Proof of Theorem cxpsqrt
Step | Hyp | Ref
| Expression |
1 | | halfcn 12118 |
. . . . . 6
⊢ (1 / 2)
∈ ℂ |
2 | | halfre 12117 |
. . . . . . 7
⊢ (1 / 2)
∈ ℝ |
3 | | halfgt0 12119 |
. . . . . . 7
⊢ 0 < (1
/ 2) |
4 | 2, 3 | gt0ne0ii 11441 |
. . . . . 6
⊢ (1 / 2)
≠ 0 |
5 | | 0cxp 25726 |
. . . . . 6
⊢ (((1 / 2)
∈ ℂ ∧ (1 / 2) ≠ 0) → (0↑𝑐(1 /
2)) = 0) |
6 | 1, 4, 5 | mp2an 688 |
. . . . 5
⊢
(0↑𝑐(1 / 2)) = 0 |
7 | | sqrt0 14881 |
. . . . 5
⊢
(√‘0) = 0 |
8 | 6, 7 | eqtr4i 2769 |
. . . 4
⊢
(0↑𝑐(1 / 2)) =
(√‘0) |
9 | | oveq1 7262 |
. . . 4
⊢ (𝐴 = 0 → (𝐴↑𝑐(1 / 2)) =
(0↑𝑐(1 / 2))) |
10 | | fveq2 6756 |
. . . 4
⊢ (𝐴 = 0 → (√‘𝐴) =
(√‘0)) |
11 | 8, 9, 10 | 3eqtr4a 2805 |
. . 3
⊢ (𝐴 = 0 → (𝐴↑𝑐(1 / 2)) =
(√‘𝐴)) |
12 | 11 | a1i 11 |
. 2
⊢ (𝐴 ∈ ℂ → (𝐴 = 0 → (𝐴↑𝑐(1 / 2)) =
(√‘𝐴))) |
13 | | ax-icn 10861 |
. . . . . . . . . . . . . . . . 17
⊢ i ∈
ℂ |
14 | | sqrtcl 15001 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℂ →
(√‘𝐴) ∈
ℂ) |
15 | 14 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (√‘𝐴)
∈ ℂ) |
16 | | sqmul 13767 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i ·
(√‘𝐴))↑2)
= ((i↑2) · ((√‘𝐴)↑2))) |
17 | 13, 15, 16 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((i · (√‘𝐴))↑2) = ((i↑2) ·
((√‘𝐴)↑2))) |
18 | | i2 13847 |
. . . . . . . . . . . . . . . . . 18
⊢
(i↑2) = -1 |
19 | 18 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (i↑2) = -1) |
20 | | sqrtth 15004 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℂ →
((√‘𝐴)↑2)
= 𝐴) |
21 | 20 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((√‘𝐴)↑2) = 𝐴) |
22 | 19, 21 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴)) |
23 | | mulm1 11346 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ → (-1
· 𝐴) = -𝐴) |
24 | 23 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (-1 · 𝐴) =
-𝐴) |
25 | 17, 22, 24 | 3eqtrd 2782 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((i · (√‘𝐴))↑2) = -𝐴) |
26 | | cxpsqrtlem 25762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (i · (√‘𝐴)) ∈ ℝ) |
27 | 26 | resqcld 13893 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((i · (√‘𝐴))↑2) ∈ ℝ) |
28 | 25, 27 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ -𝐴 ∈
ℝ) |
29 | | negeq0 11205 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) |
30 | 29 | necon3bid 2987 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0)) |
31 | 30 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0) |
32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ -𝐴 ≠
0) |
33 | 25, 32 | eqnetrd 3010 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((i · (√‘𝐴))↑2) ≠ 0) |
34 | | sq0i 13838 |
. . . . . . . . . . . . . . . . . 18
⊢ ((i
· (√‘𝐴))
= 0 → ((i · (√‘𝐴))↑2) = 0) |
35 | 34 | necon3i 2975 |
. . . . . . . . . . . . . . . . 17
