MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muladd Structured version   Visualization version   GIF version

Theorem muladd 11337
Description: Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
muladd (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))

Proof of Theorem muladd
StepHypRef Expression
1 addcl 10884 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
2 adddi 10891 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)))
323expb 1118 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)))
41, 3sylan 579 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)))
5 adddir 10897 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
653expa 1116 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
76adantrr 713 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
8 adddir 10897 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐷) = ((𝐴 · 𝐷) + (𝐵 · 𝐷)))
983expa 1116 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐷) = ((𝐴 · 𝐷) + (𝐵 · 𝐷)))
109adantrl 712 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · 𝐷) = ((𝐴 · 𝐷) + (𝐵 · 𝐷)))
117, 10oveq12d 7273 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)) = (((𝐴 · 𝐶) + (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
12 mulcl 10886 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
1312ad2ant2r 743 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐶) ∈ ℂ)
14 mulcl 10886 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
1514ad2ant2lr 744 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
16 mulcl 10886 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
17 mulcl 10886 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 · 𝐷) ∈ ℂ)
18 addcl 10884 . . . . . . 7 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐷) ∈ ℂ) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
1916, 17, 18syl2an 595 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
2019anandirs 675 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℂ) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
2120adantrl 712 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
2213, 15, 21add32d 11132 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) = (((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) + (𝐵 · 𝐶)))
23 mulcom 10888 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 · 𝐷) = (𝐷 · 𝐵))
2423ad2ant2l 742 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) = (𝐷 · 𝐵))
2524oveq2d 7271 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐵 · 𝐷)) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐷 · 𝐵)))
2616ad2ant2rl 745 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
2717ad2ant2l 742 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
2813, 26, 27addassd 10928 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
29 mulcl 10886 . . . . . . . 8 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
3029ancoms 458 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
3130ad2ant2l 742 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐷 · 𝐵) ∈ ℂ)
3213, 26, 31add32d 11132 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐷 · 𝐵)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)))
3325, 28, 323eqtr3d 2786 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)))
34 mulcom 10888 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
3534ad2ant2lr 744 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
3633, 35oveq12d 7273 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) + (𝐵 · 𝐶)) = ((((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)) + (𝐶 · 𝐵)))
37 addcl 10884 . . . . . 6 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3812, 30, 37syl2an 595 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3938an4s 656 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
40 mulcl 10886 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
4140ancoms 458 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
4241ad2ant2lr 744 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 · 𝐵) ∈ ℂ)
4339, 26, 42addassd 10928 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)) + (𝐶 · 𝐵)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
4422, 36, 433eqtrd 2782 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
454, 11, 443eqtrd 2782 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800   + caddc 10805   · cmul 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945
This theorem is referenced by:  mulsub  11348  muladdi  11356  muladdd  11363  sqabsadd  14922  demoivreALT  15838
  Copyright terms: Public domain W3C validator