MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efexp Structured version   Visualization version   GIF version

Theorem efexp 15447
Description: The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
efexp ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁))

Proof of Theorem efexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 11980 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 mulcom 10616 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
31, 2sylan2 594 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴 · 𝑁) = (𝑁 · 𝐴))
43fveq2d 6667 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝐴 · 𝑁)) = (exp‘(𝑁 · 𝐴)))
5 oveq2 7157 . . . . . 6 (𝑗 = 0 → (𝐴 · 𝑗) = (𝐴 · 0))
65fveq2d 6667 . . . . 5 (𝑗 = 0 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 0)))
7 oveq2 7157 . . . . 5 (𝑗 = 0 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑0))
86, 7eqeq12d 2836 . . . 4 (𝑗 = 0 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 0)) = ((exp‘𝐴)↑0)))
9 oveq2 7157 . . . . . 6 (𝑗 = 𝑘 → (𝐴 · 𝑗) = (𝐴 · 𝑘))
109fveq2d 6667 . . . . 5 (𝑗 = 𝑘 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 𝑘)))
11 oveq2 7157 . . . . 5 (𝑗 = 𝑘 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑𝑘))
1210, 11eqeq12d 2836 . . . 4 (𝑗 = 𝑘 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)))
13 oveq2 7157 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴 · 𝑗) = (𝐴 · (𝑘 + 1)))
1413fveq2d 6667 . . . . 5 (𝑗 = (𝑘 + 1) → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · (𝑘 + 1))))
15 oveq2 7157 . . . . 5 (𝑗 = (𝑘 + 1) → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑(𝑘 + 1)))
1614, 15eqeq12d 2836 . . . 4 (𝑗 = (𝑘 + 1) → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1))))
17 oveq2 7157 . . . . . 6 (𝑗 = -𝑘 → (𝐴 · 𝑗) = (𝐴 · -𝑘))
1817fveq2d 6667 . . . . 5 (𝑗 = -𝑘 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · -𝑘)))
19 oveq2 7157 . . . . 5 (𝑗 = -𝑘 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑-𝑘))
2018, 19eqeq12d 2836 . . . 4 (𝑗 = -𝑘 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘)))
21 oveq2 7157 . . . . . 6 (𝑗 = 𝑁 → (𝐴 · 𝑗) = (𝐴 · 𝑁))
2221fveq2d 6667 . . . . 5 (𝑗 = 𝑁 → (exp‘(𝐴 · 𝑗)) = (exp‘(𝐴 · 𝑁)))
23 oveq2 7157 . . . . 5 (𝑗 = 𝑁 → ((exp‘𝐴)↑𝑗) = ((exp‘𝐴)↑𝑁))
2422, 23eqeq12d 2836 . . . 4 (𝑗 = 𝑁 → ((exp‘(𝐴 · 𝑗)) = ((exp‘𝐴)↑𝑗) ↔ (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁)))
25 ef0 15437 . . . . 5 (exp‘0) = 1
26 mul01 10812 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
2726fveq2d 6667 . . . . 5 (𝐴 ∈ ℂ → (exp‘(𝐴 · 0)) = (exp‘0))
28 efcl 15429 . . . . . 6 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2928exp0d 13501 . . . . 5 (𝐴 ∈ ℂ → ((exp‘𝐴)↑0) = 1)
3025, 27, 293eqtr4a 2881 . . . 4 (𝐴 ∈ ℂ → (exp‘(𝐴 · 0)) = ((exp‘𝐴)↑0))
31 oveq1 7156 . . . . . . 7 ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
3231adantl 484 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
33 nn0cn 11901 . . . . . . . . . 10 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
34 ax-1cn 10588 . . . . . . . . . . . 12 1 ∈ ℂ
35 adddi 10619 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
3634, 35mp3an3 1445 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + (𝐴 · 1)))
37 mulid1 10632 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
3837adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 1) = 𝐴)
3938oveq2d 7165 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝐴 · 𝑘) + (𝐴 · 1)) = ((𝐴 · 𝑘) + 𝐴))
4036, 39eqtrd 2855 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
4133, 40sylan2 594 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴 · (𝑘 + 1)) = ((𝐴 · 𝑘) + 𝐴))
4241fveq2d 6667 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘(𝐴 · (𝑘 + 1))) = (exp‘((𝐴 · 𝑘) + 𝐴)))
43 mulcl 10614 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · 𝑘) ∈ ℂ)