⊢ (((i
· (√‘𝐴))↑2) ≠ 0 → (i ·
(√‘𝐴)) ≠
0) |
36 | 33, 35 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (i · (√‘𝐴)) ≠ 0) |
37 | 26, 36 | sqgt0d 13895 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ 0 < ((i · (√‘𝐴))↑2)) |
38 | 37, 25 | breqtrd 5096 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ 0 < -𝐴) |
39 | 28, 38 | elrpd 12698 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ -𝐴 ∈
ℝ+) |
40 | | logneg 25648 |
. . . . . . . . . . . . 13
⊢ (-𝐴 ∈ ℝ+
→ (log‘--𝐴) =
((log‘-𝐴) + (i
· π))) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (log‘--𝐴) =
((log‘-𝐴) + (i
· π))) |
42 | | negneg 11201 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) |
43 | 42 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ --𝐴 = 𝐴) |
44 | 43 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (log‘--𝐴) =
(log‘𝐴)) |
45 | 39 | relogcld 25683 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (log‘-𝐴)
∈ ℝ) |
46 | 45 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (log‘-𝐴)
∈ ℂ) |
47 | | picn 25521 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℂ |
48 | 13, 47 | mulcli 10913 |
. . . . . . . . . . . . 13
⊢ (i
· π) ∈ ℂ |
49 | | addcom 11091 |
. . . . . . . . . . . . 13
⊢
(((log‘-𝐴)
∈ ℂ ∧ (i · π) ∈ ℂ) →
((log‘-𝐴) + (i
· π)) = ((i · π) + (log‘-𝐴))) |
50 | 46, 48, 49 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((log‘-𝐴) + (i
· π)) = ((i · π) + (log‘-𝐴))) |
51 | 41, 44, 50 | 3eqtr3d 2786 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (log‘𝐴) = ((i
· π) + (log‘-𝐴))) |
52 | 51 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((1 / 2) · (log‘𝐴)) = ((1 / 2) · ((i · π) +
(log‘-𝐴)))) |
53 | | adddi 10891 |
. . . . . . . . . . 11
⊢ (((1 / 2)
∈ ℂ ∧ (i · π) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 /
2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π))
+ ((1 / 2) · (log‘-𝐴)))) |
54 | 1, 48, 46, 53 | mp3an12i 1463 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π))
+ ((1 / 2) · (log‘-𝐴)))) |
55 | 52, 54 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((1 / 2) · (log‘𝐴)) = (((1 / 2) · (i · π)) +
((1 / 2) · (log‘-𝐴)))) |
56 | | 2cn 11978 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℂ |
57 | | 2ne0 12007 |
. . . . . . . . . . . 12
⊢ 2 ≠
0 |
58 | | divrec2 11580 |
. . . . . . . . . . . 12
⊢ (((i
· π) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((i
· π) / 2) = ((1 / 2) · (i · π))) |
59 | 48, 56, 57, 58 | mp3an 1459 |
. . . . . . . . . . 11
⊢ ((i
· π) / 2) = ((1 / 2) · (i · π)) |
60 | 13, 47, 56, 57 | divassi 11661 |
. . . . . . . . . . 11
⊢ ((i
· π) / 2) = (i · (π / 2)) |
61 | 59, 60 | eqtr3i 2768 |
. . . . . . . . . 10
⊢ ((1 / 2)
· (i · π)) = (i · (π / 2)) |
62 | 61 | oveq1i 7265 |
. . . . . . . . 9
