MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos01bnd Structured version   Visualization version   GIF version

Theorem cos01bnd 16154
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cos01bnd (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))

Proof of Theorem cos01bnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 11174 . . . . . . 7 1 ∈ ℝ
2 0xr 11221 . . . . . . . . . . 11 0 ∈ ℝ*
3 elioc2 13370 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
42, 1, 3mp2an 692 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1145 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
65resqcld 14090 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℝ)
76rehalfcld 12429 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈ ℝ)
8 resubcl 11486 . . . . . . 7 ((1 ∈ ℝ ∧ ((𝐴↑2) / 2) ∈ ℝ) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
91, 7, 8sylancr 587 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − ((𝐴↑2) / 2)) ∈ ℝ)
109recnd 11202 . . . . 5 (𝐴 ∈ (0(,]1) → (1 − ((𝐴↑2) / 2)) ∈ ℂ)
11 ax-icn 11127 . . . . . . . . 9 i ∈ ℂ
125recnd 11202 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
13 mulcl 11152 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1411, 12, 13sylancr 587 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
15 4nn0 12461 . . . . . . . 8 4 ∈ ℕ0
16 eqid 2729 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
1716eftlcl 16075 . . . . . . . 8 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
1814, 15, 17sylancl 586 . . . . . . 7 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
1918recld 15160 . . . . . 6 (𝐴 ∈ (0(,]1) → (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
2019recnd 11202 . . . . 5 (𝐴 ∈ (0(,]1) → (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℂ)
2116recos4p 16107 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
225, 21syl 17 . . . . 5 (𝐴 ∈ (0(,]1) → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2310, 20, 22mvrladdd 11591 . . . 4 (𝐴 ∈ (0(,]1) → ((cos‘𝐴) − (1 − ((𝐴↑2) / 2))) = (ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
2423fveq2d 6862 . . 3 (𝐴 ∈ (0(,]1) → (abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) = (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))))
2520abscld 15405 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ∈ ℝ)
2618abscld 15405 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) ∈ ℝ)
27 6nn 12275 . . . . 5 6 ∈ ℕ
28 nndivre 12227 . . . . 5 (((𝐴↑2) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑2) / 6) ∈ ℝ)
296, 27, 28sylancl 586 . . . 4 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈ ℝ)
30 absrele 15274 . . . . 5 𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
3118, 30syl 17 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) ≤ (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)))
32 reexpcl 14043 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
335, 15, 32sylancl 586 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
34 nndivre 12227 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
3533, 27, 34sylancl 586 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
3616ef01bndlem 16152 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑4) / 6))
37 2nn0 12459 . . . . . . . 8 2 ∈ ℕ0
3837a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 2 ∈ ℕ0)
39 4z 12567 . . . . . . . . 9 4 ∈ ℤ
40 2re 12260 . . . . . . . . . 10 2 ∈ ℝ
41 4re 12270 . . . . . . . . . 10 4 ∈ ℝ
42 2lt4 12356 . . . . . . . . . 10 2 < 4
4340, 41, 42ltleii 11297 . . . . . . . . 9 2 ≤ 4
44 2z 12565 . . . . . . . . . 10 2 ∈ ℤ
4544eluz1i 12801 . . . . . . . . 9 (4 ∈ (ℤ‘2) ↔ (4 ∈ ℤ ∧ 2 ≤ 4))
4639, 43, 45mpbir2an 711 . . . . . . . 8 4 ∈ (ℤ‘2)
4746a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 4 ∈ (ℤ‘2))
484simp2bi 1146 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
49 0re 11176 . . . . . . . . 9 0 ∈ ℝ
50 ltle 11262 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
5149, 5, 50sylancr 587 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (0 < 𝐴 → 0 ≤ 𝐴))
5248, 51mpd 15 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 ≤ 𝐴)
534simp3bi 1147 . . . . . . 7 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
545, 38, 47, 52, 53leexp2rd 14220 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑4) ≤ (𝐴↑2))
55 6re 12276 . . . . . . . 8 6 ∈ ℝ
5655a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 6 ∈ ℝ)
57 6pos 12296 . . . . . . . 8 0 < 6
5857a1i 11 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < 6)
59 lediv1 12048 . . . . . . 7 (((𝐴↑4) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ (6 ∈ ℝ ∧ 0 < 6)) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)))
6033, 6, 56, 58, 59syl112anc 1376 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑4) ≤ (𝐴↑2) ↔ ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6)))
6154, 60mpbid 232 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ≤ ((𝐴↑2) / 6))
6226, 35, 29, 36, 61ltletrd 11334 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) < ((𝐴↑2) / 6))
6325, 26, 29, 31, 62lelttrd 11332 . . 3 (𝐴 ∈ (0(,]1) → (abs‘(ℜ‘Σ𝑘 ∈ (ℤ‘4)((𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))) < ((𝐴↑2) / 6))
6424, 63eqbrtrd 5129 . 2 (𝐴 ∈ (0(,]1) → (abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6))
655recoscld 16112 . . . 4 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℝ)
