Step | Hyp | Ref
| Expression |
1 | | cnfldbas 21391 |
. . . 4
⊢ ℂ =
(Base‘ℂfld) |
2 | 1 | a1i 11 |
. . 3
⊢ (⊤
→ ℂ = (Base‘ℂfld)) |
3 | | cnfldadd 21393 |
. . . 4
⊢ + =
(+g‘ℂfld) |
4 | 3 | a1i 11 |
. . 3
⊢ (⊤
→ + = (+g‘ℂfld)) |
5 | | mpocnfldmul 21394 |
. . . 4
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) =
(.r‘ℂfld) |
6 | 5 | a1i 11 |
. . 3
⊢ (⊤
→ (𝑢 ∈ ℂ,
𝑣 ∈ ℂ ↦
(𝑢 · 𝑣)) =
(.r‘ℂfld)) |
7 | | addcl 11266 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
8 | | addass 11271 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
9 | | 0cn 11282 |
. . . . 5
⊢ 0 ∈
ℂ |
10 | | addlid 11473 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (0 +
𝑥) = 𝑥) |
11 | | negcl 11536 |
. . . . 5
⊢ (𝑥 ∈ ℂ → -𝑥 ∈
ℂ) |
12 | | id 22 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → 𝑥 ∈
ℂ) |
13 | 11, 12 | addcomd 11492 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
14 | | negid 11583 |
. . . . . 6
⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) |
15 | 13, 14 | eqtrd 2780 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
16 | 1, 3, 7, 8, 9, 10,
11, 15 | isgrpi 18999 |
. . . 4
⊢
ℂfld ∈ Grp |
17 | 16 | a1i 11 |
. . 3
⊢ (⊤
→ ℂfld ∈ Grp) |
18 | | mpomulf 11279 |
. . . . 5
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)):(ℂ ×
ℂ)⟶ℂ |
19 | 18 | fovcl 7578 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ ℂ) |
20 | 19 | 3adant1 1130 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ ∧ 𝑦
∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ ℂ) |
21 | | mulass 11272 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
22 | | mulcl 11268 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
23 | | ovmpot 7611 |
. . . . . . 7
⊢ (((𝑥 · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 · 𝑦) · 𝑧)) |
24 | 22, 23 | stoic3 1774 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 · 𝑦) · 𝑧)) |
25 | | simp1 1136 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈
ℂ) |
26 | | mulcl 11268 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · 𝑧) ∈ ℂ) |
27 | 26 | 3adant1 1130 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · 𝑧) ∈ ℂ) |
28 | | ovmpot 7611 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧)) = (𝑥 · (𝑦 · 𝑧))) |
29 | 25, 27, 28 | syl2anc 583 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧)) = (𝑥 · (𝑦 · 𝑧))) |
30 | 21, 24, 29 | 3eqtr4d 2790 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧))) |
31 | | ovmpot 7611 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) |
32 | 31 | 3adant3 1132 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) |
33 | 32 | oveq1d 7463 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) |
34 | | ovmpot 7611 |
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑦 · 𝑧)) |
35 | 34 | 3adant1 1130 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑦 · 𝑧)) |
36 | 35 | oveq2d 7464 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧))) |
37 | 30, 33, 36 | 3eqtr4d 2790 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
38 | 37 | adantl 481 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ℂ ∧ 𝑦
∈ ℂ ∧ 𝑧
∈ ℂ)) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
39 | | adddi 11273 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
40 | | addcl 11266 |
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 + 𝑧) ∈ ℂ) |
41 | 40 | 3adant1 1130 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 + 𝑧) ∈ ℂ) |
42 | | ovmpot 7611 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 + 𝑧) ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = (𝑥 · (𝑦 + 𝑧))) |
43 | 25, 41, 42 | syl2anc 583 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = (𝑥 · (𝑦 + 𝑧))) |
44 | | ovmpot 7611 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥 · 𝑧)) |
45 | 44 | 3adant2 1131 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥 · 𝑧)) |
46 | 32, 45 | oveq12d 7466 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
47 | 39, 43, 46 | 3eqtr4d 2790 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
48 | 47 | adantl 481 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ℂ ∧ 𝑦
∈ ℂ ∧ 𝑧
∈ ℂ)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
49 | | adddir 11281 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
50 | | ovmpot 7611 |
. . . . . 6
⊢ (((𝑥 + 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 + 𝑦) · 𝑧)) |
51 | 7, 50 | stoic3 1774 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 + 𝑦) · 𝑧)) |
52 | 45, 35 | oveq12d 7466 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
53 | 49, 51, 52 | 3eqtr4d 2790 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
54 | 53 | adantl 481 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ ℂ ∧ 𝑦
∈ ℂ ∧ 𝑧
∈ ℂ)) → ((𝑥
+ 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) |
55 | | 1cnd 11285 |
. . 3
⊢ (⊤
→ 1 ∈ ℂ) |
56 | | ax-1cn 11242 |
. . . . . 6
⊢ 1 ∈
ℂ |
57 | | ovmpot 7611 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ 𝑥
∈ ℂ) → (1(𝑢
∈ ℂ, 𝑣 ∈
ℂ ↦ (𝑢 ·
𝑣))𝑥) = (1 · 𝑥)) |
58 | 56, 57 | mpan 689 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (1 · 𝑥)) |
59 | | mullid 11289 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (1
· 𝑥) = 𝑥) |
60 | 58, 59 | eqtrd 2780 |
. . . 4
⊢ (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥) |
61 | 60 | adantl 481 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (1(𝑢
∈ ℂ, 𝑣 ∈
ℂ ↦ (𝑢 ·
𝑣))𝑥) = 𝑥) |
62 | | ovmpot 7611 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1)) |
63 | 56, 62 | mpan2 690 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1)) |
64 | | mulrid 11288 |
. . . . 5
⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) |
65 | 63, 64 | eqtrd 2780 |
. . . 4
⊢ (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥) |
66 | 65 | adantl 481 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥) |
67 | | mulcom 11270 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
68 | | ovmpot 7611 |
. . . . . 6
⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
69 | 68 | ancoms 458 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) |
70 | 67, 31, 69 | 3eqtr4d 2790 |
. . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥)) |
71 | 70 | 3adant1 1130 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ ∧ 𝑦
∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥)) |
72 | 2, 4, 6, 17, 20, 38, 48, 54, 55, 61, 66, 71 | iscrngd 20315 |
. 2
⊢ (⊤
→ ℂfld ∈ CRing) |
73 | 72 | mptru 1544 |
1
⊢
ℂfld ∈ CRing |