MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrt Structured version   Visualization version   GIF version

Theorem cxpsqrt 26640
Description: The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrt (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))

Proof of Theorem cxpsqrt
StepHypRef Expression
1 halfcn 12335 . . . . . 6 (1 / 2) ∈ ℂ
2 halfre 12334 . . . . . . 7 (1 / 2) ∈ ℝ
3 halfgt0 12336 . . . . . . 7 0 < (1 / 2)
42, 3gt0ne0ii 11653 . . . . . 6 (1 / 2) ≠ 0
5 0cxp 26603 . . . . . 6 (((1 / 2) ∈ ℂ ∧ (1 / 2) ≠ 0) → (0↑𝑐(1 / 2)) = 0)
61, 4, 5mp2an 692 . . . . 5 (0↑𝑐(1 / 2)) = 0
7 sqrt0 15148 . . . . 5 (√‘0) = 0
86, 7eqtr4i 2757 . . . 4 (0↑𝑐(1 / 2)) = (√‘0)
9 oveq1 7353 . . . 4 (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (0↑𝑐(1 / 2)))
10 fveq2 6822 . . . 4 (𝐴 = 0 → (√‘𝐴) = (√‘0))
118, 9, 103eqtr4a 2792 . . 3 (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴))
1211a1i 11 . 2 (𝐴 ∈ ℂ → (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
13 ax-icn 11065 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
14 sqrtcl 15269 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
1514ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) ∈ ℂ)
16 sqmul 14026 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
1713, 15, 16sylancr 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
18 i2 14109 . . . . . . . . . . . . . . . . . 18 (i↑2) = -1
1918a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i↑2) = -1)
20 sqrtth 15272 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴)
2120ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘𝐴)↑2) = 𝐴)
2219, 21oveq12d 7364 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴))
23 mulm1 11558 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
2423ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-1 · 𝐴) = -𝐴)
2517, 22, 243eqtrd 2770 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) = -𝐴)
26 cxpsqrtlem 26639 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
2726resqcld 14032 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) ∈ ℝ)
2825, 27eqeltrrd 2832 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℝ)
29 negeq0 11415 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))
3029necon3bid 2972 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0))
3130biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0)
3231adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ≠ 0)
3325, 32eqnetrd 2995 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) ≠ 0)
34 sq0i 14100 . . . . . . . . . . . . . . . . . 18 ((i · (√‘𝐴)) = 0 → ((i · (√‘𝐴))↑2) = 0)
3534necon3i 2960 . . . . . . . . . . . . . . . . 17 (((i · (√‘𝐴))↑2) ≠ 0 → (i · (√‘𝐴)) ≠ 0)
3633, 35syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ≠ 0)
3726, 36sqgt0d 14157 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 < ((i · (√‘𝐴))↑2))
3837, 25breqtrd 5117 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 < -𝐴)
3928, 38elrpd 12931 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℝ+)
40 logneg 26525 . . . . . . . . . . . . 13 (-𝐴 ∈ ℝ+ → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
4139, 40syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
42 negneg 11411 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
4342ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → --𝐴 = 𝐴)
4443fveq2d 6826 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘--𝐴) = (log‘𝐴))
4539relogcld 26560 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘-𝐴) ∈ ℝ)
4645recnd 11140 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘-𝐴) ∈ ℂ)
47 picn 26395 . . . . . . . . . . . . . 14 π ∈ ℂ
4813, 47mulcli 11119 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
49 addcom 11299 . . . . . . . . . . . . 13 (((log‘-𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘-𝐴) + (i · π)) = ((i · π) + (log‘-𝐴)))
5046, 48, 49sylancl 586 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((log‘-𝐴) + (i · π)) = ((i · π) + (log‘-𝐴)))
5141, 44, 503eqtr3d 2774 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘𝐴) = ((i · π) + (log‘-𝐴)))