6665, 9, 29absdifltd 15402 . . 3 (𝐴 ∈ (0(,]1) → ((abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ∧ (cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)))))
67 1cnd 11169 . . . . . . 7 (𝐴 ∈ (0(,]1) → 1 ∈ ℂ)
687recnd 11202 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) ∈ ℂ)
6929recnd 11202 . . . . . . 7 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) ∈ ℂ)
7067, 68, 69subsub4d 11564 . . . . . 6 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) = (1 − (((𝐴↑2) / 2) + ((𝐴↑2) / 6))))
71 halfpm6th 12404 . . . . . . . . . . 11 (((1 / 2) − (1 / 6)) = (1 / 3) ∧ ((1 / 2) + (1 / 6)) = (2 / 3))
7271simpri 485 . . . . . . . . . 10 ((1 / 2) + (1 / 6)) = (2 / 3)
7372oveq2i 7398 . . . . . . . . 9 ((𝐴↑2) · ((1 / 2) + (1 / 6))) = ((𝐴↑2) · (2 / 3))
746recnd 11202 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℂ)
75 2cn 12261 . . . . . . . . . . . 12 2 ∈ ℂ
76 2ne0 12290 . . . . . . . . . . . 12 2 ≠ 0
7775, 76reccli 11912 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
78 6cn 12277 . . . . . . . . . . . 12 6 ∈ ℂ
7927nnne0i 12226 . . . . . . . . . . . 12 6 ≠ 0
8078, 79reccli 11912 . . . . . . . . . . 11 (1 / 6) ∈ ℂ
81 adddi 11157 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8277, 80, 81mp3an23 1455 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8374, 82syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) + (1 / 6))) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
8473, 83eqtr3id 2778 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
85 3cn 12267 . . . . . . . . . . 11 3 ∈ ℂ
86 3ne0 12292 . . . . . . . . . . 11 3 ≠ 0
8785, 86pm3.2i 470 . . . . . . . . . 10 (3 ∈ ℂ ∧ 3 ≠ 0)
88 div12 11859 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
8975, 87, 88mp3an13 1454 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
9074, 89syl 17 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
91 divrec 11853 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
9275, 76, 91mp3an23 1455 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
9374, 92syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 2) = ((𝐴↑2) · (1 / 2)))
94 divrec 11853 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9578, 79, 94mp3an23 1455 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9674, 95syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 6) = ((𝐴↑2) · (1 / 6)))
9793, 96oveq12d 7405 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) + ((𝐴↑2) · (1 / 6))))
9884, 90, 973eqtr4rd 2775 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) + ((𝐴↑2) / 6)) = (2 · ((𝐴↑2) / 3)))
9998oveq2d 7403 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) + ((𝐴↑2) / 6))) = (1 − (2 · ((𝐴↑2) / 3))))
10070, 99eqtrd 2764 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) = (1 − (2 · ((𝐴↑2) / 3))))
101100breq1d 5117 . . . 4 (𝐴 ∈ (0(,]1) → (((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ↔ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)))
10267, 68, 69subsubd 11561 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) − ((𝐴↑2) / 6))) = ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)))
10371simpli 483 . . . . . . . . . 10 ((1 / 2) − (1 / 6)) = (1 / 3)
104103oveq2i 7398 . . . . . . . . 9 ((𝐴↑2) · ((1 / 2) − (1 / 6))) = ((𝐴↑2) · (1 / 3))
105 subdi 11611 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
10677, 80, 105mp3an23 1455 . . . . . . . . . 10 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
10774, 106syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · ((1 / 2) − (1 / 6))) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
108104, 107eqtr3id 2778 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (1 / 3)) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
109 divrec 11853 . . . . . . . . . 10 (((𝐴↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11085, 86, 109mp3an23 1455 . . . . . . . . 9 ((𝐴↑2) ∈ ℂ → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11174, 110syl 17 . . . . . . . 8 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) = ((𝐴↑2) · (1 / 3)))
11293, 96oveq12d 7405 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = (((𝐴↑2) · (1 / 2)) − ((𝐴↑2) · (1 / 6))))
113108, 111, 1123eqtr4rd 2775 . . . . . . 7 (𝐴 ∈ (0(,]1) → (((𝐴↑2) / 2) − ((𝐴↑2) / 6)) = ((𝐴↑2) / 3))
114113oveq2d 7403 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 − (((𝐴↑2) / 2) − ((𝐴↑2) / 6))) = (1 − ((𝐴↑2) / 3)))
115102, 114eqtr3d 2766 . . . . 5 (𝐴 ∈ (0(,]1) → ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)) = (1 − ((𝐴↑2) / 3)))
116115breq2d 5119 . . . 4 (𝐴 ∈ (0(,]1) → ((cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6)) ↔ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
117101, 116anbi12d 632 . . 3 (𝐴 ∈ (0(,]1) → ((((1 − ((𝐴↑2) / 2)) − ((𝐴↑2) / 6)) < (cos‘𝐴) ∧ (cos‘𝐴) < ((1 − ((𝐴↑2) / 2)) + ((𝐴↑2) / 6))) ↔ ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))))
11866, 117bitrd 279 . 2 (𝐴 ∈ (0(,]1) → ((abs‘((cos‘𝐴) − (1 − ((𝐴↑2) / 2)))) < ((𝐴↑2) / 6) ↔ ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))))
11964, 118mpbid 232 1 (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  4c4 12243  6c6 12245  0cn0 12442  cz 12529  cuz 12793  (,]cioc 13307  cexp 14026  !cfa 14238  cre 15063  abscabs 15200  Σcsu 15652  cosccos 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ioc 13311  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-cos 16036
This theorem is referenced by:  cos1bnd  16155  cos01gt0  16159  tangtx  26414
  Copyright terms: Public domain W3C validator