MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrt Structured version   Visualization version   GIF version

Theorem cxpsqrt 26642
Description: The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrt (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))

Proof of Theorem cxpsqrt
StepHypRef Expression
1 halfcn 12344 . . . . . 6 (1 / 2) ∈ ℂ
2 halfre 12343 . . . . . . 7 (1 / 2) ∈ ℝ
3 halfgt0 12345 . . . . . . 7 0 < (1 / 2)
42, 3gt0ne0ii 11662 . . . . . 6 (1 / 2) ≠ 0
5 0cxp 26605 . . . . . 6 (((1 / 2) ∈ ℂ ∧ (1 / 2) ≠ 0) → (0↑𝑐(1 / 2)) = 0)
61, 4, 5mp2an 692 . . . . 5 (0↑𝑐(1 / 2)) = 0
7 sqrt0 15152 . . . . 5 (√‘0) = 0
86, 7eqtr4i 2759 . . . 4 (0↑𝑐(1 / 2)) = (√‘0)
9 oveq1 7361 . . . 4 (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (0↑𝑐(1 / 2)))
10 fveq2 6830 . . . 4 (𝐴 = 0 → (√‘𝐴) = (√‘0))
118, 9, 103eqtr4a 2794 . . 3 (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴))
1211a1i 11 . 2 (𝐴 ∈ ℂ → (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
13 ax-icn 11074 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
14 sqrtcl 15273 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
1514ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) ∈ ℂ)
16 sqmul 14030 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
1713, 15, 16sylancr 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
18 i2 14113 . . . . . . . . . . . . . . . . . 18 (i↑2) = -1
1918a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i↑2) = -1)
20 sqrtth 15276 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴)
2120ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘𝐴)↑2) = 𝐴)
2219, 21oveq12d 7372 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴))
23 mulm1 11567 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
2423ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-1 · 𝐴) = -𝐴)
2517, 22, 243eqtrd 2772 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) = -𝐴)
26 cxpsqrtlem 26641 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
2726resqcld 14036 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) ∈ ℝ)
2825, 27eqeltrrd 2834 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℝ)
29 negeq0 11424 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))
3029necon3bid 2973 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0))
3130biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0)
3231adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ≠ 0)
3325, 32eqnetrd 2996 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) ≠ 0)
34 sq0i 14104 . . . . . . . . . . . . . . . . . 18 ((i · (√‘𝐴)) = 0 → ((i · (√‘𝐴))↑2) = 0)
3534necon3i 2961 . . . . . . . . . . . . . . . . 17 (((i · (√‘𝐴))↑2) ≠ 0 → (i · (√‘𝐴)) ≠ 0)
3633, 35syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ≠ 0)
3726, 36sqgt0d 14161 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 < ((i · (√‘𝐴))↑2))
3837, 25breqtrd 5121 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 < -𝐴)
3928, 38elrpd 12935 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℝ+)
40 logneg 26527 . . . . . . . . . . . . 13 (-𝐴 ∈ ℝ+ → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
4139, 40syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
42 negneg 11420 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
4342ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → --𝐴 = 𝐴)
4443fveq2d 6834 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘--𝐴) = (log‘𝐴))
4539relogcld 26562 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘-𝐴) ∈ ℝ)
4645recnd 11149 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘-𝐴) ∈ ℂ)
47 picn 26397 . . . . . . . . . . . . . 14 π ∈ ℂ
4813, 47mulcli 11128 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
49 addcom 11308 . . . . . . . . . . . . 13 (((log‘-𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘-𝐴) + (i · π)) = ((i · π) + (log‘-𝐴)))
5046, 48, 49sylancl 586 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((log‘-𝐴) + (i · π)) = ((i · π) + (log‘-𝐴)))
5141, 44, 503eqtr3d 2776 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘𝐴) = ((i · π) + (log‘-𝐴)))
5251oveq2d 7370 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = ((1 / 2) · ((i · π) + (log‘-𝐴))))