5251oveq2d 7362 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = ((1 / 2) · ((i · π) + (log‘-𝐴))))
53 adddi 11095 . . . . . . . . . . 11 (((1 / 2) ∈ ℂ ∧ (i · π) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
541, 48, 46, 53mp3an12i 1467 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
5552, 54eqtrd 2766 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
56 2cn 12200 . . . . . . . . . . . 12 2 ∈ ℂ
57 2ne0 12229 . . . . . . . . . . . 12 2 ≠ 0
58 divrec2 11793 . . . . . . . . . . . 12 (((i · π) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((i · π) / 2) = ((1 / 2) · (i · π)))
5948, 56, 57, 58mp3an 1463 . . . . . . . . . . 11 ((i · π) / 2) = ((1 / 2) · (i · π))
6013, 47, 56, 57divassi 11877 . . . . . . . . . . 11 ((i · π) / 2) = (i · (π / 2))
6159, 60eqtr3i 2756 . . . . . . . . . 10 ((1 / 2) · (i · π)) = (i · (π / 2))
6261oveq1i 7356 . . . . . . . . 9 (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))) = ((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))
6355, 62eqtrdi 2782 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = ((i · (π / 2)) + ((1 / 2) · (log‘-𝐴))))
6463fveq2d 6826 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘𝐴))) = (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))))
6547, 56, 57divcli 11863 . . . . . . . . 9 (π / 2) ∈ ℂ
6613, 65mulcli 11119 . . . . . . . 8 (i · (π / 2)) ∈ ℂ
67 mulcl 11090 . . . . . . . . 9 (((1 / 2) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) · (log‘-𝐴)) ∈ ℂ)
681, 46, 67sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘-𝐴)) ∈ ℂ)
69 efadd 16001 . . . . . . . 8 (((i · (π / 2)) ∈ ℂ ∧ ((1 / 2) · (log‘-𝐴)) ∈ ℂ) → (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))))
7066, 68, 69sylancr 587 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))))
71 efhalfpi 26408 . . . . . . . . 9 (exp‘(i · (π / 2))) = i
7271a1i 11 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘(i · (π / 2))) = i)
73 negcl 11360 . . . . . . . . . . 11 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7473ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℂ)
751a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (1 / 2) ∈ ℂ)
76 cxpef 26602 . . . . . . . . . 10 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (-𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘-𝐴))))
7774, 32, 75, 76syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘-𝐴))))
78 ax-1cn 11064 . . . . . . . . . . . . . 14 1 ∈ ℂ
79 2halves 12339 . . . . . . . . . . . . . 14 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8078, 79ax-mp 5 . . . . . . . . . . . . 13 ((1 / 2) + (1 / 2)) = 1
8180oveq2i 7357 . . . . . . . . . . . 12 (-𝐴𝑐((1 / 2) + (1 / 2))) = (-𝐴𝑐1)
82 cxp1 26608 . . . . . . . . . . . . 13 (-𝐴 ∈ ℂ → (-𝐴𝑐1) = -𝐴)
8374, 82syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐1) = -𝐴)
8481, 83eqtrid 2778 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐((1 / 2) + (1 / 2))) = -𝐴)
85 rpcxpcl 26613 . . . . . . . . . . . . . . 15 ((-𝐴 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ) → (-𝐴𝑐(1 / 2)) ∈ ℝ+)
8639, 2, 85sylancl 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) ∈ ℝ+)
8786rpcnd 12936 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) ∈ ℂ)
8887sqvald 14050 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
89 cxpadd 26616 . . . . . . . . . . . . 13 (((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (-𝐴𝑐((1 / 2) + (1 / 2))) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
9074, 32, 75, 75, 89syl211anc 1378 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐((1 / 2) + (1 / 2))) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
9188, 90eqtr4d 2769 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = (-𝐴𝑐((1 / 2) + (1 / 2))))
9274sqsqrtd 15349 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘-𝐴)↑2) = -𝐴)
9384, 91, 923eqtr4d 2776 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2))
9486rprege0d 12941 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2)) ∈ ℝ ∧ 0 ≤ (-𝐴𝑐(1 / 2))))
9539rpsqrtcld 15319 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘-𝐴) ∈ ℝ+)
9695rprege0d 12941 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘-𝐴) ∈ ℝ ∧ 0 ≤ (√‘-𝐴)))
