MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcube Structured version   Visualization version   GIF version

Theorem fsumcube 15985
Description: Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015.)
Assertion
Ref Expression
fsumcube (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
Distinct variable group:   𝑇,𝑘

Proof of Theorem fsumcube
StepHypRef Expression
1 3nn0 12420 . . 3 3 ∈ ℕ0
2 fsumkthpow 15981 . . 3 ((3 ∈ ℕ0𝑇 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1)))
31, 2mpan 690 . 2 (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1)))
4 df-4 12211 . . . . . 6 4 = (3 + 1)
54oveq1i 7363 . . . . 5 (4 BernPoly (𝑇 + 1)) = ((3 + 1) BernPoly (𝑇 + 1))
64oveq1i 7363 . . . . 5 (4 BernPoly 0) = ((3 + 1) BernPoly 0)
75, 6oveq12i 7365 . . . 4 ((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) = (((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0))
87, 4oveq12i 7365 . . 3 (((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) / 4) = ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1))
9 nn0cn 12412 . . . . . . . 8 (𝑇 ∈ ℕ0𝑇 ∈ ℂ)
10 peano2cn 11306 . . . . . . . 8 (𝑇 ∈ ℂ → (𝑇 + 1) ∈ ℂ)
119, 10syl 17 . . . . . . 7 (𝑇 ∈ ℕ0 → (𝑇 + 1) ∈ ℂ)
12 bpoly4 15984 . . . . . . 7 ((𝑇 + 1) ∈ ℂ → (4 BernPoly (𝑇 + 1)) = (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)))
1311, 12syl 17 . . . . . 6 (𝑇 ∈ ℕ0 → (4 BernPoly (𝑇 + 1)) = (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)))
14 4nn 12229 . . . . . . . . . . . . . 14 4 ∈ ℕ
15 0exp 14022 . . . . . . . . . . . . . 14 (4 ∈ ℕ → (0↑4) = 0)
1614, 15ax-mp 5 . . . . . . . . . . . . 13 (0↑4) = 0
17 3nn 12225 . . . . . . . . . . . . . . . 16 3 ∈ ℕ
18 0exp 14022 . . . . . . . . . . . . . . . 16 (3 ∈ ℕ → (0↑3) = 0)
1917, 18ax-mp 5 . . . . . . . . . . . . . . 15 (0↑3) = 0
2019oveq2i 7364 . . . . . . . . . . . . . 14 (2 · (0↑3)) = (2 · 0)
21 2t0e0 12310 . . . . . . . . . . . . . 14 (2 · 0) = 0
2220, 21eqtri 2752 . . . . . . . . . . . . 13 (2 · (0↑3)) = 0
2316, 22oveq12i 7365 . . . . . . . . . . . 12 ((0↑4) − (2 · (0↑3))) = (0 − 0)
24 0m0e0 12261 . . . . . . . . . . . 12 (0 − 0) = 0
2523, 24eqtri 2752 . . . . . . . . . . 11 ((0↑4) − (2 · (0↑3))) = 0
26 sq0 14117 . . . . . . . . . . 11 (0↑2) = 0
2725, 26oveq12i 7365 . . . . . . . . . 10 (((0↑4) − (2 · (0↑3))) + (0↑2)) = (0 + 0)
28 00id 11309 . . . . . . . . . 10 (0 + 0) = 0
2927, 28eqtri 2752 . . . . . . . . 9 (((0↑4) − (2 · (0↑3))) + (0↑2)) = 0
3029oveq1i 7363 . . . . . . . 8 ((((0↑4) − (2 · (0↑3))) + (0↑2)) − (1 / 30)) = (0 − (1 / 30))
31 0cn 11126 . . . . . . . . 9 0 ∈ ℂ
32 bpoly4 15984 . . . . . . . . 9 (0 ∈ ℂ → (4 BernPoly 0) = ((((0↑4) − (2 · (0↑3))) + (0↑2)) − (1 / 30)))
3331, 32ax-mp 5 . . . . . . . 8 (4 BernPoly 0) = ((((0↑4) − (2 · (0↑3))) + (0↑2)) − (1 / 30))
34 df-neg 11368 . . . . . . . 8 -(1 / 30) = (0 − (1 / 30))
3530, 33, 343eqtr4i 2762 . . . . . . 7 (4 BernPoly 0) = -(1 / 30)
3635a1i 11 . . . . . 6 (𝑇 ∈ ℕ0 → (4 BernPoly 0) = -(1 / 30))
3713, 36oveq12d 7371 . . . . 5 (𝑇 ∈ ℕ0 → ((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) = ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) − -(1 / 30)))
38 4nn0 12421 . . . . . . . . . . . 12 4 ∈ ℕ0
39 expcl 14004 . . . . . . . . . . . 12 (((𝑇 + 1) ∈ ℂ ∧ 4 ∈ ℕ0) → ((𝑇 + 1)↑4) ∈ ℂ)
4038, 39mpan2 691 . . . . . . . . . . 11 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑4) ∈ ℂ)
41 2cn 12221 . . . . . . . . . . . 12 2 ∈ ℂ
42 expcl 14004 . . . . . . . . . . . . 13 (((𝑇 + 1) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝑇 + 1)↑3) ∈ ℂ)
431, 42mpan2 691 . . . . . . . . . . . 12 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑3) ∈ ℂ)
44 mulcl 11112 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((𝑇 + 1)↑3) ∈ ℂ) → (2 · ((𝑇 + 1)↑3)) ∈ ℂ)
4541, 43, 44sylancr 587 . . . . . . . . . . 11 ((𝑇 + 1) ∈ ℂ → (2 · ((𝑇 + 1)↑3)) ∈ ℂ)
