| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnfldbas 21368 | . . . 4
⊢ ℂ =
(Base‘ℂfld) | 
| 2 | 1 | a1i 11 | . . 3
⊢ (⊤
→ ℂ = (Base‘ℂfld)) | 
| 3 |  | cnfldadd 21370 | . . . 4
⊢  + =
(+g‘ℂfld) | 
| 4 | 3 | a1i 11 | . . 3
⊢ (⊤
→ + = (+g‘ℂfld)) | 
| 5 |  | mpocnfldmul 21371 | . . . 4
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) =
(.r‘ℂfld) | 
| 6 | 5 | a1i 11 | . . 3
⊢ (⊤
→ (𝑢 ∈ ℂ,
𝑣 ∈ ℂ ↦
(𝑢 · 𝑣)) =
(.r‘ℂfld)) | 
| 7 |  | addcl 11237 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | 
| 8 |  | addass 11242 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | 
| 9 |  | 0cn 11253 | . . . . 5
⊢ 0 ∈
ℂ | 
| 10 |  | addlid 11444 | . . . . 5
⊢ (𝑥 ∈ ℂ → (0 +
𝑥) = 𝑥) | 
| 11 |  | negcl 11508 | . . . . 5
⊢ (𝑥 ∈ ℂ → -𝑥 ∈
ℂ) | 
| 12 |  | id 22 | . . . . . . 7
⊢ (𝑥 ∈ ℂ → 𝑥 ∈
ℂ) | 
| 13 | 11, 12 | addcomd 11463 | . . . . . 6
⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) | 
| 14 |  | negid 11556 | . . . . . 6
⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | 
| 15 | 13, 14 | eqtrd 2777 | . . . . 5
⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) | 
| 16 | 1, 3, 7, 8, 9, 10,
11, 15 | isgrpi 18977 | . . . 4
⊢
ℂfld ∈ Grp | 
| 17 | 16 | a1i 11 | . . 3
⊢ (⊤
→ ℂfld ∈ Grp) | 
| 18 |  | mpomulf 11250 | . . . . 5
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)):(ℂ ×
ℂ)⟶ℂ | 
| 19 | 18 | fovcl 7561 | . . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ ℂ) | 
| 20 | 19 | 3adant1 1131 | . . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ ∧ 𝑦
∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) ∈ ℂ) | 
| 21 |  | mulass 11243 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | 
| 22 |  | mulcl 11239 | . . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | 
| 23 |  | ovmpot 7594 | . . . . . . 7
⊢ (((𝑥 · 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 · 𝑦) · 𝑧)) | 
| 24 | 22, 23 | stoic3 1776 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 · 𝑦) · 𝑧)) | 
| 25 |  | simp1 1137 | . . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → 𝑥 ∈
ℂ) | 
| 26 |  | mulcl 11239 | . . . . . . . 8
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · 𝑧) ∈ ℂ) | 
| 27 | 26 | 3adant1 1131 | . . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · 𝑧) ∈ ℂ) | 
| 28 |  | ovmpot 7594 | . . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧)) = (𝑥 · (𝑦 · 𝑧))) | 
| 29 | 25, 27, 28 | syl2anc 584 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧)) = (𝑥 · (𝑦 · 𝑧))) | 
| 30 | 21, 24, 29 | 3eqtr4d 2787 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧))) | 
| 31 |  | ovmpot 7594 | . . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) | 
| 32 | 31 | 3adant3 1133 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑥 · 𝑦)) | 
| 33 | 32 | oveq1d 7446 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 · 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) | 
| 34 |  | ovmpot 7594 | . . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑦 · 𝑧)) | 
| 35 | 34 | 3adant1 1131 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑦 · 𝑧)) | 
| 36 | 35 | oveq2d 7447 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 · 𝑧))) | 
| 37 | 30, 33, 36 | 3eqtr4d 2787 | . . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) | 
| 38 | 37 | adantl 481 | . . 3
⊢
((⊤ ∧ (𝑥
∈ ℂ ∧ 𝑦
∈ ℂ ∧ 𝑧
∈ ℂ)) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) | 
| 39 |  | adddi 11244 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | 
| 40 |  | addcl 11237 | . . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 + 𝑧) ∈ ℂ) | 
