MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrt Structured version   Visualization version   GIF version

Theorem cxpsqrt 25867
Description: The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrt (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))

Proof of Theorem cxpsqrt
StepHypRef Expression
1 halfcn 12197 . . . . . 6 (1 / 2) ∈ ℂ
2 halfre 12196 . . . . . . 7 (1 / 2) ∈ ℝ
3 halfgt0 12198 . . . . . . 7 0 < (1 / 2)
42, 3gt0ne0ii 11520 . . . . . 6 (1 / 2) ≠ 0
5 0cxp 25830 . . . . . 6 (((1 / 2) ∈ ℂ ∧ (1 / 2) ≠ 0) → (0↑𝑐(1 / 2)) = 0)
61, 4, 5mp2an 689 . . . . 5 (0↑𝑐(1 / 2)) = 0
7 sqrt0 14962 . . . . 5 (√‘0) = 0
86, 7eqtr4i 2770 . . . 4 (0↑𝑐(1 / 2)) = (√‘0)
9 oveq1 7291 . . . 4 (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (0↑𝑐(1 / 2)))
10 fveq2 6783 . . . 4 (𝐴 = 0 → (√‘𝐴) = (√‘0))
118, 9, 103eqtr4a 2805 . . 3 (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴))
1211a1i 11 . 2 (𝐴 ∈ ℂ → (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
13 ax-icn 10939 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
14 sqrtcl 15082 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
1514ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) ∈ ℂ)
16 sqmul 13848 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
1713, 15, 16sylancr 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
18 i2 13928 . . . . . . . . . . . . . . . . . 18 (i↑2) = -1
1918a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i↑2) = -1)
20 sqrtth 15085 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴)
2120ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘𝐴)↑2) = 𝐴)
2219, 21oveq12d 7302 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴))
23 mulm1 11425 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
2423ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-1 · 𝐴) = -𝐴)
2517, 22, 243eqtrd 2783 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) = -𝐴)
26 cxpsqrtlem 25866 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
2726resqcld 13974 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) ∈ ℝ)
2825, 27eqeltrrd 2841 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℝ)
29 negeq0 11284 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))
3029necon3bid 2989 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0))
3130biimpa 477 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0)
3231adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ≠ 0)
3325, 32eqnetrd 3012 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) ≠ 0)
34 sq0i 13919 . . . . . . . . . . . . . . . . . 18 ((i · (√‘𝐴)) = 0 → ((i · (√‘𝐴))↑2) = 0)
3534necon3i 2977 . . . . . . . . . . . . . . . . 17 (((i · (√‘𝐴))↑2) ≠ 0 → (i · (√‘𝐴)) ≠ 0)
3633, 35syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ≠ 0)
3726, 36sqgt0d 13976 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 < ((i · (√‘𝐴))↑2))
3837, 25breqtrd 5101 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 < -𝐴)
3928, 38elrpd 12778 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℝ+)
40 logneg 25752 . . . . . . . . . . . . 13 (-𝐴 ∈ ℝ+ → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
4139, 40syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
42 negneg 11280 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
4342ad2antrr 723 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → --𝐴 = 𝐴)
4443fveq2d 6787 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘--𝐴) = (log‘𝐴))
4539relogcld 25787 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘-𝐴) ∈ ℝ)
4645recnd 11012 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘-𝐴) ∈ ℂ)
47 picn 25625 . . . . . . . . . . . . . 14 π ∈ ℂ
4813, 47mulcli 10991 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
49 addcom 11170 . . . . . . . . . . . . 13 (((log‘-𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘-𝐴) + (i · π)) = ((i · π) + (log‘-𝐴)))
5046, 48, 49sylancl 586 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((log‘-𝐴) + (i · π)) = ((i · π) + (log‘-𝐴)))
5141, 44, 503eqtr3d 2787 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘𝐴) = ((i · π) + (log‘-𝐴)))
5251oveq2d 7300 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = ((1 / 2) · ((i · π) + (log‘-𝐴))))