⊢ (((1 / 2)
· (i · π)) + ((1 / 2) · (log‘-𝐴))) = ((i · (π / 2)) + ((1 / 2)
· (log‘-𝐴))) |
63 | 55, 62 | eqtrdi 2795 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((1 / 2) · (log‘𝐴)) = ((i · (π / 2)) + ((1 / 2)
· (log‘-𝐴)))) |
64 | 63 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (exp‘((1 / 2) · (log‘𝐴))) = (exp‘((i · (π / 2)) +
((1 / 2) · (log‘-𝐴))))) |
65 | 47, 56, 57 | divcli 11647 |
. . . . . . . . 9
⊢ (π /
2) ∈ ℂ |
66 | 13, 65 | mulcli 10913 |
. . . . . . . 8
⊢ (i
· (π / 2)) ∈ ℂ |
67 | | mulcl 10886 |
. . . . . . . . 9
⊢ (((1 / 2)
∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) ·
(log‘-𝐴)) ∈
ℂ) |
68 | 1, 46, 67 | sylancr 586 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((1 / 2) · (log‘-𝐴)) ∈ ℂ) |
69 | | efadd 15731 |
. . . . . . . 8
⊢ (((i
· (π / 2)) ∈ ℂ ∧ ((1 / 2) · (log‘-𝐴)) ∈ ℂ) →
(exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i ·
(π / 2))) · (exp‘((1 / 2) · (log‘-𝐴))))) |
70 | 66, 68, 69 | sylancr 586 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (exp‘((i · (π / 2)) + ((1 / 2) ·
(log‘-𝐴)))) =
((exp‘(i · (π / 2))) · (exp‘((1 / 2) ·
(log‘-𝐴))))) |
71 | | efhalfpi 25533 |
. . . . . . . . 9
⊢
(exp‘(i · (π / 2))) = i |
72 | 71 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (exp‘(i · (π / 2))) = i) |
73 | | negcl 11151 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → -𝐴 ∈
ℂ) |
74 | 73 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ -𝐴 ∈
ℂ) |
75 | 1 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (1 / 2) ∈ ℂ) |
76 | | cxpef 25725 |
. . . . . . . . . 10
⊢ ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0 ∧ (1 / 2) ∈
ℂ) → (-𝐴↑𝑐(1 / 2)) =
(exp‘((1 / 2) · (log‘-𝐴)))) |
77 | 74, 32, 75, 76 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (-𝐴↑𝑐(1 / 2)) =
(exp‘((1 / 2) · (log‘-𝐴)))) |
78 | | ax-1cn 10860 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
79 | | 2halves 12131 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℂ → ((1 / 2) + (1 / 2)) = 1) |
80 | 78, 79 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((1 / 2)
+ (1 / 2)) = 1 |
81 | 80 | oveq2i 7266 |
. . . . . . . . . . . 12
⊢ (-𝐴↑𝑐((1 /
2) + (1 / 2))) = (-𝐴↑𝑐1) |
82 | | cxp1 25731 |
. . . . . . . . . . . . 13
⊢ (-𝐴 ∈ ℂ → (-𝐴↑𝑐1) =
-𝐴) |
83 | 74, 82 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (-𝐴↑𝑐1) = -𝐴) |
84 | 81, 83 | syl5eq 2791 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (-𝐴↑𝑐((1 / 2) + (1 /
2))) = -𝐴) |
85 | | rpcxpcl 25736 |
. . . . . . . . . . . . . . 15
⊢ ((-𝐴 ∈ ℝ+
∧ (1 / 2) ∈ ℝ) → (-𝐴↑𝑐(1 / 2)) ∈
ℝ+) |
86 | 39, 2, 85 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (-𝐴↑𝑐(1 / 2)) ∈
ℝ+) |
87 | 86 | rpcnd 12703 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (-𝐴↑𝑐(1 / 2)) ∈
ℂ) |
