MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncrng Structured version   Visualization version   GIF version

Theorem cncrng 20628
Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
Assertion
Ref Expression
cncrng fld ∈ CRing

Proof of Theorem cncrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 20610 . . . 4 ℂ = (Base‘ℂfld)
21a1i 11 . . 3 (⊤ → ℂ = (Base‘ℂfld))
3 cnfldadd 20611 . . . 4 + = (+g‘ℂfld)
43a1i 11 . . 3 (⊤ → + = (+g‘ℂfld))
5 cnfldmul 20612 . . . 4 · = (.r‘ℂfld)
65a1i 11 . . 3 (⊤ → · = (.r‘ℂfld))
7 addcl 10962 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
8 addass 10967 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9 0cn 10976 . . . . 5 0 ∈ ℂ
10 addid2 11167 . . . . 5 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
11 negcl 11230 . . . . 5 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
12 addcom 11170 . . . . . . 7 ((-𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
1311, 12mpancom 685 . . . . . 6 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
14 negid 11277 . . . . . 6 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
1513, 14eqtrd 2779 . . . . 5 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
161, 3, 7, 8, 9, 10, 11, 15isgrpi 18611 . . . 4 fld ∈ Grp
1716a1i 11 . . 3 (⊤ → ℂfld ∈ Grp)
18 mulcl 10964 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
19183adant1 1129 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
20 mulass 10968 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
2120adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
22 adddi 10969 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
2322adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
24 adddir 10975 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2524adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
26 1cnd 10979 . . 3 (⊤ → 1 ∈ ℂ)
27 mulid2 10983 . . . 4 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
2827adantl 482 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥)
29 mulid1 10982 . . . 4 (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥)
3029adantl 482 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥 · 1) = 𝑥)
31 mulcom 10966 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
32313adant1 1129 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
332, 4, 6, 17, 19, 21, 23, 25, 26, 28, 30, 32iscrngd 19834 . 2 (⊤ → ℂfld ∈ CRing)
3433mptru 1546 1 fld ∈ CRing
Colors of variables: wff setvar class
Syntax hints:  w3a 1086   = wceq 1539  wtru 1540  wcel 2107  cfv 6437  (class class class)co 7284  cc 10878  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  -cneg 11215  Basecbs 16921  +gcplusg 16971  .rcmulr 16972  Grpcgrp 18586  CRingccrg 19793  fldccnfld 20606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-fz 13249  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-plusg 16984  df-mulr 16985  df-starv 16986  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-0g 17161  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-grp 18589  df-cmn 19397  df-mgp 19730  df-ring 19794  df-cring 19795  df-cnfld 20607
This theorem is referenced by:  cnring  20629  cnmgpabl  20668  zringcrng  20681  zring0  20689  re0g  20826  refld  20833  smadiadetr  21833  plypf1  25382  amgmlem  26148  amgm  26149  wilthlem2  26227  wilthlem3  26228  gzcrng  31552  ccfldextrr  31732  2zrng0  45507  amgmwlem  46517  amgmlemALT  46518
  Copyright terms: Public domain W3C validator