4640, 45subcld 11493 . . . . . . . . . 10 ((𝑇 + 1) ∈ ℂ → (((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) ∈ ℂ)
47 sqcl 14043 . . . . . . . . . 10 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑2) ∈ ℂ)
4846, 47addcld 11153 . . . . . . . . 9 ((𝑇 + 1) ∈ ℂ → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ)
4910, 48syl 17 . . . . . . . 8 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ)
509, 49syl 17 . . . . . . 7 (𝑇 ∈ ℕ0 → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ)
51 0nn0 12417 . . . . . . . . . 10 0 ∈ ℕ0
521, 51deccl 12624 . . . . . . . . 9 30 ∈ ℕ0
5352nn0cni 12414 . . . . . . . 8 30 ∈ ℂ
5452nn0rei 12413 . . . . . . . . 9 30 ∈ ℝ
55 10pos 12626 . . . . . . . . . 10 0 < 10
5617, 51, 51, 55declti 12647 . . . . . . . . 9 0 < 30
5754, 56gt0ne0ii 11674 . . . . . . . 8 30 ≠ 0
5853, 57reccli 11872 . . . . . . 7 (1 / 30) ∈ ℂ
59 subcl 11380 . . . . . . 7 ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ ∧ (1 / 30) ∈ ℂ) → (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) ∈ ℂ)
6050, 58, 59sylancl 586 . . . . . 6 (𝑇 ∈ ℕ0 → (((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) ∈ ℂ)
61 subneg 11431 . . . . . 6 (((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) ∈ ℂ ∧ (1 / 30) ∈ ℂ) → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) − -(1 / 30)) = ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)))
6260, 58, 61sylancl 586 . . . . 5 (𝑇 ∈ ℕ0 → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) − -(1 / 30)) = ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)))
63 npcan 11390 . . . . . . . 8 ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) ∈ ℂ ∧ (1 / 30) ∈ ℂ) → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)))
6449, 58, 63sylancl 586 . . . . . . 7 (𝑇 ∈ ℂ → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)))
659, 64syl 17 . . . . . 6 (𝑇 ∈ ℕ0 → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)))
66 2p2e4 12276 . . . . . . . . . . 11 (2 + 2) = 4
6766eqcomi 2738 . . . . . . . . . 10 4 = (2 + 2)
6867oveq2i 7364 . . . . . . . . 9 ((𝑇 + 1)↑4) = ((𝑇 + 1)↑(2 + 2))
69 df-3 12210 . . . . . . . . . . 11 3 = (2 + 1)
7069oveq2i 7364 . . . . . . . . . 10 ((𝑇 + 1)↑3) = ((𝑇 + 1)↑(2 + 1))
7170oveq2i 7364 . . . . . . . . 9 (2 · ((𝑇 + 1)↑3)) = (2 · ((𝑇 + 1)↑(2 + 1)))
7268, 71oveq12i 7365 . . . . . . . 8 (((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) = (((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1))))
7372oveq1i 7363 . . . . . . 7 ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) = ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2))
74 2nn0 12419 . . . . . . . . . . . . 13 2 ∈ ℕ0
75 expadd 14029 . . . . . . . . . . . . 13 (((𝑇 + 1) ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((𝑇 + 1)↑(2 + 2)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)))
7674, 74, 75mp3an23 1455 . . . . . . . . . . . 12 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑(2 + 2)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)))
77 1nn0 12418 . . . . . . . . . . . . . 14 1 ∈ ℕ0
78 expadd 14029 . . . . . . . . . . . . . 14 (((𝑇 + 1) ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝑇 + 1)↑(2 + 1)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))
7974, 77, 78mp3an23 1455 . . . . . . . . . . . . 13 ((𝑇 + 1) ∈ ℂ → ((𝑇 + 1)↑(2 + 1)) = (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))
8079oveq2d 7369 . . . . . . . . . . . 12 ((𝑇 + 1) ∈ ℂ → (2 · ((𝑇 + 1)↑(2 + 1))) = (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1))))
8176, 80oveq12d 7371 . . . . . . . . . . 11 ((𝑇 + 1) ∈ ℂ → (((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))))
8210, 81syl 17 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))))
8310sqcld 14069 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) ∈ ℂ)
