Proof of Theorem pythagtriplem12
Step | Hyp | Ref
| Expression |
1 | | pythagtriplem11.1 |
. . 3
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) |
2 | 1 | oveq1i 7265 |
. 2
⊢ (𝑀↑2) =
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2)↑2) |
3 | | nncn 11911 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℂ) |
4 | | nncn 11911 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℂ) |
5 | | addcl 10884 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ) |
6 | 3, 4, 5 | syl2anr 596 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ) |
7 | 6 | 3adant1 1128 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ) |
8 | 7 | sqrtcld 15077 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 + 𝐵)) ∈
ℂ) |
9 | | subcl 11150 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) |
10 | 3, 4, 9 | syl2anr 596 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℂ) |
11 | 10 | 3adant1 1128 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℂ) |
12 | 11 | sqrtcld 15077 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 −
𝐵)) ∈
ℂ) |
13 | 8, 12 | addcld 10925 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
14 | 13 | 3ad2ant1 1131 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
15 | | 2cn 11978 |
. . . . . 6
⊢ 2 ∈
ℂ |
16 | | 2ne0 12007 |
. . . . . 6
⊢ 2 ≠
0 |
17 | | sqdiv 13769 |
. . . . . 6
⊢
((((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) ∈ ℂ ∧ 2
∈ ℂ ∧ 2 ≠ 0) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵)))↑2) / (2↑2))) |
18 | 15, 16, 17 | mp3an23 1451 |
. . . . 5
⊢
(((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) ∈ ℂ →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵)))↑2) / (2↑2))) |
19 | 15 | sqvali 13825 |
. . . . . 6
⊢
(2↑2) = (2 · 2) |
20 | 19 | oveq2i 7266 |
. . . . 5
⊢
((((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵)))↑2) / (2↑2))
= ((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵)))↑2) / (2 ·
2)) |
21 | 18, 20 | eqtrdi 2795 |
. . . 4
⊢
(((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) ∈ ℂ →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵)))↑2) / (2 ·
2))) |
22 | 14, 21 | syl 17 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2)↑2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵)))↑2) / (2 ·
2))) |
23 | 8 | 3ad2ant1 1131 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ) |
24 | 12 | 3ad2ant1 1131 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℂ) |
25 | | binom2 13861 |
. . . . . . 7
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) + (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2))) |
26 | 23, 24, 25 | syl2anc 583 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) + (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2))) |
27 | | nnre 11910 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℝ) |
28 | | nnre 11910 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
29 | | readdcl 10885 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) |
30 | 27, 28, 29 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
31 | 30 | 3adant1 1128 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
32 | 31 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ) |
33 | 27 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℝ) |
34 | 28 | 3ad2ant2 1132 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℝ) |
35 | | nngt0 11934 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ → 0 <
𝐶) |
36 | 35 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐶) |
37 | | nngt0 11934 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
38 | 37 | 3ad2ant2 1132 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐵) |
39 | 33, 34, 36, 38 | addgt0d 11480 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐶 + 𝐵)) |
40 | 39 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 + 𝐵)) |
41 | | 0re 10908 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
42 | | ltle 10994 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ (𝐶 +
𝐵) ∈ ℝ) →
(0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
43 | 41, 42 | mpan 686 |
. . . . . . . . . 10
⊢ ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
44 | 32, 40, 43 | sylc 65 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵)) |
45 | | resqrtth 14895 |
. . . . . . . . 9
⊢ (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
46 | 32, 44, 45 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
47 | 46 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵))↑2) + (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) = ((𝐶 + 𝐵) + (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵)))))) |
48 | | resubcl 11215 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
49 | 27, 28, 48 | syl2anr 596 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
50 | 49 | 3adant1 1128 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
51 | 50 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℝ) |
52 | | pythagtriplem10 16449 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) |
53 | 52 | 3adant3 1130 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 − 𝐵)) |
54 | | ltle 10994 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (𝐶
− 𝐵) ∈ ℝ)
→ (0 < (𝐶 −
𝐵) → 0 ≤ (𝐶 − 𝐵))) |
55 | 41, 54 | mpan 686 |
. . . . . . . . 9
⊢ ((𝐶 − 𝐵) ∈ ℝ → (0 < (𝐶 − 𝐵) → 0 ≤ (𝐶 − 𝐵))) |
56 | 51, 53, 55 | sylc 65 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 − 𝐵)) |
57 | | resqrtth 14895 |
. . . . . . . 8
⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 − 𝐵)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
58 | 51, 56, 57 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
59 | 47, 58 | oveq12d 7273 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) + (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2)) = (((𝐶 + 𝐵) + (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))))) + (𝐶 − 𝐵))) |
60 | 7 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℂ) |
