MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos01bnd Structured version   Visualization version   GIF version

Theorem cos01bnd 15893
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cos01bnd (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))

Proof of Theorem cos01bnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 10976 . . . . . . 7 1 ∈ ℝ
2 0xr 11023 . . . . . . . . . . 11 0 ∈ ℝ*
3 elioc2 13141 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
42, 1, 3mp2an 689 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1144 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
65resqcld 13963 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℝ)
76rehalfcld 12220 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈ ℝ)
8 resubcl 11285 . . . . . . 7 ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
91, 7, 8sylancr 587 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
109recnd 11004 . . . . 5 (𝐴 ∈ (0(,]1) → (1 − ((𝐴↑2) / 2)) ∈ ℂ)
11 ax-icn 10931 . . . . . . . . 9 i ∈ ℂ
125recnd 11004 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
13 mulcl 10956 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1411, 12, 13sylancr 587 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
15 4nn0 12252 . . . . . . . 8 4 ∈ ℕ0
16 eqid 2740 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
1716eftlcl 15814 . . . . . . . 8 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
1814, 15, 17sylancl 586 . . . . . . 7 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
1918recld 14903 . . . . . 6 (𝐴 ∈ (0(,]1) → (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
2019recnd 11004 . . . . 5 (𝐴 ∈ (0(,]1) → (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ)
2116recos4p 15846 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
225, 21syl 17 . . . . 5 (𝐴 ∈ (0(,]1) → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2310, 20, 22mvrladdd 11388 . . . 4 (𝐴 ∈ (0(,]1) → ((cos‘𝐴) − (1 − ((𝐴↑2) / 2))) = (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
2423fveq2d 6775 . . 3 (𝐴 ∈ (0(,]1) → (abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) = (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2520abscld 15146 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ)
2618abscld 15146 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
27 6nn 12062 . . . . 5 6 ∈ ℕ
28 nndivre 12014 . . . . 5 (((𝐴↑2) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑2) / 6) ∈ ℝ)
296, 27, 28sylancl 586 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈ ℝ)
30 absrele 15018 . . . . 5 𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3118, 30syl 17 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
32 reexpcl 13797 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
335, 15, 32sylancl 586 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
34 nndivre 12014 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
3533, 27, 34sylancl 586 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
3616ef01bndlem 15891 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6))
37 2nn0 12250 . . . . . . . 8 2 ∈ ℕ0
3837a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 2 ∈ ℕ0)
39 4z 12354 . . . . . . . . 9 4 ∈ ℤ
40 2re 12047 . . . . . . . . . 10 2 ∈ ℝ
41 4re 12057 . . . . . . . . . 10 4 ∈ ℝ
42 2lt4 12148 . . . . . . . . . 10 2 < 4
4340, 41, 42ltleii 11098 . . . . . . . . 9 2 ≤ 4
44 2z 12352 . . . . . . . . . 10 2 ∈ ℤ
4544eluz1i 12589 . . . . . . . . 9 (4 ∈ (ℤ‘2) ↔ (4 ∈ ℤ ∧ 2 ≤ 4))
4639, 43, 45mpbir2an 708 . . . . . . . 8 4 ∈ (ℤ‘2)
4746a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 4 ∈ (ℤ‘2))
484simp2bi 1145 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
49 0re 10978 . . . . . . . . 9 0 ∈ ℝ
50 ltle 11064 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
5149, 5, 50sylancr 587 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
5248, 51mpd 15 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
534simp3bi 1146 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
545, 38, 47, 52, 53leexp2rd 13970 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑2))
55 6re 12063 . . . . . . . 8 6 ∈ ℝ
5655a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 6 ∈ ℝ)
57 6pos 12083 . . . . . . . 8 0 < 6
5857a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 6)
59 lediv1 11840 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)))
6033, 6, 56, 58, 59syl112anc 1373 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)))
6154, 60mpbid 231 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6))
6226, 35, 29, 36, 61ltletrd 11135 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑2) / 6))
6325, 26, 29, 31, 62lelttrd 11133 . . 3 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑2) / 6))
6424, 63eqbrtrd 5101 . 2 (𝐴 ∈ (0(,]1) → (abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6))
655recoscld 15851 . . . 4 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℝ)
6665, 9, 29absdifltd 15143 . . 3 (𝐴 ∈ (0(,]1) → ((abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ∧ (cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)))))