8483mulridd 11151 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · 1) = ((𝑇 + 1)↑2))
8584eqcomd 2735 . . . . . . . . . 10 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) = (((𝑇 + 1)↑2) · 1))
8682, 85oveq12d 7371 . . . . . . . . 9 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2)) = (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)))
8710exp1d 14066 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → ((𝑇 + 1)↑1) = (𝑇 + 1))
8887oveq2d 7369 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → (2 · ((𝑇 + 1)↑1)) = (2 · (𝑇 + 1)))
8988oveq2d 7369 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1))) = (((𝑇 + 1)↑2) · (2 · (𝑇 + 1))))
9089oveq2d 7369 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · (𝑇 + 1)))))
9187, 10eqeltrd 2828 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → ((𝑇 + 1)↑1) ∈ ℂ)
92 mul12 11299 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ ((𝑇 + 1)↑2) ∈ ℂ ∧ ((𝑇 + 1)↑1) ∈ ℂ) → (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1))) = (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1))))
9341, 83, 91, 92mp3an2i 1468 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1))) = (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1))))
9493oveq2d 7369 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · ((𝑇 + 1)↑1)))))
95 mulcl 11112 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (𝑇 + 1) ∈ ℂ) → (2 · (𝑇 + 1)) ∈ ℂ)
9641, 10, 95sylancr 587 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (2 · (𝑇 + 1)) ∈ ℂ)
9783, 83, 96subdid 11594 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) = ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (((𝑇 + 1)↑2) · (2 · (𝑇 + 1)))))
9890, 94, 973eqtr4d 2774 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) = (((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))))
9998oveq1d 7368 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
10083, 96subcld 11493 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) ∈ ℂ)
101 ax-1cn 11086 . . . . . . . . . . . . 13 1 ∈ ℂ
102 adddi 11117 . . . . . . . . . . . . 13 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
103101, 102mp3an3 1452 . . . . . . . . . . . 12 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) ∈ ℂ) → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
10483, 100, 103syl2anc 584 . . . . . . . . . . 11 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = ((((𝑇 + 1)↑2) · (((𝑇 + 1)↑2) − (2 · (𝑇 + 1)))) + (((𝑇 + 1)↑2) · 1)))
10599, 104eqtr4d 2767 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)) = (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)))
106 adddi 11117 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑇 + 1)) = ((2 · 𝑇) + (2 · 1)))
10741, 101, 106mp3an13 1454 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → (2 · (𝑇 + 1)) = ((2 · 𝑇) + (2 · 1)))
108 2t1e2 12304 . . . . . . . . . . . . . . . . 17 (2 · 1) = 2
109108oveq2i 7364 . . . . . . . . . . . . . . . 16 ((2 · 𝑇) + (2 · 1)) = ((2 · 𝑇) + 2)
110107, 109eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → (2 · (𝑇 + 1)) = ((2 · 𝑇) + 2))
111110oveq1d 7368 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → ((2 · (𝑇 + 1)) − 1) = (((2 · 𝑇) + 2) − 1))
112 mulcl 11112 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (2 · 𝑇) ∈ ℂ)
11341, 112mpan 690 . . . . . . . . . . . . . . . 16 (𝑇 ∈ ℂ → (2 · 𝑇) ∈ ℂ)
114 addsubass 11391 . . . . . . . . . . . . . . . . 17 (((2 · 𝑇) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + (2 − 1)))
11541, 101, 114mp3an23 1455 . . . . . . . . . . . . . . . 16 ((2 · 𝑇) ∈ ℂ → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + (2 − 1)))
116113, 115syl 17 . . . . . . . . . . . . . . 15 (𝑇 ∈ ℂ → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + (2 − 1)))
117 2m1e1 12267 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
