MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrt Structured version   Visualization version   GIF version

Theorem cxpsqrt 25763
Description: The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrt (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))

Proof of Theorem cxpsqrt
StepHypRef Expression
1 halfcn 12118 . . . . . 6 (1 / 2) ∈ ℂ
2 halfre 12117 . . . . . . 7 (1 / 2) ∈ ℝ
3 halfgt0 12119 . . . . . . 7 0 < (1 / 2)
42, 3gt0ne0ii 11441 . . . . . 6 (1 / 2) ≠ 0
5 0cxp 25726 . . . . . 6 (((1 / 2) ∈ ℂ ∧ (1 / 2) ≠ 0) → (0↑𝑐(1 / 2)) = 0)
61, 4, 5mp2an 688 . . . . 5 (0↑𝑐(1 / 2)) = 0
7 sqrt0 14881 . . . . 5 (√‘0) = 0
86, 7eqtr4i 2769 . . . 4 (0↑𝑐(1 / 2)) = (√‘0)
9 oveq1 7262 . . . 4 (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (0↑𝑐(1 / 2)))
10 fveq2 6756 . . . 4 (𝐴 = 0 → (√‘𝐴) = (√‘0))
118, 9, 103eqtr4a 2805 . . 3 (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴))
1211a1i 11 . 2 (𝐴 ∈ ℂ → (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
13 ax-icn 10861 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
14 sqrtcl 15001 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
1514ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) ∈ ℂ)
16 sqmul 13767 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
1713, 15, 16sylancr 586 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
18 i2 13847 . . . . . . . . . . . . . . . . . 18 (i↑2) = -1
1918a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i↑2) = -1)
20 sqrtth 15004 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴)
2120ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘𝐴)↑2) = 𝐴)
2219, 21oveq12d 7273 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴))
23 mulm1 11346 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
2423ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-1 · 𝐴) = -𝐴)
2517, 22, 243eqtrd 2782 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) = -𝐴)
26 cxpsqrtlem 25762 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
2726resqcld 13893 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) ∈ ℝ)
2825, 27eqeltrrd 2840 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℝ)
29 negeq0 11205 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))
3029necon3bid 2987 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0))
3130biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0)
3231adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ≠ 0)
3325, 32eqnetrd 3010 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) ≠ 0)
34 sq0i 13838 . . . . . . . . . . . . . . . . . 18 ((i · (√‘𝐴)) = 0 → ((i · (√‘𝐴))↑2) = 0)
3534necon3i 2975 . . . . . . . . . . . . . . . . 17 (((i · (√‘𝐴))↑2) ≠ 0 → (i · (√‘𝐴)) ≠ 0)
3633, 35syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ≠ 0)
3726, 36sqgt0d 13895 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 < ((i · (√‘𝐴))↑2))
3837, 25breqtrd 5096 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 < -𝐴)
3928, 38elrpd 12698 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℝ+)
40 logneg 25648 . . . . . . . . . . . . 13 (-𝐴 ∈ ℝ+ → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
4139, 40syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
42 negneg 11201 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
4342ad2antrr 722 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → --𝐴 = 𝐴)
4443fveq2d 6760 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘--𝐴) = (log‘𝐴))
4539relogcld 25683 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘-𝐴) ∈ ℝ)
4645recnd 10934 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘-𝐴) ∈ ℂ)
47 picn 25521 . . . . . . . . . . . . . 14 π ∈ ℂ
4813, 47mulcli 10913 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
49 addcom 11091 . . . . . . . . . . . . 13 (((log‘-𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘-𝐴) + (i · π)) = ((i · π) + (log‘-𝐴)))
5046, 48, 49sylancl 585 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((log‘-𝐴) + (i · π)) = ((i · π) + (log‘-𝐴)))
5141, 44, 503eqtr3d 2786 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘𝐴) = ((i · π) + (log‘-𝐴)))
