn0 12473 . . . . . . . . . . . 12 4 ∈ ℕ0
39 expcl 14027 . . . . . . . . . . . 12 (((𝑇 + 1) ∈ ℂ ∧ 4 ∈ ℕ0) → ((𝑇 + 1)↑4) ∈ ℂ)
4038, 39mpan2 689 . . . . . . . . . . 11 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑4) ∈ ℂ)
41 2cn 12269 . . . . . . . . . . . 12 2 ∈ ℂ
42 expcl 14027 . . . . . . . . . . . . 13 (((𝑇 + 1) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝑇 + 1)↑3) ∈ ℂ)
431, 42mpan2 689 . . . . . . . . . . . 12 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑3) ∈ ℂ)
44 mulcl 11176 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((𝑇 + 1)↑3) ∈ ℂ) → (2 · ((𝑇 + 1)↑3)) ∈ ℂ)
4541, 43, 44sylancr 587 . . . . . . . . . . 11 ((𝑇 + 1) ∈ ℂ → (2 · ((𝑇 + 1)↑3)) ∈ ℂ)
4640, 45subcld 11553 . . . . . . . . . 10 ((𝑇 + 1) ∈ ℂ → (((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) ∈ ℂ)
47 sqcl 14065 . . . . . . . . . 10 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑2) ∈ ℂ)
4846, 47addcld 11215 . . . . . . . . 9 ((𝑇 + 1) ∈ ℂ → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ)
4910, 48syl 17 . . . . . . . 8 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ)
509, 49syl 17 . . . . . . 7 (𝑇 ∈ ℕ0 → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ)
51 0nn0 12469 . . . . . . . . . 10 0 ∈ ℕ0
521, 51deccl 12674 . . . . . . . . 9 30 ∈ ℕ0
5352nn0cni 12466 . . . . . . . 8 30 ∈ ℂ
5452nn0rei 12465 . . . . . . . . 9 30 ∈ ℝ
55 10pos 12676 . . . . . . . . . 10 0 < 10
5617, 51, 51, 55declti 12697 . . . . . . . . 9 0 < 30
5754, 56gt0ne0ii 11732 . . . . . . . 8 30 ≠ 0
5853, 57reccli 11926 . . . . . . 7 (1 / 30) ∈ ℂ
59 subcl 11441 . . . . . . 7 ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ ∧ (1 / 30) ∈ ℂ) → (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) ∈ ℂ)
6050, 58, 59sylancl 586 . . . . . 6 (𝑇 ∈ ℕ0 → (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) ∈ ℂ)
61 subneg 11491 . . . . . 6 (((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) ∈ ℂ ∧ (1 / 30) ∈ ℂ) → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) − -(1 / 30)) = ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)))
6260, 58, 61sylancl 586 . . . . 5 (𝑇 ∈ ℕ0 → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) − -(1 / 30)) = ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)))
63 npcan 11451 . . . . . . . 8 ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ ∧ (1 / 30) ∈ ℂ) → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)))
6449, 58, 63sylancl 586 . . . . . . 7 (𝑇 ∈ ℂ → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)))
659, 64syl 17 . . . . . 6 (𝑇 ∈ ℕ0 → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)))
66 2p2e4 12329 . . . . . . . . . . 11 (2 + 2) = 4
6766eqcomi 2740 . . . . . . . . . 10 4 = (2 + 2)
6867oveq2i 7404 . . . . . . . . 9 ((𝑇 + 1)↑4) = ((𝑇 + 1)↑(2 + 2))
69 df-3 12258 . . . . . . . . . . 11 3 = (2 + 1)
7069oveq2i 7404 . . . . . . . . . 10 ((𝑇 + 1)↑3) = ((𝑇 + 1)↑(2 + 1))
7170oveq2i 7404 . . . . . . . . 9 (2 · ((𝑇 + 1)↑3)) = (2 · ((𝑇 + 1)↑(2 + 1)))
7268, 71oveq12i 7405 . . . . . . . 8 (((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) = (((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1))))
7372oveq1i 7403 . . . . . . 7 ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) = ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2))
74 2nn0 12471 . . . . . . . . . . . . 13 2 ∈ ℕ0
75 expadd 14052 . . . . . . . . . . . . 13 (((𝑇 + 1) ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((𝑇 + 1)↑(2 + 2)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)))
7674, 74, 75mp3an23 1453 . . . . . . . . . . . 12 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑(2 + 2)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)))
77 1nn0 12470 . . . . . . . . . . . . . 14 1 ∈ ℕ0
78 expadd 14052 . . . . . . . . . . . . . 14 (((𝑇 + 1) ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝑇 + 1)↑(2 + 1)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))
