Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cos2tsin | Structured version Visualization version GIF version |
Description: Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
Ref | Expression |
---|---|
cos2tsin | ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cos2t 15815 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | |
2 | 2cn 11978 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
3 | sincl 15763 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
4 | 3 | sqcld 13790 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ) |
5 | coscl 15764 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
6 | 5 | sqcld 13790 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ) |
7 | adddi 10891 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2)))) | |
8 | 2, 4, 6, 7 | mp3an2i 1464 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2)))) |
9 | sincossq 15813 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
10 | 9 | oveq2d 7271 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (2 · (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) = (2 · 1)) |
11 | 8, 10 | eqtr3d 2780 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = (2 · 1)) |
12 | 2t1e2 12066 | . . . . 5 ⊢ (2 · 1) = 2 | |
13 | 11, 12 | eqtrdi 2795 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2) |
14 | mulcl 10886 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (2 · ((sin‘𝐴)↑2)) ∈ ℂ) | |
15 | 2, 4, 14 | sylancr 586 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · ((sin‘𝐴)↑2)) ∈ ℂ) |
16 | mulcl 10886 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (2 · ((cos‘𝐴)↑2)) ∈ ℂ) | |
17 | 2, 6, 16 | sylancr 586 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · ((cos‘𝐴)↑2)) ∈ ℂ) |
18 | subadd 11154 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ (2 · ((sin‘𝐴)↑2)) ∈ ℂ ∧ (2 · ((cos‘𝐴)↑2)) ∈ ℂ) → ((2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2)) ↔ ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2)) | |
19 | 2, 15, 17, 18 | mp3an2i 1464 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2)) ↔ ((2 · ((sin‘𝐴)↑2)) + (2 · ((cos‘𝐴)↑2))) = 2)) |
20 | 13, 19 | mpbird 256 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 − (2 · ((sin‘𝐴)↑2))) = (2 · ((cos‘𝐴)↑2))) |
21 | 20 | oveq1d 7270 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 · ((cos‘𝐴)↑2)) − 1)) |
22 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
23 | sub32 11185 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ (2 · ((sin‘𝐴)↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) | |
24 | 2, 22, 23 | mp3an13 1450 | . . . 4 ⊢ ((2 · ((sin‘𝐴)↑2)) ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) |
25 | 15, 24 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = ((2 − 1) − (2 · ((sin‘𝐴)↑2)))) |
26 | 2m1e1 12029 | . . . 4 ⊢ (2 − 1) = 1 | |
27 | 26 | oveq1i 7265 | . . 3 ⊢ ((2 − 1) − (2 · ((sin‘𝐴)↑2))) = (1 − (2 · ((sin‘𝐴)↑2))) |
28 | 25, 27 | eqtrdi 2795 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 − (2 · ((sin‘𝐴)↑2))) − 1) = (1 − (2 · ((sin‘𝐴)↑2)))) |
29 | 1, 21, 28 | 3eqtr2d 2784 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 2c2 11958 ↑cexp 13710 sincsin 15701 cosccos 15702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 |
This theorem is referenced by: coseq1 25586 |
Copyright terms: Public domain | W3C validator |