88 | 87 | sqvald 13789 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((-𝐴↑𝑐(1 / 2))↑2) =
((-𝐴↑𝑐(1 / 2)) ·
(-𝐴↑𝑐(1 /
2)))) |
89 | | cxpadd 25739 |
. . . . . . . . . . . . 13
⊢ (((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (1 / 2) ∈
ℂ ∧ (1 / 2) ∈ ℂ) → (-𝐴↑𝑐((1 / 2) + (1 /
2))) = ((-𝐴↑𝑐(1 / 2)) ·
(-𝐴↑𝑐(1 /
2)))) |
90 | 74, 32, 75, 75, 89 | syl211anc 1374 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (-𝐴↑𝑐((1 / 2) + (1 /
2))) = ((-𝐴↑𝑐(1 / 2)) ·
(-𝐴↑𝑐(1 /
2)))) |
91 | 88, 90 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((-𝐴↑𝑐(1 / 2))↑2) =
(-𝐴↑𝑐((1 / 2) + (1 /
2)))) |
92 | 74 | sqsqrtd 15079 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((√‘-𝐴)↑2) = -𝐴) |
93 | 84, 91, 92 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((-𝐴↑𝑐(1 / 2))↑2) =
((√‘-𝐴)↑2)) |
94 | 86 | rprege0d 12708 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((-𝐴↑𝑐(1 / 2)) ∈
ℝ ∧ 0 ≤ (-𝐴↑𝑐(1 /
2)))) |
95 | 39 | rpsqrtcld 15051 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (√‘-𝐴)
∈ ℝ+) |
96 | 95 | rprege0d 12708 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((√‘-𝐴)
∈ ℝ ∧ 0 ≤ (√‘-𝐴))) |
97 | | sq11 13778 |
. . . . . . . . . . 11
⊢
((((-𝐴↑𝑐(1 / 2)) ∈
ℝ ∧ 0 ≤ (-𝐴↑𝑐(1 / 2))) ∧
((√‘-𝐴) ∈
ℝ ∧ 0 ≤ (√‘-𝐴))) → (((-𝐴↑𝑐(1 / 2))↑2) =
((√‘-𝐴)↑2)
↔ (-𝐴↑𝑐(1 / 2)) =
(√‘-𝐴))) |
98 | 94, 96, 97 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (((-𝐴↑𝑐(1 / 2))↑2) =
((√‘-𝐴)↑2)
↔ (-𝐴↑𝑐(1 / 2)) =
(√‘-𝐴))) |
99 | 93, 98 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (-𝐴↑𝑐(1 / 2)) =
(√‘-𝐴)) |
100 | 77, 99 | eqtr3d 2780 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (exp‘((1 / 2) · (log‘-𝐴))) = (√‘-𝐴)) |
101 | 72, 100 | oveq12d 7273 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ ((exp‘(i · (π / 2))) · (exp‘((1 / 2)
· (log‘-𝐴))))
= (i · (√‘-𝐴))) |
102 | 64, 70, 101 | 3eqtrd 2782 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (exp‘((1 / 2) · (log‘𝐴))) = (i · (√‘-𝐴))) |
103 | | cxpef 25725 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈
ℂ) → (𝐴↑𝑐(1 / 2)) =
(exp‘((1 / 2) · (log‘𝐴)))) |
104 | 1, 103 | mp3an3 1448 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴↑𝑐(1 /
2)) = (exp‘((1 / 2) · (log‘𝐴)))) |
105 | 104 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (𝐴↑𝑐(1 / 2)) =
(exp‘((1 / 2) · (log‘𝐴)))) |
106 | 43 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (√‘--𝐴)
= (√‘𝐴)) |
107 | 39 | rpge0d 12705 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ 0 ≤ -𝐴) |
108 | 28, 107 | sqrtnegd 15061 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (√‘--𝐴)
= (i · (√‘-𝐴))) |
109 | 106, 108 | eqtr3d 2780 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (√‘𝐴) =
(i · (√‘-𝐴))) |
110 | 102, 105,