5251oveq2d 7271 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = ((1 / 2) · ((i · π) + (log‘-𝐴))))
53 adddi 10891 . . . . . . . . . . 11 (((1 / 2) ∈ ℂ ∧ (i · π) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
541, 48, 46, 53mp3an12i 1463 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
5552, 54eqtrd 2778 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
56 2cn 11978 . . . . . . . . . . . 12 2 ∈ ℂ
57 2ne0 12007 . . . . . . . . . . . 12 2 ≠ 0
58 divrec2 11580 . . . . . . . . . . . 12 (((i · π) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((i · π) / 2) = ((1 / 2) · (i · π)))
5948, 56, 57, 58mp3an 1459 . . . . . . . . . . 11 ((i · π) / 2) = ((1 / 2) · (i · π))
6013, 47, 56, 57divassi 11661 . . . . . . . . . . 11 ((i · π) / 2) = (i · (π / 2))
6159, 60eqtr3i 2768 . . . . . . . . . 10 ((1 / 2) · (i · π)) = (i · (π / 2))
6261oveq1i 7265 . . . . . . . . 9 (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))) = ((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))
6355, 62eqtrdi 2795 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = ((i · (π / 2)) + ((1 / 2) · (log‘-𝐴))))
6463fveq2d 6760 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘𝐴))) = (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))))
6547, 56, 57divcli 11647 . . . . . . . . 9 (π / 2) ∈ ℂ
6613, 65mulcli 10913 . . . . . . . 8 (i · (π / 2)) ∈ ℂ
67 mulcl 10886 . . . . . . . . 9 (((1 / 2) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) · (log‘-𝐴)) ∈ ℂ)
681, 46, 67sylancr 586 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘-𝐴)) ∈ ℂ)
69 efadd 15731 . . . . . . . 8 (((i · (π / 2)) ∈ ℂ ∧ ((1 / 2) · (log‘-𝐴)) ∈ ℂ) → (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))))
7066, 68, 69sylancr 586 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))))
71 efhalfpi 25533 . . . . . . . . 9 (exp‘(i · (π / 2))) = i
7271a1i 11 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘(i · (π / 2))) = i)
73 negcl 11151 . . . . . . . . . . 11 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7473ad2antrr 722 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℂ)
751a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (1 / 2) ∈ ℂ)
76 cxpef 25725 . . . . . . . . . 10 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (-𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘-𝐴))))
7774, 32, 75, 76syl3anc 1369 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘-𝐴))))
78 ax-1cn 10860 . . . . . . . . . . . . . 14 1 ∈ ℂ
79 2halves 12131 . . . . . . . . . . . . . 14 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8078, 79ax-mp 5 . . . . . . . . . . . . 13 ((1 / 2) + (1 / 2)) = 1
8180oveq2i 7266 . . . . . . . . . . . 12 (-𝐴𝑐((1 / 2) + (1 / 2))) = (-𝐴𝑐1)
82 cxp1 25731 . . . . . . . . . . . . 13 (-𝐴 ∈ ℂ → (-𝐴𝑐1) = -𝐴)
8374, 82syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐1) = -𝐴)
8481, 83syl5eq 2791 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐((1 / 2) + (1 / 2))) = -𝐴)
85 rpcxpcl 25736 . . . . . . . . . . . . . . 15 ((-𝐴 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ) → (-𝐴𝑐(1 / 2)) ∈ ℝ+)
8639, 2, 85sylancl 585 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) ∈ ℝ+)
8786rpcnd 12703 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) ∈ ℂ)
8887sqvald 13789 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
89 cxpadd 25739 . . . . . . . . . . . . 13 (((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (-𝐴𝑐((1 / 2) + (1 / 2))) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
9074, 32, 75, 75, 89syl211anc 1374 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐((1 / 2) + (1 / 2))) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
9188, 90eqtr4d 2781 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = (-𝐴𝑐((1 / 2) + (1 / 2))))
9274sqsqrtd 15079 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘-𝐴)↑2) = -𝐴)
9384, 91, 923eqtr4d 2788 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2))
9486rprege0d 12708 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2)) ∈ ℝ ∧ 0 ≤ (-𝐴𝑐(1 / 2))))
9539rpsqrtcld 15051 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘-𝐴) ∈ ℝ+)
