![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cos2tsin | Structured version Visualization version GIF version |
Description: Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
Ref | Expression |
---|---|
cos2tsin | ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cos2t 16158 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | |
2 | 2cn 12320 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
3 | sincl 16106 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
4 | 3 | sqcld 14144 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ) |
5 | coscl 16107 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
6 | 5 | sqcld 14144 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ) |
7 | adddi 11229 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2)))) | |
8 | 2, 4, 6, 7 | mp3an2i 1462 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2)))) |
9 | sincossq 16156 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
10 | 9 | oveq2d 7435 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = (2 · 1)) |
11 | 8, 10 | eqtr3d 2767 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = (2 · 1)) |
12 | 2t1e2 12408 | . . . . 5 ⊢ (2 · 1) = 2 | |
13 | 11, 12 | eqtrdi 2781 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2) |
14 | mulcl 11224 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (2 · ((sin‘𝐴)↑2)) ∈ ℂ) | |
15 | 2, 4, 14 | sylancr 585 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · ((sin‘𝐴)↑2)) ∈ ℂ) |
16 | mulcl 11224 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (2 · ((cos‘𝐴)↑2)) ∈ ℂ) | |
17 | 2, 6, 16 | sylancr 585 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · ((cos‘𝐴)↑2)) ∈ ℂ) |
18 | subadd 11495 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ (2 · ((sin‘𝐴)↑2)) ∈ ℂ ∧ (2 · ((cos‘𝐴)↑2)) ∈ ℂ) → ((2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2)) ↔ ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2)) | |
19 | 2, 15, 17, 18 | mp3an2i 1462 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2)) ↔ ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2)) |
20 | 13, 19 | mpbird 256 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2))) |
21 | 20 | oveq1d 7434 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 · ((cos‘𝐴)↑2)) − 1)) |
22 | ax-1cn 11198 | . . . . 5 ⊢ 1 ∈ ℂ | |
23 | sub32 11526 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ (2 · ((sin‘𝐴)↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) | |
24 | 2, 22, 23 | mp3an13 1448 | . . . 4 ⊢ ((2 · ((sin‘𝐴)↑2)) ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) |
25 | 15, 24 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) |
26 | 2m1e1 12371 | . . . 4 ⊢ (2 − 1) = 1 | |
27 | 26 | oveq1i 7429 | . . 3 ⊢ ((2 − 1) − (2 · ((sin‘𝐴)↑2))) = (1 − (2 · ((sin‘𝐴)↑2))) |
28 | 25, 27 | eqtrdi 2781 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = (1 − (2 · ((sin‘𝐴)↑2)))) |
29 | 1, 21, 28 | 3eqtr2d 2771 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 1c1 11141 + caddc 11143 · cmul 11145 − cmin 11476 2c2 12300 ↑cexp 14062 sincsin 16043 cosccos 16044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-ico 13365 df-fz 13520 df-fzo 13663 df-fl 13793 df-seq 14003 df-exp 14063 df-fac 14269 df-bc 14298 df-hash 14326 df-shft 15050 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-limsup 15451 df-clim 15468 df-rlim 15469 df-sum 15669 df-ef 16047 df-sin 16049 df-cos 16050 |
This theorem is referenced by: coseq1 26504 |
Copyright terms: Public domain | W3C validator |