53 adddi 11104 . . . . . . . . . . 11 (((1 / 2) ∈ ℂ ∧ (i · π) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
541, 48, 46, 53mp3an12i 1467 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
5552, 54eqtrd 2768 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
56 2cn 12209 . . . . . . . . . . . 12 2 ∈ ℂ
57 2ne0 12238 . . . . . . . . . . . 12 2 ≠ 0
58 divrec2 11802 . . . . . . . . . . . 12 (((i · π) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((i · π) / 2) = ((1 / 2) · (i · π)))
5948, 56, 57, 58mp3an 1463 . . . . . . . . . . 11 ((i · π) / 2) = ((1 / 2) · (i · π))
6013, 47, 56, 57divassi 11886 . . . . . . . . . . 11 ((i · π) / 2) = (i · (π / 2))
6159, 60eqtr3i 2758 . . . . . . . . . 10 ((1 / 2) · (i · π)) = (i · (π / 2))
6261oveq1i 7364 . . . . . . . . 9 (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))) = ((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))
6355, 62eqtrdi 2784 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = ((i · (π / 2)) + ((1 / 2) · (log‘-𝐴))))
6463fveq2d 6834 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘𝐴))) = (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))))
6547, 56, 57divcli 11872 . . . . . . . . 9 (π / 2) ∈ ℂ
6613, 65mulcli 11128 . . . . . . . 8 (i · (π / 2)) ∈ ℂ
67 mulcl 11099 . . . . . . . . 9 (((1 / 2) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) · (log‘-𝐴)) ∈ ℂ)
681, 46, 67sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘-𝐴)) ∈ ℂ)
69 efadd 16005 . . . . . . . 8 (((i · (π / 2)) ∈ ℂ ∧ ((1 / 2) · (log‘-𝐴)) ∈ ℂ) → (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))))
7066, 68, 69sylancr 587 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))))
71 efhalfpi 26410 . . . . . . . . 9 (exp‘(i · (π / 2))) = i
7271a1i 11 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘(i · (π / 2))) = i)
73 negcl 11369 . . . . . . . . . . 11 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7473ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℂ)
751a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (1 / 2) ∈ ℂ)
76 cxpef 26604 . . . . . . . . . 10 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (-𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘-𝐴))))
7774, 32, 75, 76syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘-𝐴))))
78 ax-1cn 11073 . . . . . . . . . . . . . 14 1 ∈ ℂ
79 2halves 12348 . . . . . . . . . . . . . 14 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8078, 79ax-mp 5 . . . . . . . . . . . . 13 ((1 / 2) + (1 / 2)) = 1
8180oveq2i 7365 . . . . . . . . . . . 12 (-𝐴𝑐((1 / 2) + (1 / 2))) = (-𝐴𝑐1)
82 cxp1 26610 . . . . . . . . . . . . 13 (-𝐴 ∈ ℂ → (-𝐴𝑐1) = -𝐴)
8374, 82syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐1) = -𝐴)
8481, 83eqtrid 2780 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐((1 / 2) + (1 / 2))) = -𝐴)
85 rpcxpcl 26615 . . . . . . . . . . . . . . 15 ((-𝐴 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ) → (-𝐴𝑐(1 / 2)) ∈ ℝ+)
8639, 2, 85sylancl 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) ∈ ℝ+)
8786rpcnd 12940 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) ∈ ℂ)
8887sqvald 14054 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
89 cxpadd 26618 . . . . . . . . . . . . 13 (((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (-𝐴𝑐((1 / 2) + (1 / 2))) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
9074, 32, 75, 75, 89syl211anc 1378 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐((1 / 2) + (1 / 2))) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
9188, 90eqtr4d 2771 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = (-𝐴𝑐((1 / 2) + (1 / 2))))
9274sqsqrtd 15353 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘-𝐴)↑2) = -𝐴)
9384, 91, 923eqtr4d 2778 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2))
9486rprege0d 12945 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2)) ∈ ℝ ∧ 0 ≤ (-𝐴𝑐(1 / 2))))
9539rpsqrtcld 15323 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘-𝐴) ∈ ℝ+)
9695rprege0d 12945 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘-𝐴) ∈ ℝ ∧ 0 ≤ (√‘-𝐴)))
