MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncrng Structured version   Visualization version   GIF version

Theorem cncrng 20116
Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
Assertion
Ref Expression
cncrng fld ∈ CRing

Proof of Theorem cncrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 20099 . . . 4 ℂ = (Base‘ℂfld)
21a1i 11 . . 3 (⊤ → ℂ = (Base‘ℂfld))
3 cnfldadd 20100 . . . 4 + = (+g‘ℂfld)
43a1i 11 . . 3 (⊤ → + = (+g‘ℂfld))
5 cnfldmul 20101 . . . 4 · = (.r‘ℂfld)
65a1i 11 . . 3 (⊤ → · = (.r‘ℂfld))
7 addcl 10612 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
8 addass 10617 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9 0cn 10626 . . . . 5 0 ∈ ℂ
10 addid2 10816 . . . . 5 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
11 negcl 10879 . . . . 5 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
12 addcom 10819 . . . . . . 7 ((-𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
1311, 12mpancom 687 . . . . . 6 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
14 negid 10926 . . . . . 6 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
1513, 14eqtrd 2836 . . . . 5 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
161, 3, 7, 8, 9, 10, 11, 15isgrpi 18122 . . . 4 fld ∈ Grp
1716a1i 11 . . 3 (⊤ → ℂfld ∈ Grp)
18 mulcl 10614 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
19183adant1 1127 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
20 mulass 10618 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
2120adantl 485 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
22 adddi 10619 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
2322adantl 485 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
24 adddir 10625 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2524adantl 485 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
26 1cnd 10629 . . 3 (⊤ → 1 ∈ ℂ)
27 mulid2 10633 . . . 4 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
2827adantl 485 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥)
29 mulid1 10632 . . . 4 (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥)
3029adantl 485 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥 · 1) = 𝑥)
31 mulcom 10616 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
32313adant1 1127 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
332, 4, 6, 17, 19, 21, 23, 25, 26, 28, 30, 32iscrngd 19336 . 2 (⊤ → ℂfld ∈ CRing)
3433mptru 1545 1 fld ∈ CRing
Colors of variables: wff setvar class
Syntax hints:  w3a 1084   = wceq 1538  wtru 1539  wcel 2112  cfv 6328  (class class class)co 7139  cc 10528  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  -cneg 10864  Basecbs 16479  +gcplusg 16561  .rcmulr 16562  Grpcgrp 18099  CRingccrg 19295  fldccnfld 20095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-mulr 16575  df-starv 16576  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-cmn 18904  df-mgp 19237  df-ring 19296  df-cring 19297  df-cnfld 20096
This theorem is referenced by:  cnring  20117  cnmgpabl  20156  zringcrng  20169  zring0  20177  re0g  20305  refld  20312  smadiadetr  21284  plypf1  24813  amgmlem  25579  amgm  25580  wilthlem2  25658  wilthlem3  25659  gzcrng  30967  ccfldextrr  31130  2zrng0  44559  amgmwlem  45327  amgmlemALT  45328
  Copyright terms: Public domain W3C validator