MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrt Structured version   Visualization version   GIF version

Theorem cxpsqrt 24967
Description: The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrt (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))

Proof of Theorem cxpsqrt
StepHypRef Expression
1 halfcn 11700 . . . . . 6 (1 / 2) ∈ ℂ
2 halfre 11699 . . . . . . 7 (1 / 2) ∈ ℝ
3 halfgt0 11701 . . . . . . 7 0 < (1 / 2)
42, 3gt0ne0ii 11024 . . . . . 6 (1 / 2) ≠ 0
5 0cxp 24930 . . . . . 6 (((1 / 2) ∈ ℂ ∧ (1 / 2) ≠ 0) → (0↑𝑐(1 / 2)) = 0)
61, 4, 5mp2an 688 . . . . 5 (0↑𝑐(1 / 2)) = 0
7 sqrt0 14435 . . . . 5 (√‘0) = 0
86, 7eqtr4i 2822 . . . 4 (0↑𝑐(1 / 2)) = (√‘0)
9 oveq1 7023 . . . 4 (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (0↑𝑐(1 / 2)))
10 fveq2 6538 . . . 4 (𝐴 = 0 → (√‘𝐴) = (√‘0))
118, 9, 103eqtr4a 2857 . . 3 (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴))
1211a1i 11 . 2 (𝐴 ∈ ℂ → (𝐴 = 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
13 ax-icn 10442 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
14 sqrtcl 14555 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
1514ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) ∈ ℂ)
16 sqmul 13335 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
1713, 15, 16sylancr 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
18 i2 13415 . . . . . . . . . . . . . . . . . 18 (i↑2) = -1
1918a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i↑2) = -1)
20 sqrtth 14558 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴)
2120ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘𝐴)↑2) = 𝐴)
2219, 21oveq12d 7034 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴))
23 mulm1 10929 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
2423ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-1 · 𝐴) = -𝐴)
2517, 22, 243eqtrd 2835 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) = -𝐴)
26 cxpsqrtlem 24966 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
2726resqcld 13461 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) ∈ ℝ)
2825, 27eqeltrrd 2884 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℝ)
29 negeq0 10788 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0))
3029necon3bid 3028 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ -𝐴 ≠ 0))
3130biimpa 477 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -𝐴 ≠ 0)
3231adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ≠ 0)
3325, 32eqnetrd 3051 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴))↑2) ≠ 0)
34 sq0i 13406 . . . . . . . . . . . . . . . . . 18 ((i · (√‘𝐴)) = 0 → ((i · (√‘𝐴))↑2) = 0)
3534necon3i 3016 . . . . . . . . . . . . . . . . 17 (((i · (√‘𝐴))↑2) ≠ 0 → (i · (√‘𝐴)) ≠ 0)
3633, 35syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ≠ 0)
3726, 36sqgt0d 13463 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 < ((i · (√‘𝐴))↑2))
3837, 25breqtrd 4988 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 < -𝐴)
3928, 38elrpd 12278 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℝ+)
40 logneg 24852 . . . . . . . . . . . . 13 (-𝐴 ∈ ℝ+ → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
4139, 40syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘--𝐴) = ((log‘-𝐴) + (i · π)))
42 negneg 10784 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
4342ad2antrr 722 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → --𝐴 = 𝐴)
4443fveq2d 6542 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘--𝐴) = (log‘𝐴))
4539relogcld 24887 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘-𝐴) ∈ ℝ)
4645recnd 10515 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘-𝐴) ∈ ℂ)
47 picn 24728 . . . . . . . . . . . . . 14 π ∈ ℂ
4813, 47mulcli 10494 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
49 addcom 10673 . . . . . . . . . . . . 13 (((log‘-𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘-𝐴) + (i · π)) = ((i · π) + (log‘-𝐴)))
5046, 48, 49sylancl 586 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((log‘-𝐴) + (i · π)) = ((i · π) + (log‘-𝐴)))
5141, 44, 503eqtr3d 2839 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (log‘𝐴) = ((i · π) + (log‘-𝐴)))
5251oveq2d 7032 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = ((1 / 2) · ((i · π) + (log‘-𝐴))))