7974, 77, 78mp3an23 1453 . . . . . . . . . . . . 13 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑(2 + 1)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))
8079oveq2d 7409 . . . . . . . . . . . 12 ((𝑇 + 1) ∈ ℂ → (2 · ((𝑇 + 1)↑(2 + 1))) = (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1))))
8176, 80oveq12d 7411 . . . . . . . . . . 11 ((𝑇 + 1) ∈ ℂ → (((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))))
8210, 81syl 17 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))))
8310sqcld 14091 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) ∈ ℂ)
8483mulridd 11213 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · 1) = ((𝑇 + 1)↑2))
8584eqcomd 2737 . . . . . . . . . 10 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) = (((𝑇 + 1)↑2) · 1))
8682, 85oveq12d 7411 . . . . . . . . 9 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2)) = (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)))
8710exp1d 14088 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → ((𝑇 + 1)↑1) = (𝑇 + 1))
8887oveq2d 7409 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → (2 · ((𝑇 + 1)↑1)) = (2 · (𝑇 + 1)))
8988oveq2d 7409 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1))) = (((𝑇 + 1)↑2) · (2 · (𝑇 + 1))))
9089oveq2d 7409 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · (𝑇 + 1)))))
9187, 10eqeltrd 2832 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → ((𝑇 + 1)↑1) ∈ ℂ)
92 mul12 11361 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ ((𝑇 + 1)↑2) ∈ ℂ ∧ ((𝑇 + 1)↑1) ∈ ℂ) → (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1))) = (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1))))
9341, 83, 91, 92mp3an2i 1466 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1))) = (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1))))
9493oveq2d 7409 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1)))))
95 mulcl 11176 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (𝑇 + 1) ∈ ℂ) → (2 · (𝑇 + 1)) ∈ ℂ)
9641, 10, 95sylancr 587 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (2 · (𝑇 + 1)) ∈ ℂ)
9783, 83, 96subdid 11652 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · (𝑇 + 1)))))
9890, 94, 973eqtr4d 2781 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) = (((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))))
9998oveq1d 7408 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
10083, 96subcld 11553 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) ∈ ℂ)
101 ax-1cn 11150 . . . . . . . . . . . . 13 1 ∈ ℂ
102 adddi 11181 . . . . . . . . . . . . 13 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
103101, 102mp3an3 1450 . . . . . . . . . . . 12 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) ∈ ℂ) → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
10483, 100, 103syl2anc 584 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
10599, 104eqtr4d 2774 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)) = (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)))
106 adddi 11181 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑇 + 1)) = ((2 · 𝑇) + (2 · 1)))
10741, 101, 106mp3an13 1452 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → (2 · (𝑇 + 1)) = ((2 · 𝑇) + (2 · 1)))
108 2t1e2 12357 . . . . . . . . . . . . . . . . 17 (2 · 1) = 2
109108oveq2i 7404 . . . . . . . . . . . . . . . 16 ((2 · 𝑇) + (2 · 1)) = ((2 · 𝑇) + 2)
110107, 109eqtrdi 2787 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → (2 · (𝑇 + 1)) = ((2 · 𝑇) + 2))
111110oveq1d 7408 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → ((2 · (𝑇 + 1)) − 1) = (((2 · 𝑇) + 2) − 1))
112 mulcl 11176 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (2 · 𝑇) ∈ ℂ)
11341, 112mpan 688 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → (2 · 𝑇) ∈ ℂ)
114 addsubass 11452 . . . . . . . . . . . . . . . . 17 (((2 · 𝑇) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + (2 − 1)))
11541, 101, 114mp3an23 1453 . . . . . . . . . . . . . . . 16 ((2 · 𝑇) ∈ ℂ → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + (2 − 1)))