97 sq11 14042 . . . . . . . . . . 11 ((((-𝐴𝑐(1 / 2)) ∈ ℝ ∧ 0 ≤ (-𝐴𝑐(1 / 2))) ∧ ((√‘-𝐴) ∈ ℝ ∧ 0 ≤ (√‘-𝐴))) → (((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2) ↔ (-𝐴𝑐(1 / 2)) = (√‘-𝐴)))
9894, 96, 97syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2) ↔ (-𝐴𝑐(1 / 2)) = (√‘-𝐴)))
9993, 98mpbid 232 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) = (√‘-𝐴))
10077, 99eqtr3d 2770 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘-𝐴))) = (√‘-𝐴))
10172, 100oveq12d 7372 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))) = (i · (√‘-𝐴)))
10264, 70, 1013eqtrd 2772 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘𝐴))) = (i · (√‘-𝐴)))
103 cxpef 26604 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
1041, 103mp3an3 1452 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
105104adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
10643fveq2d 6834 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘--𝐴) = (√‘𝐴))
10739rpge0d 12942 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ -𝐴)
10828, 107sqrtnegd 15333 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘--𝐴) = (i · (√‘-𝐴)))
109106, 108eqtr3d 2770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) = (i · (√‘-𝐴)))
110102, 105, 1093eqtr4d 2778 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = (√‘𝐴))
111110ex 412 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) = -(√‘𝐴) → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
11280oveq2i 7365 . . . . . . . . 9 (𝐴𝑐((1 / 2) + (1 / 2))) = (𝐴𝑐1)
113 cxpadd 26618 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐((1 / 2) + (1 / 2))) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
1141, 1, 113mp3an23 1455 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐((1 / 2) + (1 / 2))) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
115 cxp1 26610 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴𝑐1) = 𝐴)
116115adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐1) = 𝐴)
117112, 114, 1163eqtr3a 2792 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))) = 𝐴)
118 cxpcl 26613 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) ∈ ℂ)
1191, 118mpan2 691 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) ∈ ℂ)
120119sqvald 14054 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴𝑐(1 / 2))↑2) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
121120adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2))↑2) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
12220adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((√‘𝐴)↑2) = 𝐴)
123117, 121, 1223eqtr4d 2778 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2))
124 sqeqor 14127 . . . . . . . . 9 (((𝐴𝑐(1 / 2)) ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴))))
125119, 14, 124syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴))))
126125biimpa 476 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2)) → ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
127123, 126syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
128127ord 864 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴𝑐(1 / 2)) = (√‘𝐴) → (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
129128con1d 145 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴𝑐(1 / 2)) = -(√‘𝐴) → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
130111, 129pm2.61d 179 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (√‘𝐴))
131130ex 412 . 2 (𝐴 ∈ ℂ → (𝐴 ≠ 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
13212, 131pm2.61dne 3015 1 (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5095  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016  ici 11017   + caddc 11018   · cmul 11020   < clt 11155  cle 11156  -cneg 11354   / cdiv 11783  2c2 12189  +crp 12894  cexp 13972  csqrt 15144  expce 15972  πcpi 15977  logclog 26493  𝑐ccxp 26494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-pi 15983  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798  df-log 26495  df-cxp 26496
This theorem is referenced by:  logsqrt  26643  dvsqrt  26681  dvcnsqrt  26683  resqrtcn  26689  sqrtcn  26690  sqrt2cxp2logb9e3  26739  efiatan  26852  efiatan2  26857  sqrtlim  26913  chpchtlim  27420  logdivsqrle  34686
  Copyright terms: Public domain W3C validator