53 adddi 10472 . . . . . . . . . . 11 (((1 / 2) ∈ ℂ ∧ (i · π) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
541, 48, 46, 53mp3an12i 1457 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · ((i · π) + (log‘-𝐴))) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
5552, 54eqtrd 2831 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))))
56 2cn 11560 . . . . . . . . . . . 12 2 ∈ ℂ
57 2ne0 11589 . . . . . . . . . . . 12 2 ≠ 0
58 divrec2 11163 . . . . . . . . . . . 12 (((i · π) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((i · π) / 2) = ((1 / 2) · (i · π)))
5948, 56, 57, 58mp3an 1453 . . . . . . . . . . 11 ((i · π) / 2) = ((1 / 2) · (i · π))
6013, 47, 56, 57divassi 11244 . . . . . . . . . . 11 ((i · π) / 2) = (i · (π / 2))
6159, 60eqtr3i 2821 . . . . . . . . . 10 ((1 / 2) · (i · π)) = (i · (π / 2))
6261oveq1i 7026 . . . . . . . . 9 (((1 / 2) · (i · π)) + ((1 / 2) · (log‘-𝐴))) = ((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))
6355, 62syl6eq 2847 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘𝐴)) = ((i · (π / 2)) + ((1 / 2) · (log‘-𝐴))))
6463fveq2d 6542 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘𝐴))) = (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))))
6547, 56, 57divcli 11230 . . . . . . . . 9 (π / 2) ∈ ℂ
6613, 65mulcli 10494 . . . . . . . 8 (i · (π / 2)) ∈ ℂ
67 mulcl 10467 . . . . . . . . 9 (((1 / 2) ∈ ℂ ∧ (log‘-𝐴) ∈ ℂ) → ((1 / 2) · (log‘-𝐴)) ∈ ℂ)
681, 46, 67sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((1 / 2) · (log‘-𝐴)) ∈ ℂ)
69 efadd 15280 . . . . . . . 8 (((i · (π / 2)) ∈ ℂ ∧ ((1 / 2) · (log‘-𝐴)) ∈ ℂ) → (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))))
7066, 68, 69sylancr 587 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((i · (π / 2)) + ((1 / 2) · (log‘-𝐴)))) = ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))))
71 efhalfpi 24740 . . . . . . . . 9 (exp‘(i · (π / 2))) = i
7271a1i 11 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘(i · (π / 2))) = i)
73 negcl 10733 . . . . . . . . . . 11 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7473ad2antrr 722 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → -𝐴 ∈ ℂ)
751a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (1 / 2) ∈ ℂ)
76 cxpef 24929 . . . . . . . . . 10 ((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (-𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘-𝐴))))
7774, 32, 75, 76syl3anc 1364 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘-𝐴))))
78 ax-1cn 10441 . . . . . . . . . . . . . 14 1 ∈ ℂ
79 2halves 11713 . . . . . . . . . . . . . 14 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8078, 79ax-mp 5 . . . . . . . . . . . . 13 ((1 / 2) + (1 / 2)) = 1
8180oveq2i 7027 . . . . . . . . . . . 12 (-𝐴𝑐((1 / 2) + (1 / 2))) = (-𝐴𝑐1)
82 cxp1 24935 . . . . . . . . . . . . 13 (-𝐴 ∈ ℂ → (-𝐴𝑐1) = -𝐴)
8374, 82syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐1) = -𝐴)
8481, 83syl5eq 2843 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐((1 / 2) + (1 / 2))) = -𝐴)
85 rpcxpcl 24940 . . . . . . . . . . . . . . 15 ((-𝐴 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ) → (-𝐴𝑐(1 / 2)) ∈ ℝ+)
8639, 2, 85sylancl 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) ∈ ℝ+)
8786rpcnd 12283 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) ∈ ℂ)
8887sqvald 13357 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
89 cxpadd 24943 . . . . . . . . . . . . 13 (((-𝐴 ∈ ℂ ∧ -𝐴 ≠ 0) ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (-𝐴𝑐((1 / 2) + (1 / 2))) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
9074, 32, 75, 75, 89syl211anc 1369 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐((1 / 2) + (1 / 2))) = ((-𝐴𝑐(1 / 2)) · (-𝐴𝑐(1 / 2))))
9188, 90eqtr4d 2834 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = (-𝐴𝑐((1 / 2) + (1 / 2))))
9274sqsqrtd 14633 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘-𝐴)↑2) = -𝐴)
9384, 91, 923eqtr4d 2841 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2))
9486rprege0d 12288 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((-𝐴𝑐(1 / 2)) ∈ ℝ ∧ 0 ≤ (-𝐴𝑐(1 / 2))))
9539rpsqrtcld 14605 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘-𝐴) ∈ ℝ+)
9695rprege0d 12288 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((√‘-𝐴) ∈ ℝ ∧ 0 ≤ (√‘-𝐴)))