53 adddi 10969 . . . . . . . . . . 11 (((1 / 2) ∈ ℂ ∧ (i · π) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
541, 48, 46, 53mp3an12i 1464 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
5552, 54eqtrd 2779 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
56 2cn 12057 . . . . . . . . . . . 12 2 ∈ ℂ
57 2ne0 12086 . . . . . . . . . . . 12 2 ≠ 0
58 divrec2 11659 . . . . . . . . . . . 12 (((i · π) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((i · π) / 2) = ((1 / 2) · (i · π)))
5948, 56, 57, 58mp3an 1460 . . . . . . . . . . 11 ((i · π) / 2) = ((1 / 2) · (i · π))
6013, 47, 56, 57divassi 11740 . . . . . . . . . . 11 ((i · π) / 2) = (i · (π / 2))
6159, 60eqtr3i 2769 . . . . . . . . . 10 ((1 / 2) · (i · π)) = (i · (π / 2))
6261oveq1i 7294 . . . . . . . . 9 (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))) = ((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))
6355, 62eqtrdi 2795 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = ((i · (π / 2)) + ((1 / 2) · (log‘-𝐴))))
6463fveq2d 6787 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘𝐴))) = (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))))
6547, 56, 57divcli 11726 . . . . . . . . 9 (π / 2) ∈ ℂ
6613, 65mulcli 10991 . . . . . . . 8 (i · (π / 2)) ∈ ℂ
67 mulcl 10964 . . . . . . . . 9 (((1 / 2) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) · (log‘-𝐴)) ∈ ℂ)
681, 46, 67sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘-𝐴)) ∈ ℂ)
69 efadd 15812 . . . . . . . 8 (((i · (π / 2)) ∈ ℂ ∧ ((1 / 2) · (log‘-𝐴)) ∈ ℂ) → (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))))
7066, 68, 69sylancr 587 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))))
71 efhalfpi 25637 . . . . . . . . 9 (exp‘(i · (π / 2))) = i
7271a1i 11 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘(i · (π / 2))) = i)
73 negcl 11230 . . . . . . . . . . 11 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7473ad2antrr 723 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℂ)
751a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (1 / 2) ∈ ℂ)
76 cxpef 25829 . . . . . . . . . 10 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (-𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘-𝐴))))
7774, 32, 75, 76syl3anc 1370 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘-𝐴))))
78 ax-1cn 10938 . . . . . . . . . . . . . 14 1 ∈ ℂ
79 2halves 12210 . . . . . . . . . . . . . 14 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8078, 79ax-mp 5 . . . . . . . . . . . . 13 ((1 / 2) + (1 / 2)) = 1
8180oveq2i 7295 . . . . . . . . . . . 12 (-𝐴𝑐((1 / 2) + (1 / 2))) = (-𝐴𝑐1)
82 cxp1 25835 . . . . . . . . . . . . 13 (-𝐴 ∈ ℂ → (-𝐴𝑐1) = -𝐴)
8374, 82syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐1) = -𝐴)
8481, 83eqtrid 2791 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐((1 / 2) + (1 / 2))) = -𝐴)
85 rpcxpcl 25840 . . . . . . . . . . . . . . 15 ((-𝐴 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ) → (-𝐴𝑐(1 / 2)) ∈ ℝ+)
8639, 2, 85sylancl 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) ∈ ℝ+)
8786rpcnd 12783 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) ∈ ℂ)
8887sqvald 13870 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
89 cxpadd 25843 . . . . . . . . . . . . 13 (((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (-𝐴𝑐((1 / 2) + (1 / 2))) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
9074, 32, 75, 75, 89syl211anc 1375 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐((1 / 2) + (1 / 2))) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
9188, 90eqtr4d 2782 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = (-𝐴𝑐((1 / 2) + (1 / 2))))
9274sqsqrtd 15160 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘-𝐴)↑2) = -𝐴)
9384, 91, 923eqtr4d 2789 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2))
9486rprege0d 12788 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2)) ∈ ℝ ∧ 0 ≤ (-𝐴𝑐(1 / 2))))
9539rpsqrtcld 15132 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘-𝐴) ∈ ℝ+)
9695rprege0d 12788 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘-𝐴) ∈ ℝ ∧ 0 ≤ (√‘-𝐴)))