61 | 8, 12 | mulcld 10926 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))) ∈
ℂ) |
62 | | mulcl 10886 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))) ∈ ℂ) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
63 | 15, 61, 62 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (2
· ((√‘(𝐶
+ 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
64 | 63 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
65 | 11 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℂ) |
66 | 60, 64, 65 | add32d 11132 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))))) + (𝐶 − 𝐵)) = (((𝐶 + 𝐵) + (𝐶 − 𝐵)) + (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵)))))) |
67 | 3 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℂ) |
68 | 67 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ) |
69 | | nncn 11911 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
70 | 69 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℂ) |
71 | 70 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℂ) |
72 | | adddi 10891 |
. . . . . . . . 9
⊢ ((2
∈ ℂ ∧ 𝐶
∈ ℂ ∧ 𝐴
∈ ℂ) → (2 · (𝐶 + 𝐴)) = ((2 · 𝐶) + (2 · 𝐴))) |
73 | 15, 68, 71, 72 | mp3an2i 1464 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶 + 𝐴)) = ((2 · 𝐶) + (2 · 𝐴))) |
74 | 4 | 3ad2ant2 1132 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℂ) |
75 | 74 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ) |
76 | 68, 75, 68 | ppncand 11302 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
77 | 68 | 2timesd 12146 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐶) = (𝐶 + 𝐶)) |
78 | 76, 77 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
79 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
80 | 79 | 3ad2ant2 1132 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
81 | 71 | sqcld 13790 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐴↑2) ∈ ℂ) |
82 | 75 | sqcld 13790 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵↑2) ∈ ℂ) |
83 | 81, 82 | pncand 11263 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2)) |
84 | | subsq 13854 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
85 | 68, 75, 84 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
86 | 80, 83, 85 | 3eqtr3rd 2787 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) · (𝐶 − 𝐵)) = (𝐴↑2)) |
87 | 86 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶 − 𝐵))) = (√‘(𝐴↑2))) |
88 | 32, 44, 51, 56 | sqrtmuld 15064 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶 − 𝐵))) = ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵)))) |
89 | | nnre 11910 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
90 | 89 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℝ) |
91 | 90 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℝ) |
92 | | nnnn0 12170 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
93 | 92 | nn0ge0d 12226 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ → 0 ≤
𝐴) |
94 | 93 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
𝐴) |
95 | 94 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ 𝐴) |
96 | 91, 95 | sqrtsqd 15059 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) = 𝐴) |
97 | 87, 88, 96 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))) = 𝐴) |
98 | 97 | oveq2d 7271 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) = (2 · 𝐴)) |
99 | 78, 98 | oveq12d 7273 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶 − 𝐵)) + (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))))) = ((2 · 𝐶) + (2 · 𝐴))) |
100 | 73, 99 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶 + 𝐴)) = (((𝐶 + 𝐵) + (𝐶 − 𝐵)) + (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵)))))) |
101 | 66, 100 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))))) + (𝐶 − 𝐵)) = (2 · (𝐶 + 𝐴))) |
102 | 26, 59, 101 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵)))↑2) = (2 · (𝐶 + 𝐴))) |
103 | 102 | oveq1d 7270 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵)))↑2) / (2 · 2)) = ((2 ·
(𝐶 + 𝐴)) / (2 · 2))) |
104 | | addcl 10884 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶 + 𝐴) ∈ ℂ) |
105 | 3, 69, 104 | syl2anr 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐴) ∈ ℂ) |
106 | 105 | 3adant2 1129 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐴) ∈ ℂ) |
107 | 106 | 3ad2ant1 1131 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐴) ∈ ℂ) |
108 | | mulcl 10886 |
. . . . . 6
⊢ ((2
∈ ℂ ∧ (𝐶 +
𝐴) ∈ ℂ) →
(2 · (𝐶 + 𝐴)) ∈
ℂ) |
109 | 15, 107, 108 | sylancr 586 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶 + 𝐴)) ∈ ℂ) |
110 | | 2cnne0 12113 |
. . . . . 6
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
111 | | divdiv1 11616 |
. . . . . 6
⊢ (((2
· (𝐶 + 𝐴)) ∈ ℂ ∧ (2
∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) →
(((2 · (𝐶 + 𝐴)) / 2) / 2) = ((2 ·
(𝐶 + 𝐴)) / (2 · 2))) |
112 | 110, 110,
111 | mp3an23 1451 |
. . . . 5
⊢ ((2
· (𝐶 + 𝐴)) ∈ ℂ → (((2
· (𝐶 + 𝐴)) / 2) / 2) = ((2 ·
(𝐶 + 𝐴)) / (2 · 2))) |
113 | 109, 112 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((2 · (𝐶 + 𝐴)) / 2) / 2) = ((2 · (𝐶 + 𝐴)) / (2 · 2))) |
114 | 103, 113 | eqtr4d 2781 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵)))↑2) / (2 · 2)) = (((2
· (𝐶 + 𝐴)) / 2) / 2)) |
115 | | divcan3 11589 |
. . . . . 6
⊢ (((𝐶 + 𝐴) ∈ ℂ ∧ 2 ∈ ℂ
∧ 2 ≠ 0) → ((2 · (𝐶 + 𝐴)) / 2) = (𝐶 + 𝐴)) |
116 | 15, 16, 115 | mp3an23 1451 |
. . . . 5
⊢ ((𝐶 + 𝐴) ∈ ℂ → ((2 · (𝐶 + 𝐴)) / 2) = (𝐶 + 𝐴)) |
117 | 107, 116 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · (𝐶 + 𝐴)) / 2) = (𝐶 + 𝐴)) |
118 | 117 | oveq1d 7270 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((2 · (𝐶 + 𝐴)) / 2) / 2) = ((𝐶 + 𝐴) / 2)) |
119 | 22, 114, 118 | 3eqtrd 2782 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2)↑2) = ((𝐶 + 𝐴) / 2)) |
120 | 2, 119 | eqtrid 2790 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀↑2) = ((𝐶 + 𝐴) / 2)) |