| 41 | 40 | 3adant1 1131 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 + 𝑧) ∈ ℂ) | 
| 42 |  | ovmpot 7594 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ (𝑦 + 𝑧) ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = (𝑥 · (𝑦 + 𝑧))) | 
| 43 | 25, 41, 42 | syl2anc 584 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = (𝑥 · (𝑦 + 𝑧))) | 
| 44 |  | ovmpot 7594 | . . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥 · 𝑧)) | 
| 45 | 44 | 3adant2 1132 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = (𝑥 · 𝑧)) | 
| 46 | 32, 45 | oveq12d 7449 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | 
| 47 | 39, 43, 46 | 3eqtr4d 2787 | . . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) | 
| 48 | 47 | adantl 481 | . . 3
⊢
((⊤ ∧ (𝑥
∈ ℂ ∧ 𝑦
∈ ℂ ∧ 𝑧
∈ ℂ)) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑦 + 𝑧)) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) + (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) | 
| 49 |  | adddir 11252 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | 
| 50 |  | ovmpot 7594 | . . . . . 6
⊢ (((𝑥 + 𝑦) ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 + 𝑦) · 𝑧)) | 
| 51 | 7, 50 | stoic3 1776 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥 + 𝑦) · 𝑧)) | 
| 52 | 45, 35 | oveq12d 7449 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | 
| 53 | 49, 51, 52 | 3eqtr4d 2787 | . . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) | 
| 54 | 53 | adantl 481 | . . 3
⊢
((⊤ ∧ (𝑥
∈ ℂ ∧ 𝑦
∈ ℂ ∧ 𝑧
∈ ℂ)) → ((𝑥
+ 𝑦)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) = ((𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧) + (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑧))) | 
| 55 |  | 1cnd 11256 | . . 3
⊢ (⊤
→ 1 ∈ ℂ) | 
| 56 |  | ax-1cn 11213 | . . . . . 6
⊢ 1 ∈
ℂ | 
| 57 |  | ovmpot 7594 | . . . . . 6
⊢ ((1
∈ ℂ ∧ 𝑥
∈ ℂ) → (1(𝑢
∈ ℂ, 𝑣 ∈
ℂ ↦ (𝑢 ·
𝑣))𝑥) = (1 · 𝑥)) | 
| 58 | 56, 57 | mpan 690 | . . . . 5
⊢ (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (1 · 𝑥)) | 
| 59 |  | mullid 11260 | . . . . 5
⊢ (𝑥 ∈ ℂ → (1
· 𝑥) = 𝑥) | 
| 60 | 58, 59 | eqtrd 2777 | . . . 4
⊢ (𝑥 ∈ ℂ → (1(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = 𝑥) | 
| 61 | 60 | adantl 481 | . . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (1(𝑢
∈ ℂ, 𝑣 ∈
ℂ ↦ (𝑢 ·
𝑣))𝑥) = 𝑥) | 
| 62 |  | ovmpot 7594 | . . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1)) | 
| 63 | 56, 62 | mpan2 691 | . . . . 5
⊢ (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = (𝑥 · 1)) | 
| 64 |  | mulrid 11259 | . . . . 5
⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) | 
| 65 | 63, 64 | eqtrd 2777 | . . . 4
⊢ (𝑥 ∈ ℂ → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥) | 
| 66 | 65 | adantl 481 | . . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))1) = 𝑥) | 
| 67 |  | mulcom 11241 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | 
| 68 |  | ovmpot 7594 | . . . . . 6
⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) | 
| 69 | 68 | ancoms 458 | . . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥) = (𝑦 · 𝑥)) | 
| 70 | 67, 31, 69 | 3eqtr4d 2787 | . . . 4
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥)) | 
| 71 | 70 | 3adant1 1131 | . . 3
⊢
((⊤ ∧ 𝑥
∈ ℂ ∧ 𝑦
∈ ℂ) → (𝑥(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑦) = (𝑦(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))𝑥)) | 
| 72 | 2, 4, 6, 17, 20, 38, 48, 54, 55, 61, 66, 71 | iscrngd 20289 | . 2
⊢ (⊤
→ ℂfld ∈ CRing) | 
| 73 | 72 | mptru 1547 | 1
⊢
ℂfld ∈ CRing |