97 sq11 13346 . . . . . . . . . . 11 ((((-𝐴𝑐(1 / 2)) ∈ ℝ ∧ 0 ≤ (-𝐴𝑐(1 / 2))) ∧ ((√‘-𝐴) ∈ ℝ ∧ 0 ≤ (√‘-𝐴))) → (((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2) ↔ (-𝐴𝑐(1 / 2)) = (√‘-𝐴)))
9894, 96, 97syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (((-𝐴𝑐(1 / 2))↑2) = ((√‘-𝐴)↑2) ↔ (-𝐴𝑐(1 / 2)) = (√‘-𝐴)))
9993, 98mpbid 233 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (-𝐴𝑐(1 / 2)) = (√‘-𝐴))
10077, 99eqtr3d 2833 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘-𝐴))) = (√‘-𝐴))
10172, 100oveq12d 7034 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((exp‘(i · (π / 2))) · (exp‘((1 / 2) · (log‘-𝐴)))) = (i · (√‘-𝐴)))
10264, 70, 1013eqtrd 2835 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (exp‘((1 / 2) · (log‘𝐴))) = (i · (√‘-𝐴)))
103 cxpef 24929 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
1041, 103mp3an3 1442 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
105104adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
10643fveq2d 6542 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘--𝐴) = (√‘𝐴))
10739rpge0d 12285 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ -𝐴)
10828, 107sqrtnegd 14615 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘--𝐴) = (i · (√‘-𝐴)))
109106, 108eqtr3d 2833 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) = (i · (√‘-𝐴)))
110102, 105, 1093eqtr4d 2841 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = (√‘𝐴))
111110ex 413 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) = -(√‘𝐴) → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
11280oveq2i 7027 . . . . . . . . 9 (𝐴𝑐((1 / 2) + (1 / 2))) = (𝐴𝑐1)
113 cxpadd 24943 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐((1 / 2) + (1 / 2))) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
1141, 1, 113mp3an23 1445 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐((1 / 2) + (1 / 2))) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
115 cxp1 24935 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴𝑐1) = 𝐴)
116115adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐1) = 𝐴)
117112, 114, 1163eqtr3a 2855 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))) = 𝐴)
118 cxpcl 24938 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) ∈ ℂ)
1191, 118mpan2 687 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) ∈ ℂ)
120119sqvald 13357 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴𝑐(1 / 2))↑2) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
121120adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2))↑2) = ((𝐴𝑐(1 / 2)) · (𝐴𝑐(1 / 2))))
12220adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((√‘𝐴)↑2) = 𝐴)
123117, 121, 1223eqtr4d 2841 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2))
124 sqeqor 13428 . . . . . . . . 9 (((𝐴𝑐(1 / 2)) ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴))))
125119, 14, 124syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2) ↔ ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴))))
126125biimpa 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝐴𝑐(1 / 2))↑2) = ((√‘𝐴)↑2)) → ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
127123, 126syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴𝑐(1 / 2)) = (√‘𝐴) ∨ (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
128127ord 859 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴𝑐(1 / 2)) = (√‘𝐴) → (𝐴𝑐(1 / 2)) = -(√‘𝐴)))
129128con1d 147 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (𝐴𝑐(1 / 2)) = -(√‘𝐴) → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
130111, 129pm2.61d 180 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (√‘𝐴))
131130ex 413 . 2 (𝐴 ∈ ℂ → (𝐴 ≠ 0 → (𝐴𝑐(1 / 2)) = (√‘𝐴)))
13212, 131pm2.61dne 3071 1 (𝐴 ∈ ℂ → (𝐴𝑐(1 / 2)) = (√‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384  ici 10385   + caddc 10386   · cmul 10388   < clt 10521  cle 10522  -cneg 10718   / cdiv 11145  2c2 11540  +crp 12239  cexp 13279  csqrt 14426  expce 15248  πcpi 15253  logclog 24819  𝑐ccxp 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-log 24821  df-cxp 24822
This theorem is referenced by:  logsqrt  24968  dvsqrt  25004  dvcnsqrt  25006  resqrtcn  25011  sqrtcn  25012  sqrt2cxp2logb9e3  25058  efiatan  25171  efiatan2  25176  sqrtlim  25232  chpchtlim  25737  logdivsqrle  31538
  Copyright terms: Public domain W3C validator