116113, 115syl 17 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + (2 − 1)))
117 2m1e1 12320 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
118117oveq2i 7404 . . . . . . . . . . . . . . 15 ((2 · 𝑇) + (2 − 1)) = ((2 · 𝑇) + 1)
119116, 118eqtrdi 2787 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + 1))
120111, 119eqtrd 2771 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((2 · (𝑇 + 1)) − 1) = ((2 · 𝑇) + 1))
121120oveq2d 7409 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = (((𝑇 + 1)↑2) − ((2 · 𝑇) + 1)))
122 subsub 11472 . . . . . . . . . . . . . 14 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (2 · (𝑇 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1))
123101, 122mp3an3 1450 . . . . . . . . . . . . 13 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (2 · (𝑇 + 1)) ∈ ℂ) → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1))
12483, 96, 123syl2anc 584 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1))
125 sqcl 14065 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → (𝑇↑2) ∈ ℂ)
126 peano2cn 11368 . . . . . . . . . . . . . 14 ((2 · 𝑇) ∈ ℂ → ((2 · 𝑇) + 1) ∈ ℂ)
127113, 126syl 17 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((2 · 𝑇) + 1) ∈ ℂ)
128 binom21 14164 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) = (((𝑇↑2) + (2 · 𝑇)) + 1))
129 addass 11179 . . . . . . . . . . . . . . . 16 (((𝑇↑2) ∈ ℂ ∧ (2 · 𝑇) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑇↑2) + (2 · 𝑇)) + 1) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
130101, 129mp3an3 1450 . . . . . . . . . . . . . . 15 (((𝑇↑2) ∈ ℂ ∧ (2 · 𝑇) ∈ ℂ) → (((𝑇↑2) + (2 · 𝑇)) + 1) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
131125, 113, 130syl2anc 584 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (((𝑇↑2) + (2 · 𝑇)) + 1) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
132128, 131eqtrd 2771 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
133125, 127, 132mvrraddd 11608 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − ((2 · 𝑇) + 1)) = (𝑇↑2))
134121, 124, 1333eqtr3d 2779 . . . . . . . . . . 11 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1) = (𝑇↑2))
135134oveq2d 7409 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = (((𝑇 + 1)↑2) · (𝑇↑2)))
13683, 125mulcomd 11217 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · (𝑇↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
137105, 135, 1363eqtrd 2775 . . . . . . . . 9 (𝑇 ∈ ℂ → (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
13886, 137eqtrd 2771 . . . . . . . 8 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
1399, 138syl 17 . . . . . . 7 (𝑇 ∈ ℕ0 → ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
14073, 139eqtrid 2783 . . . . . 6 (𝑇 ∈ ℕ0 → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
14165, 140eqtrd 2771 . . . . 5 (𝑇 ∈ ℕ0 → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
14237, 62, 1413eqtrd 2775 . . . 4 (𝑇 ∈ ℕ0 → ((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
143142oveq1d 7408 . . 3 (𝑇 ∈ ℕ0 → (((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) / 4) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
1448, 143eqtr3id 2785 . 2 (𝑇 ∈ ℕ0 → ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1)) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
1453, 144eqtrd 2771 1 (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  (class class class)co 7393  cc 11090  0cc0 11092  1c1 11093   + caddc 11095   · cmul 11097  cmin 11426  -cneg 11427   / cdiv 11853  cn 12194  2c2 12249  3c3 12250  4c4 12251  0cn0 12454  cdc 12659  ...cfz 13466  cexp 14009  Σcsu 15614   BernPoly cbp 15972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-rp 12957  df-fz 13467  df-fzo 13610  df-seq 13949  df-exp 14010  df-fac 14216  df-bc 14245  df-hash 14273  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-clim 15414  df-sum 15615  df-bpoly 15973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator