MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efexp Structured version   Visualization version   GIF version

Theorem efexp 15291
Description: The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
efexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁))

Proof of Theorem efexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 11840 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 mulcom 10476 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
31, 2sylan2 592 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
43fveq2d 6549 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝐴 · 𝑁)) = (exp‘(𝑁 · 𝐴)))
5 oveq2 7031 . . . . . 6 (𝑗 = 0 → (𝐴 · 𝑗) = (𝐴 · 0))
65fveq2d 6549 . . . . 5 (𝑗 = 0 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 0)))
7 oveq2 7031 . . . . 5 (𝑗 = 0 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑0))
86, 7eqeq12d 2812 . . . 4 (𝑗 = 0 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 0)) = ((exp‘𝐴)↑0)))
9 oveq2 7031 . . . . . 6 (𝑗 = 𝑘 → (𝐴 · 𝑗) = (𝐴 · 𝑘))
109fveq2d 6549 . . . . 5 (𝑗 = 𝑘 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 𝑘)))
11 oveq2 7031 . . . . 5 (𝑗 = 𝑘 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑𝑘))
1210, 11eqeq12d 2812 . . . 4 (𝑗 = 𝑘 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)))
13 oveq2 7031 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴 · 𝑗) = (𝐴 · (𝑘 + 1)))
1413fveq2d 6549 . . . . 5 (𝑗 = (𝑘 + 1) → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · (𝑘 + 1))))
15 oveq2 7031 . . . . 5 (𝑗 = (𝑘 + 1) → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑(𝑘 + 1)))
1614, 15eqeq12d 2812 . . . 4 (𝑗 = (𝑘 + 1) → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1))))
17 oveq2 7031 . . . . . 6 (𝑗 = -𝑘 → (𝐴 · 𝑗) = (𝐴 · -𝑘))
1817fveq2d 6549 . . . . 5 (𝑗 = -𝑘 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · -𝑘)))
19 oveq2 7031 . . . . 5 (𝑗 = -𝑘 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑-𝑘))
2018, 19eqeq12d 2812 . . . 4 (𝑗 = -𝑘 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘)))
21 oveq2 7031 . . . . . 6 (𝑗 = 𝑁 → (𝐴 · 𝑗) = (𝐴 · 𝑁))
2221fveq2d 6549 . . . . 5 (𝑗 = 𝑁 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 𝑁)))
23 oveq2 7031 . . . . 5 (𝑗 = 𝑁 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑𝑁))
2422, 23eqeq12d 2812 . . . 4 (𝑗 = 𝑁 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁)))
25 ef0 15281 . . . . 5 (exp‘0) = 1
26 mul01 10672 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
2726fveq2d 6549 . . . . 5 (𝐴 ∈ ℂ → (exp‘(𝐴 · 0)) = (exp‘0))
28 efcl 15273 . . . . . 6 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2928exp0d 13358 . . . . 5 (𝐴 ∈ ℂ → ((exp‘𝐴)↑0) = 1)
3025, 27, 293eqtr4a 2859 . . . 4 (𝐴 ∈ ℂ → (exp‘(𝐴 · 0)) = ((exp‘𝐴)↑0))
31 oveq1 7030 . . . . . . 7 ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
3231adantl 482 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
33 nn0cn 11761 . . . . . . . . . 10 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
34 ax-1cn 10448 . . . . . . . . . . . 12 1 ∈ ℂ
35 adddi 10479 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
3634, 35mp3an3 1442 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
37 mulid1 10492 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
3837adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 1) = 𝐴)
3938oveq2d 7039 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) + (𝐴 · 1)) = ((𝐴 · 𝑘) + 𝐴))
4036, 39eqtrd 2833 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
4133, 40sylan2 592 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
4241fveq2d 6549 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘(𝐴 · (𝑘 + 1))) = (exp‘((𝐴 · 𝑘) + 𝐴)))
43 mulcl 10474 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 𝑘) ∈ ℂ)
4433, 43sylan2 592 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝑘) ∈ ℂ)
45 simpl 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
46 efadd 15284 . . . . . . . . 9 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘((𝐴 · 𝑘) + 𝐴)) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4744, 45, 46syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘((𝐴 · 𝑘) + 𝐴)) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4842, 47eqtrd 2833 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4948adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
50 expp1 13290 . . . . . . . 8 (((exp‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5128, 50sylan 580 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5251adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5332, 49, 523eqtr4d 2843 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1)))
5453exp31 420 . . . 4 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1)))))
55 oveq2 7031 . . . . . 6 ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (1 / (exp‘(𝐴 · 𝑘))) = (1 / ((exp‘𝐴)↑𝑘)))
56 nncn 11500 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
57 mulneg2 10931 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · -𝑘) = -(𝐴 · 𝑘))
5856, 57sylan2 592 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 · -𝑘) = -(𝐴 · 𝑘))
5958fveq2d 6549 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘(𝐴 · -𝑘)) = (exp‘-(𝐴 · 𝑘)))
6056, 43sylan2 592 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ)
61 efneg 15288 . . . . . . . . 9 ((𝐴 · 𝑘) ∈ ℂ → (exp‘-(𝐴 · 𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
6260, 61syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘-(𝐴 · 𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
6359, 62eqtrd 2833 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘(𝐴 · -𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
64 nnnn0 11758 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
65 expneg 13291 . . . . . . . 8 (((exp‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑-𝑘) = (1 / ((exp‘𝐴)↑𝑘)))
6628, 64, 65syl2an 595 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘𝐴)↑-𝑘) = (1 / ((exp‘𝐴)↑𝑘)))
6763, 66eqeq12d 2812 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘) ↔ (1 / (exp‘(𝐴 · 𝑘))) = (1 / ((exp‘𝐴)↑𝑘))))
6855, 67syl5ibr 247 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘)))
6968ex 413 . . . 4 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘))))
708, 12, 16, 20, 24, 30, 54, 69zindd 11937 . . 3 (𝐴 ∈ ℂ → (𝑁 ∈ ℤ → (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁)))
7170imp 407 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁))
724, 71eqtr3d 2835 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  cfv 6232  (class class class)co 7023  cc 10388  0cc0 10390  1c1 10391   + caddc 10393   · cmul 10395  -cneg 10724   / cdiv 11151  cn 11492  0cn0 11751  cz 11835  cexp 13283  expce 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-inf 8760  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-ico 12598  df-fz 12747  df-fzo 12888  df-fl 13016  df-seq 13224  df-exp 13284  df-fac 13488  df-bc 13517  df-hash 13545  df-shft 14264  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-limsup 14666  df-clim 14683  df-rlim 14684  df-sum 14881  df-ef 15258
This theorem is referenced by:  efzval  15292  efgt0  15293  tanval3  15324  demoivre  15390  ef2kpi  24751  efif1olem4  24814  explog  24862  reexplog  24863  relogexp  24864  tanarg  24887  root1eq1  25021  vtsprod  31523
  Copyright terms: Public domain W3C validator