67 1cnd 10971 . . . . . . 7 (𝐴 ∈ (0(,]1) → 1 ∈ ℂ)
687recnd 11004 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈ ℂ)
6929recnd 11004 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈ ℂ)
7067, 68, 69subsub4d 11363 . . . . . 6 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) = (1 − (((𝐴↑2) / 2) + ((𝐴↑2) / 6))))
71 halfpm6th 12194 . . . . . . . . . . 11 (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3))
7271simpri 486 . . . . . . . . . 10 ((1 / 2) + (1 / 6)) = (2 / 3)
7372oveq2i 7282 . . . . . . . . 9 ((𝐴↑2) · ((1 / 2) + (1 / 6))) = ((𝐴↑2) · (2 / 3))
746recnd 11004 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℂ)
75 2cn 12048 . . . . . . . . . . . 12 2 ∈ ℂ
76 2ne0 12077 . . . . . . . . . . . 12 2 ≠ 0
7775, 76reccli 11705 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
78 6cn 12064 . . . . . . . . . . . 12 6 ∈ ℂ
7927nnne0i 12013 . . . . . . . . . . . 12 6 ≠ 0
8078, 79reccli 11705 . . . . . . . . . . 11 (1 / 6) ∈ ℂ
81 adddi 10961 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8277, 80, 81mp3an23 1452 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8374, 82syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8473, 83eqtr3id 2794 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
85 3cn 12054 . . . . . . . . . . 11 3 ∈ ℂ
86 3ne0 12079 . . . . . . . . . . 11 3 ≠ 0
8785, 86pm3.2i 471 . . . . . . . . . 10 (3 ∈ ℂ ∧ 3 ≠ 0)
88 div12 11655 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
8975, 87, 88mp3an13 1451 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
9074, 89syl 17 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
91 divrec 11649 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
9275, 76, 91mp3an23 1452 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
9374, 92syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
94 divrec 11649 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9578, 79, 94mp3an23 1452 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9674, 95syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9793, 96oveq12d 7289 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
9884, 90, 973eqtr4rd 2791 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (2 · ((𝐴↑2) / 3)))
9998oveq2d 7287 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) + ((𝐴↑2) / 6))) = (1 − (2 · ((𝐴↑2) / 3))))
10070, 99eqtrd 2780 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) = (1 − (2 · ((𝐴↑2) / 3))))
101100breq1d 5089 . . . 4 (𝐴 ∈ (0(,]1) → (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ↔ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)))
10267, 68, 69subsubd 11360 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) − ((𝐴↑2) / 6))) = ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)))
10371simpli 484 . . . . . . . . . 10 ((1 / 2) − (1 / 6)) = (1 / 3)
104103oveq2i 7282 . . . . . . . . 9 ((𝐴↑2) · ((1 / 2) − (1 / 6))) = ((𝐴↑2) · (1 / 3))
105 subdi 11408 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
10677, 80, 105mp3an23 1452 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
10774, 106syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
108104, 107eqtr3id 2794 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (1 / 3)) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
109 divrec 11649 . . . . . . . . . 10 (((𝐴↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11085, 86, 109mp3an23 1452 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11174, 110syl 17 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11293, 96oveq12d 7289 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
113108, 111, 1123eqtr4rd 2791 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = ((𝐴↑2) / 3))
114113oveq2d 7287 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) − ((𝐴↑2) / 6))) = (1 − ((𝐴↑2) / 3)))
115102, 114eqtr3d 2782 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)) = (1 − ((𝐴↑2) / 3)))
116115breq2d 5091 . . . 4 (𝐴 ∈ (0(,]1) → ((cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)) ↔ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
117101, 116anbi12d 631 . . 3 (𝐴 ∈ (0(,]1) → ((((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ∧ (cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6))) ↔ ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))))
11866, 117bitrd 278 . 2 (𝐴 ∈ (0(,]1) → ((abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))))
11964, 118mpbid 231 1 (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cmpt 5162  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873  ici 10874   + caddc 10875   · cmul 10877  *cxr 11009   < clt 11010  cle 11011  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  6c6 12032  0cn0 12233  cz 12319  cuz 12581  (,]cioc 13079  cexp 13780  !cfa 13985  cre 14806  abscabs 14943  Σcsu 15395  cosccos 15772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-ioc 13083  df-ico 13084  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-fac 13986  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-cos 15778
This theorem is referenced by:  cos1bnd  15894  cos01gt0  15898  tangtx  25660
  Copyright terms: Public domain W3C validator