MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinperlem Structured version   Visualization version   GIF version

Theorem sinperlem 26414
Description: Lemma for sinper 26415 and cosper 26416. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
sinperlem.1 (𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
sinperlem.2 ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
Assertion
Ref Expression
sinperlem ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))

Proof of Theorem sinperlem
StepHypRef Expression
1 zcn 12470 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 2cn 12197 . . . . . . . . . 10 2 ∈ ℂ
3 picn 26392 . . . . . . . . . 10 π ∈ ℂ
42, 3mulcli 11116 . . . . . . . . 9 (2 · π) ∈ ℂ
5 mulcl 11087 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ (2 · π) ∈ ℂ) → (𝐾 · (2 · π)) ∈ ℂ)
61, 4, 5sylancl 586 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 · (2 · π)) ∈ ℂ)
7 ax-icn 11062 . . . . . . . . 9 i ∈ ℂ
8 adddi 11092 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
97, 8mp3an1 1450 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
106, 9sylan2 593 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + (i · (𝐾 · (2 · π)))))
11 mul12 11275 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ (2 · π) ∈ ℂ) → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
127, 4, 11mp3an13 1454 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
131, 12syl 17 . . . . . . . . . 10 (𝐾 ∈ ℤ → (i · (𝐾 · (2 · π))) = (𝐾 · (i · (2 · π))))
147, 4mulcli 11116 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
15 mulcom 11089 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ (i · (2 · π)) ∈ ℂ) → (𝐾 · (i · (2 · π))) = ((i · (2 · π)) · 𝐾))
161, 14, 15sylancl 586 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 · (i · (2 · π))) = ((i · (2 · π)) · 𝐾))
1713, 16eqtrd 2766 . . . . . . . . 9 (𝐾 ∈ ℤ → (i · (𝐾 · (2 · π))) = ((i · (2 · π)) · 𝐾))
1817adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐾 · (2 · π))) = ((i · (2 · π)) · 𝐾))
1918oveq2d 7362 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((i · 𝐴) + (i · (𝐾 · (2 · π)))) = ((i · 𝐴) + ((i · (2 · π)) · 𝐾)))
2010, 19eqtrd 2766 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (i · (𝐴 + (𝐾 · (2 · π)))) = ((i · 𝐴) + ((i · (2 · π)) · 𝐾)))
2120fveq2d 6826 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))))
22 mulcl 11087 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
237, 22mpan 690 . . . . . 6 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
24 efper 26413 . . . . . 6 (((i · 𝐴) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))) = (exp‘(i · 𝐴)))
2523, 24sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((i · 𝐴) + ((i · (2 · π)) · 𝐾))) = (exp‘(i · 𝐴)))
2621, 25eqtrd 2766 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘(i · 𝐴)))
27 negicn 11358 . . . . . . . . 9 -i ∈ ℂ
28 adddi 11092 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
2927, 28mp3an1 1450 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
306, 29sylan2 593 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))))
3117negeqd 11351 . . . . . . . . . 10 (𝐾 ∈ ℤ → -(i · (𝐾 · (2 · π))) = -((i · (2 · π)) · 𝐾))
32 mulneg1 11550 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (-i · (𝐾 · (2 · π))) = -(i · (𝐾 · (2 · π))))
337, 6, 32sylancr 587 . . . . . . . . . 10 (𝐾 ∈ ℤ → (-i · (𝐾 · (2 · π))) = -(i · (𝐾 · (2 · π))))
34 mulneg2 11551 . . . . . . . . . . 11 (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((i · (2 · π)) · -𝐾) = -((i · (2 · π)) · 𝐾))
3514, 1, 34sylancr 587 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((i · (2 · π)) · -𝐾) = -((i · (2 · π)) · 𝐾))
3631, 33, 353eqtr4d 2776 . . . . . . . . 9 (𝐾 ∈ ℤ → (-i · (𝐾 · (2 · π))) = ((i · (2 · π)) · -𝐾))
3736adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐾 · (2 · π))) = ((i · (2 · π)) · -𝐾))
3837oveq2d 7362 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((-i · 𝐴) + (-i · (𝐾 · (2 · π)))) = ((-i · 𝐴) + ((i · (2 · π)) · -𝐾)))
3930, 38eqtrd 2766 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (-i · (𝐴 + (𝐾 · (2 · π)))) = ((-i · 𝐴) + ((i · (2 · π)) · -𝐾)))
4039fveq2d 6826 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(-i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))))
41 mulcl 11087 . . . . . . 7 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
4227, 41mpan 690 . . . . . 6 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
43 znegcl 12504 . . . . . 6 (𝐾 ∈ ℤ → -𝐾 ∈ ℤ)
44 efper 26413 . . . . . 6 (((-i · 𝐴) ∈ ℂ ∧ -𝐾 ∈ ℤ) → (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))) = (exp‘(-i · 𝐴)))
4542, 43, 44syl2an 596 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘((-i · 𝐴) + ((i · (2 · π)) · -𝐾))) = (exp‘(-i · 𝐴)))
4640, 45eqtrd 2766 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(-i · (𝐴 + (𝐾 · (2 · π))))) = (exp‘(-i · 𝐴)))
4726, 46oveq12d 7364 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) = ((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))))
4847oveq1d 7361 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
49 addcl 11085 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐾 · (2 · π)) ∈ ℂ) → (𝐴 + (𝐾 · (2 · π))) ∈ ℂ)
506, 49sylan2 593 . . 3 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + (𝐾 · (2 · π))) ∈ ℂ)
51 sinperlem.2 . . 3 ((𝐴 + (𝐾 · (2 · π))) ∈ ℂ → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
5250, 51syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (((exp‘(i · (𝐴 + (𝐾 · (2 · π)))))𝑂(exp‘(-i · (𝐴 + (𝐾 · (2 · π)))))) / 𝐷))
53 sinperlem.1 . . 3 (𝐴 ∈ ℂ → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
5453adantr 480 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹𝐴) = (((exp‘(i · 𝐴))𝑂(exp‘(-i · 𝐴))) / 𝐷))
5548, 52, 543eqtr4d 2776 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐹‘(𝐴 + (𝐾 · (2 · π)))) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11001  ici 11005   + caddc 11006   · cmul 11008  -cneg 11342   / cdiv 11771  2c2 12177  cz 12465  expce 15965  πcpi 15970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793
This theorem is referenced by:  sinper  26415  cosper  26416
  Copyright terms: Public domain W3C validator