97 sq11 13859 . . . . . . . . . . 11 ((((-𝐴𝑐(1 / 2)) ∈ ℝ ∧ 0 ≤ (-𝐴𝑐(1 / 2))) ∧ ((√‘-𝐴) ∈ ℝ ∧ 0 ≤ (√‘-𝐴))) → (((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2) ↔ (-𝐴𝑐(1 / 2)) = (√‘-𝐴)))
9894, 96, 97syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2) ↔ (-𝐴𝑐(1 / 2)) = (√‘-𝐴)))
9993, 98mpbid 231 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) = (√‘-𝐴))
10077, 99eqtr3d 2781 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘-𝐴))) = (√‘-𝐴))
10172, 100oveq12d 7302 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))) = (i · (√‘-𝐴)))
10264, 70, 1013eqtrd 2783 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘𝐴))) = (i · (√‘-𝐴)))
103 cxpef 25829 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
1041, 103mp3an3 1449 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
105104adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
10643fveq2d 6787 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘--𝐴) = (√‘𝐴))
10739rpge0d 12785 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ -𝐴)
10828, 107sqrtnegd 15142 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘--𝐴) = (i · (√‘-𝐴)))
109106, 108eqtr3d 2781 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) = (i · (√‘-𝐴)))
110102, 105, 1093eqtr4d 2789 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = (√‘𝐴))
111110ex 413 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) = -(√‘𝐴) → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
11280oveq2i 7295 . . . . . . . . 9 (𝐴𝑐((1 / 2) + (1 / 2))) = (𝐴𝑐1)
113 cxpadd 25843 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐((1 / 2) + (1 / 2))) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
1141, 1, 113mp3an23 1452 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐((1 / 2) + (1 / 2))) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
115 cxp1 25835 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴𝑐1) = 𝐴)
116115adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐1) = 𝐴)
117112, 114, 1163eqtr3a 2803 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))) = 𝐴)
118 cxpcl 25838 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) ∈ ℂ)
1191, 118mpan2 688 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) ∈ ℂ)
120119sqvald 13870 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴𝑐(1 / 2))↑2) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
121120adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2))↑2) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
12220adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((√‘𝐴)↑2) = 𝐴)
123117, 121, 1223eqtr4d 2789 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2))
124 sqeqor 13941 . . . . . . . . 9 (((𝐴𝑐(1 / 2)) ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴))))
125119, 14, 124syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴))))
126125biimpa 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2)) → ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
127123, 126syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
128127ord 861 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴𝑐(1 / 2)) = (√‘𝐴) → (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
129128con1d 145 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴𝑐(1 / 2)) = -(√‘𝐴) → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
130111, 129pm2.61d 179 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (√‘𝐴))
131130ex 413 . 2 (𝐴 ∈ ℂ → (𝐴 ≠ 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
13212, 131pm2.61dne 3032 1 (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2107  wne 2944   class class class wbr 5075  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881  ici 10882   + caddc 10883   · cmul 10885   < clt 11018  cle 11019  -cneg 11215   / cdiv 11641  2c2 12037  +crp 12739  cexp 13791  csqrt 14953  expce 15780  πcpi 15785  logclog 25719  𝑐ccxp 25720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040  df-log 25721  df-cxp 25722
This theorem is referenced by:  logsqrt  25868  dvsqrt  25904  dvcnsqrt  25906  resqrtcn  25911  sqrtcn  25912  sqrt2cxp2logb9e3  25958  efiatan  26071  efiatan2  26076  sqrtlim  26131  chpchtlim  26636  logdivsqrle  32639
  Copyright terms: Public domain W3C validator