109 | 3eqtr4d 2788 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴))
→ (𝐴↑𝑐(1 / 2)) =
(√‘𝐴)) |
111 | 110 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑𝑐(1 /
2)) = -(√‘𝐴)
→ (𝐴↑𝑐(1 / 2)) =
(√‘𝐴))) |
112 | 80 | oveq2i 7266 |
. . . . . . . . 9
⊢ (𝐴↑𝑐((1 /
2) + (1 / 2))) = (𝐴↑𝑐1) |
113 | | cxpadd 25739 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (1 / 2) ∈
ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴↑𝑐((1 / 2) + (1 /
2))) = ((𝐴↑𝑐(1 / 2)) ·
(𝐴↑𝑐(1 /
2)))) |
114 | 1, 1, 113 | mp3an23 1451 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴↑𝑐((1 /
2) + (1 / 2))) = ((𝐴↑𝑐(1 / 2)) ·
(𝐴↑𝑐(1 /
2)))) |
115 | | cxp1 25731 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐1) =
𝐴) |
116 | 115 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴↑𝑐1) =
𝐴) |
117 | 112, 114,
116 | 3eqtr3a 2803 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑𝑐(1 /
2)) · (𝐴↑𝑐(1 / 2))) = 𝐴) |
118 | | cxpcl 25734 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ (1 / 2)
∈ ℂ) → (𝐴↑𝑐(1 / 2)) ∈
ℂ) |
119 | 1, 118 | mpan2 687 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐(1 /
2)) ∈ ℂ) |
120 | 119 | sqvald 13789 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((𝐴↑𝑐(1 /
2))↑2) = ((𝐴↑𝑐(1 / 2)) ·
(𝐴↑𝑐(1 /
2)))) |
121 | 120 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑𝑐(1 /
2))↑2) = ((𝐴↑𝑐(1 / 2)) ·
(𝐴↑𝑐(1 /
2)))) |
122 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
((√‘𝐴)↑2)
= 𝐴) |
123 | 117, 121,
122 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑𝑐(1 /
2))↑2) = ((√‘𝐴)↑2)) |
124 | | sqeqor 13860 |
. . . . . . . . 9
⊢ (((𝐴↑𝑐(1 /
2)) ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (((𝐴↑𝑐(1 /
2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴↑𝑐(1 / 2)) =
(√‘𝐴) ∨
(𝐴↑𝑐(1 / 2)) =
-(√‘𝐴)))) |
125 | 119, 14, 124 | syl2anc 583 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (((𝐴↑𝑐(1 /
2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴↑𝑐(1 / 2)) =
(√‘𝐴) ∨
(𝐴↑𝑐(1 / 2)) =
-(√‘𝐴)))) |
126 | 125 | biimpa 476 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ ((𝐴↑𝑐(1 /
2))↑2) = ((√‘𝐴)↑2)) → ((𝐴↑𝑐(1 / 2)) =
(√‘𝐴) ∨
(𝐴↑𝑐(1 / 2)) =
-(√‘𝐴))) |
127 | 123, 126 | syldan 590 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑𝑐(1 /
2)) = (√‘𝐴)
∨ (𝐴↑𝑐(1 / 2)) =
-(√‘𝐴))) |
128 | 127 | ord 860 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴↑𝑐(1 /
2)) = (√‘𝐴)
→ (𝐴↑𝑐(1 / 2)) =
-(√‘𝐴))) |
129 | 128 | con1d 145 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴↑𝑐(1 /
2)) = -(√‘𝐴)
→ (𝐴↑𝑐(1 / 2)) =
(√‘𝐴))) |
130 | 111, 129 | pm2.61d 179 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴↑𝑐(1 /
2)) = (√‘𝐴)) |
131 | 130 | ex 412 |
. 2
⊢ (𝐴 ∈ ℂ → (𝐴 ≠ 0 → (𝐴↑𝑐(1 /
2)) = (√‘𝐴))) |
132 | 12, 131 | pm2.61dne 3030 |
1
⊢ (𝐴 ∈ ℂ → (𝐴↑𝑐(1 /
2)) = (√‘𝐴)) |