4433, 43sylan2 594 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝑘) ∈ ℂ)
45 simpl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
46 efadd 15440 . . . . . . . . 9 (((𝐴 · 𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘((𝐴 · 𝑘) + 𝐴)) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4744, 45, 46syl2anc 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘((𝐴 · 𝑘) + 𝐴)) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4842, 47eqtrd 2855 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
4948adantr 483 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘(𝐴 · 𝑘)) · (exp‘𝐴)))
50 expp1 13433 . . . . . . . 8 (((exp‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5128, 50sylan 582 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5251adantr 483 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → ((exp‘𝐴)↑(𝑘 + 1)) = (((exp‘𝐴)↑𝑘) · (exp‘𝐴)))
5332, 49, 523eqtr4d 2865 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘)) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1)))
5453exp31 422 . . . 4 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ0 → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · (𝑘 + 1))) = ((exp‘𝐴)↑(𝑘 + 1)))))
55 oveq2 7157 . . . . . 6 ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (1 / (exp‘(𝐴 · 𝑘))) = (1 / ((exp‘𝐴)↑𝑘)))
56 nncn 11639 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
57 mulneg2 11070 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 · -𝑘) = -(𝐴 · 𝑘))
5856, 57sylan2 594 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 · -𝑘) = -(𝐴 · 𝑘))
5958fveq2d 6667 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘(𝐴 · -𝑘)) = (exp‘-(𝐴 · 𝑘)))
6056, 43sylan2 594 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐴 · 𝑘) ∈ ℂ)
61 efneg 15444 . . . . . . . . 9 ((𝐴 · 𝑘) ∈ ℂ → (exp‘-(𝐴 · 𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
6260, 61syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘-(𝐴 · 𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
6359, 62eqtrd 2855 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (exp‘(𝐴 · -𝑘)) = (1 / (exp‘(𝐴 · 𝑘))))
64 nnnn0 11898 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
65 expneg 13434 . . . . . . . 8 (((exp‘𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((exp‘𝐴)↑-𝑘) = (1 / ((exp‘𝐴)↑𝑘)))
6628, 64, 65syl2an 597 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘𝐴)↑-𝑘) = (1 / ((exp‘𝐴)↑𝑘)))
6763, 66eqeq12d 2836 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘) ↔ (1 / (exp‘(𝐴 · 𝑘))) = (1 / ((exp‘𝐴)↑𝑘))))
6855, 67syl5ibr 248 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘)))
6968ex 415 . . . 4 (𝐴 ∈ ℂ → (𝑘 ∈ ℕ → ((exp‘(𝐴 · 𝑘)) = ((exp‘𝐴)↑𝑘) → (exp‘(𝐴 · -𝑘)) = ((exp‘𝐴)↑-𝑘))))
708, 12, 16, 20, 24, 30, 54, 69zindd 12077 . . 3 (𝐴 ∈ ℂ → (𝑁 ∈ ℤ → (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁)))
7170imp 409 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝐴 · 𝑁)) = ((exp‘𝐴)↑𝑁))
724, 71eqtr3d 2857 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  cfv 6348  (class class class)co 7149  cc 10528  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  -cneg 10864   / cdiv 11290  cn 11631  0cn0 11891  cz 11975  cexp 13426  expce 15408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-pm 8402  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-inf 8900  df-oi 8967  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12890  df-fzo 13031  df-fl 13159  df-seq 13367  df-exp 13427  df-fac 13631  df-bc 13660  df-hash 13688  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036  df-ef 15414
This theorem is referenced by:  efzval  15448  efgt0  15449  tanval3  15480  demoivre  15546  ef2kpi  25060  efif1olem4  25125  explog  25173  reexplog  25174  relogexp  25175  tanarg  25198  root1eq1  25332  vtsprod  31929
  Copyright terms: Public domain W3C validator