97 sq11 14038 . . . . . . . . . . 11 ((((-𝐴𝑐(1 / 2)) ∈ ℝ ∧ 0 ≤ (-𝐴𝑐(1 / 2))) ∧ ((√‘-𝐴) ∈ ℝ ∧ 0 ≤ (√‘-𝐴))) → (((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2) ↔ (-𝐴𝑐(1 / 2)) = (√‘-𝐴)))
9894, 96, 97syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2) ↔ (-𝐴𝑐(1 / 2)) = (√‘-𝐴)))
9993, 98mpbid 232 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) = (√‘-𝐴))
10077, 99eqtr3d 2768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘-𝐴))) = (√‘-𝐴))
10172, 100oveq12d 7364 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))) = (i · (√‘-𝐴)))
10264, 70, 1013eqtrd 2770 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘𝐴))) = (i · (√‘-𝐴)))
103 cxpef 26602 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
1041, 103mp3an3 1452 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
105104adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
10643fveq2d 6826 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘--𝐴) = (√‘𝐴))
10739rpge0d 12938 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ -𝐴)
10828, 107sqrtnegd 15329 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘--𝐴) = (i · (√‘-𝐴)))
109106, 108eqtr3d 2768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) = (i · (√‘-𝐴)))
110102, 105, 1093eqtr4d 2776 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = (√‘𝐴))
111110ex 412 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) = -(√‘𝐴) → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
11280oveq2i 7357 . . . . . . . . 9 (𝐴𝑐((1 / 2) + (1 / 2))) = (𝐴𝑐1)
113 cxpadd 26616 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐((1 / 2) + (1 / 2))) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
1141, 1, 113mp3an23 1455 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐((1 / 2) + (1 / 2))) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
115 cxp1 26608 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴𝑐1) = 𝐴)
116115adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐1) = 𝐴)
117112, 114, 1163eqtr3a 2790 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))) = 𝐴)
118 cxpcl 26611 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) ∈ ℂ)
1191, 118mpan2 691 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) ∈ ℂ)
120119sqvald 14050 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴𝑐(1 / 2))↑2) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
121120adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2))↑2) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
12220adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((√‘𝐴)↑2) = 𝐴)
123117, 121, 1223eqtr4d 2776 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2))
124 sqeqor 14123 . . . . . . . . 9 (((𝐴𝑐(1 / 2)) ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴))))
125119, 14, 124syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴))))
126125biimpa 476 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2)) → ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
127123, 126syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
128127ord 864 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴𝑐(1 / 2)) = (√‘𝐴) → (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
129128con1d 145 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴𝑐(1 / 2)) = -(√‘𝐴) → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
130111, 129pm2.61d 179 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (√‘𝐴))
131130ex 412 . 2 (𝐴 ∈ ℂ → (𝐴 ≠ 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
13212, 131pm2.61dne 3014 1 (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007  ici 11008   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  -cneg 11345   / cdiv 11774  2c2 12180  +crp 12890  cexp 13968  csqrt 15140  expce 15968  πcpi 15973  logclog 26491  𝑐ccxp 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494
This theorem is referenced by:  logsqrt  26641  dvsqrt  26679  dvcnsqrt  26681  resqrtcn  26687  sqrtcn  26688  sqrt2cxp2logb9e3  26737  efiatan  26850  efiatan2  26855  sqrtlim  26911  chpchtlim  27418  logdivsqrle  34661
  Copyright terms: Public domain W3C validator