118117oveq2i 7364 . . . . . . . . . . . . . . 15 ((2 · 𝑇) + (2 − 1)) = ((2 · 𝑇) + 1)
119116, 118eqtrdi 2780 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (((2 · 𝑇) + 2) − 1) = ((2 · 𝑇) + 1))
120111, 119eqtrd 2764 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((2 · (𝑇 + 1)) − 1) = ((2 · 𝑇) + 1))
121120oveq2d 7369 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = (((𝑇 + 1)↑2) − ((2 · 𝑇) + 1)))
122 subsub 11412 . . . . . . . . . . . . . 14 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (2 · (𝑇 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1))
123101, 122mp3an3 1452 . . . . . . . . . . . . 13 ((((𝑇 + 1)↑2) ∈ ℂ ∧ (2 · (𝑇 + 1)) ∈ ℂ) → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1))
12483, 96, 123syl2anc 584 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − ((2 · (𝑇 + 1)) − 1)) = ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1))
125 sqcl 14043 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → (𝑇↑2) ∈ ℂ)
126 peano2cn 11306 . . . . . . . . . . . . . 14 ((2 · 𝑇) ∈ ℂ → ((2 · 𝑇) + 1) ∈ ℂ)
127113, 126syl 17 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((2 · 𝑇) + 1) ∈ ℂ)
128 binom21 14144 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) = (((𝑇↑2) + (2 · 𝑇)) + 1))
129 addass 11115 . . . . . . . . . . . . . . . 16 (((𝑇↑2) ∈ ℂ ∧ (2 · 𝑇) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑇↑2) + (2 · 𝑇)) + 1) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
130101, 129mp3an3 1452 . . . . . . . . . . . . . . 15 (((𝑇↑2) ∈ ℂ ∧ (2 · 𝑇) ∈ ℂ) → (((𝑇↑2) + (2 · 𝑇)) + 1) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
131125, 113, 130syl2anc 584 . . . . . . . . . . . . . 14 (𝑇 ∈ ℂ → (((𝑇↑2) + (2 · 𝑇)) + 1) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
132128, 131eqtrd 2764 . . . . . . . . . . . . 13 (𝑇 ∈ ℂ → ((𝑇 + 1)↑2) = ((𝑇↑2) + ((2 · 𝑇) + 1)))
133125, 127, 132mvrraddd 11550 . . . . . . . . . . . 12 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) − ((2 · 𝑇) + 1)) = (𝑇↑2))
134121, 124, 1333eqtr3d 2772 . . . . . . . . . . 11 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1) = (𝑇↑2))
135134oveq2d 7369 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · ((((𝑇 + 1)↑2) − (2 · (𝑇 + 1))) + 1)) = (((𝑇 + 1)↑2) · (𝑇↑2)))
13683, 125mulcomd 11155 . . . . . . . . . 10 (𝑇 ∈ ℂ → (((𝑇 + 1)↑2) · (𝑇↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
137105, 135, 1363eqtrd 2768 . . . . . . . . 9 (𝑇 ∈ ℂ → (((((𝑇 + 1)↑2) · ((𝑇 + 1)↑2)) − (2 · (((𝑇 + 1)↑2) · ((𝑇 + 1)↑1)))) + (((𝑇 + 1)↑2) · 1)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
13886, 137eqtrd 2764 . . . . . . . 8 (𝑇 ∈ ℂ → ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
1399, 138syl 17 . . . . . . 7 (𝑇 ∈ ℕ0 → ((((𝑇 + 1)↑(2 + 2)) − (2 · ((𝑇 + 1)↑(2 + 1)))) + ((𝑇 + 1)↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
14073, 139eqtrid 2776 . . . . . 6 (𝑇 ∈ ℕ0 → ((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
14165, 140eqtrd 2764 . . . . 5 (𝑇 ∈ ℕ0 → ((((((𝑇 + 1)↑4) − (2 · ((𝑇 + 1)↑3))) + ((𝑇 + 1)↑2)) − (1 / 30)) + (1 / 30)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
14237, 62, 1413eqtrd 2768 . . . 4 (𝑇 ∈ ℕ0 → ((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) = ((𝑇↑2) · ((𝑇 + 1)↑2)))
143142oveq1d 7368 . . 3 (𝑇 ∈ ℕ0 → (((4 BernPoly (𝑇 + 1)) − (4 BernPoly 0)) / 4) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
1448, 143eqtr3id 2778 . 2 (𝑇 ∈ ℕ0 → ((((3 + 1) BernPoly (𝑇 + 1)) − ((3 + 1) BernPoly 0)) / (3 + 1)) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
1453, 144eqtrd 2764 1 (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366   / cdiv 11795  cn 12146  2c2 12201  3c3 12202  4c4 12203  0cn0 12402  cdc 12609  ...cfz 13428  cexp 13986  Σcsu 15611   BernPoly cbp 15971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-bpoly 15972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator