MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncrng Structured version   Visualization version   GIF version

Theorem cncrng 19975
Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
Assertion
Ref Expression
cncrng fld ∈ CRing

Proof of Theorem cncrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 19958 . . . 4 ℂ = (Base‘ℂfld)
21a1i 11 . . 3 (⊤ → ℂ = (Base‘ℂfld))
3 cnfldadd 19959 . . . 4 + = (+g‘ℂfld)
43a1i 11 . . 3 (⊤ → + = (+g‘ℂfld))
5 cnfldmul 19960 . . . 4 · = (.r‘ℂfld)
65a1i 11 . . 3 (⊤ → · = (.r‘ℂfld))
7 addcl 10303 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
8 addass 10308 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9 0cn 10317 . . . . 5 0 ∈ ℂ
10 addid2 10504 . . . . 5 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
11 negcl 10566 . . . . 5 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
12 addcom 10507 . . . . . . 7 ((-𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
1311, 12mpancom 671 . . . . . 6 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
14 negid 10613 . . . . . 6 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
1513, 14eqtrd 2840 . . . . 5 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
161, 3, 7, 8, 9, 10, 11, 15isgrpi 17650 . . . 4 fld ∈ Grp
1716a1i 11 . . 3 (⊤ → ℂfld ∈ Grp)
18 mulcl 10305 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
19183adant1 1153 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
20 mulass 10309 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
2120adantl 469 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
22 adddi 10310 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
2322adantl 469 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
24 adddir 10316 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2524adantl 469 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
26 1cnd 10320 . . 3 (⊤ → 1 ∈ ℂ)
27 mulid2 10324 . . . 4 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
2827adantl 469 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥)
29 mulid1 10323 . . . 4 (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥)
3029adantl 469 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥 · 1) = 𝑥)
31 mulcom 10307 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
32313adant1 1153 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
332, 4, 6, 17, 19, 21, 23, 25, 26, 28, 30, 32iscrngd 18788 . 2 (⊤ → ℂfld ∈ CRing)
3433mptru 1645 1 fld ∈ CRing
Colors of variables: wff setvar class
Syntax hints:  w3a 1100   = wceq 1637  wtru 1638  wcel 2156  cfv 6101  (class class class)co 6874  cc 10219  0cc0 10221  1c1 10222   + caddc 10224   · cmul 10226  -cneg 10552  Basecbs 16068  +gcplusg 16153  .rcmulr 16154  Grpcgrp 17627  CRingccrg 18750  fldccnfld 19954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-addf 10300  ax-mulf 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-oadd 7800  df-er 7979  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-5 11367  df-6 11368  df-7 11369  df-8 11370  df-9 11371  df-n0 11560  df-z 11644  df-dec 11760  df-uz 11905  df-fz 12550  df-struct 16070  df-ndx 16071  df-slot 16072  df-base 16074  df-sets 16075  df-plusg 16166  df-mulr 16167  df-starv 16168  df-tset 16172  df-ple 16173  df-ds 16175  df-unif 16176  df-0g 16307  df-mgm 17447  df-sgrp 17489  df-mnd 17500  df-grp 17630  df-cmn 18396  df-mgp 18692  df-ring 18751  df-cring 18752  df-cnfld 19955
This theorem is referenced by:  cnring  19976  cnmgpabl  20015  zringcrng  20028  zring0  20036  re0g  20167  refld  20174  smadiadetr  20693  plypf1  24182  amgmlem  24930  amgm  24931  wilthlem2  25009  wilthlem3  25010  gzcrng  30164  2zrng0  42506  amgmwlem  43119  amgmlemALT  43120
  Copyright terms: Public domain W3C validator