9695rprege0d 12708 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘-𝐴) ∈ ℝ ∧ 0 ≤ (√‘-𝐴)))
97 sq11 13778 . . . . . . . . . . 11 ((((-𝐴𝑐(1 / 2)) ∈ ℝ ∧ 0 ≤ (-𝐴𝑐(1 / 2))) ∧ ((√‘-𝐴) ∈ ℝ ∧ 0 ≤ (√‘-𝐴))) → (((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2) ↔ (-𝐴𝑐(1 / 2)) = (√‘-𝐴)))
9894, 96, 97syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2) ↔ (-𝐴𝑐(1 / 2)) = (√‘-𝐴)))
9993, 98mpbid 231 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) = (√‘-𝐴))
10077, 99eqtr3d 2780 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘-𝐴))) = (√‘-𝐴))
10172, 100oveq12d 7273 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))) = (i · (√‘-𝐴)))
10264, 70, 1013eqtrd 2782 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘𝐴))) = (i · (√‘-𝐴)))
103 cxpef 25725 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
1041, 103mp3an3 1448 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
105104adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
10643fveq2d 6760 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘--𝐴) = (√‘𝐴))
10739rpge0d 12705 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ -𝐴)
10828, 107sqrtnegd 15061 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘--𝐴) = (i · (√‘-𝐴)))
109106, 108eqtr3d 2780 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) = (i · (√‘-𝐴)))
110102, 105, 1093eqtr4d 2788 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = (√‘𝐴))
111110ex 412 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) = -(√‘𝐴) → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
11280oveq2i 7266 . . . . . . . . 9 (𝐴𝑐((1 / 2) + (1 / 2))) = (𝐴𝑐1)
113 cxpadd 25739 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐((1 / 2) + (1 / 2))) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
1141, 1, 113mp3an23 1451 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐((1 / 2) + (1 / 2))) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
115 cxp1 25731 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴𝑐1) = 𝐴)
116115adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐1) = 𝐴)
117112, 114, 1163eqtr3a 2803 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))) = 𝐴)
118 cxpcl 25734 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) ∈ ℂ)
1191, 118mpan2 687 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) ∈ ℂ)
120119sqvald 13789 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴𝑐(1 / 2))↑2) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
121120adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2))↑2) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
12220adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((√‘𝐴)↑2) = 𝐴)
123117, 121, 1223eqtr4d 2788 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2))
124 sqeqor 13860 . . . . . . . . 9 (((𝐴𝑐(1 / 2)) ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴))))
125119, 14, 124syl2anc 583 . . . . . . . 8 (𝐴 ∈ ℂ → (((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴))))
126125biimpa 476 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2)) → ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
127123, 126syldan 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
128127ord 860 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴𝑐(1 / 2)) = (√‘𝐴) → (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
129128con1d 145 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴𝑐(1 / 2)) = -(√‘𝐴) → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
130111, 129pm2.61d 179 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (√‘𝐴))
131130ex 412 . 2 (𝐴 ∈ ℂ → (𝐴 ≠ 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
13212, 131pm2.61dne 3030 1 (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  -cneg 11136   / cdiv 11562  2c2 11958  +crp 12659  cexp 13710  csqrt 14872  expce 15699  πcpi 15704  logclog 25615  𝑐ccxp 25616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618
This theorem is referenced by:  logsqrt  25764  dvsqrt  25800  dvcnsqrt  25802  resqrtcn  25807  sqrtcn  25808  sqrt2cxp2logb9e3  25854  efiatan  25967  efiatan2  25972  sqrtlim  26027  chpchtlim  26532  logdivsqrle  32530
  Copyright terms: Public domain W3C validator