MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1ctr Structured version   Visualization version   GIF version

Theorem bcp1ctr 25788
Description: Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1ctr (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))))

Proof of Theorem bcp1ctr
StepHypRef Expression
1 2t1e2 11794 . . . . . . 7 (2 · 1) = 2
2 df-2 11694 . . . . . . 7 2 = (1 + 1)
31, 2eqtri 2849 . . . . . 6 (2 · 1) = (1 + 1)
43oveq2i 7161 . . . . 5 ((2 · 𝑁) + (2 · 1)) = ((2 · 𝑁) + (1 + 1))
5 nn0cn 11901 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
6 2cn 11706 . . . . . . 7 2 ∈ ℂ
7 ax-1cn 10589 . . . . . . 7 1 ∈ ℂ
8 adddi 10620 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
96, 7, 8mp3an13 1445 . . . . . 6 (𝑁 ∈ ℂ → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
105, 9syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
11 2nn0 11908 . . . . . . . 8 2 ∈ ℕ0
12 nn0mulcl 11927 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
1311, 12mpan 686 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℕ0)
1413nn0cnd 11951 . . . . . 6 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℂ)
15 addass 10618 . . . . . . 7 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
167, 7, 15mp3an23 1446 . . . . . 6 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
1714, 16syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
184, 10, 173eqtr4a 2887 . . . 4 (𝑁 ∈ ℕ0 → (2 · (𝑁 + 1)) = (((2 · 𝑁) + 1) + 1))
1918oveq1d 7165 . . 3 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
20 peano2nn0 11931 . . . . 5 ((2 · 𝑁) ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ0)
2113, 20syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ0)
22 nn0p1nn 11930 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
2322nnzd 12080 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
24 bcpasc 13676 . . . 4 ((((2 · 𝑁) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
2521, 23, 24syl2anc 584 . . 3 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
2619, 25eqtr4d 2864 . 2 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))))
27 nn0z 11999 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
28 bccl 13677 . . . . . . 7 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ ℤ) → ((2 · 𝑁)C𝑁) ∈ ℕ0)
2913, 27, 28syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
3029nn0cnd 11951 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) ∈ ℂ)
31 2cnd 11709 . . . . 5 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
3221nn0red 11950 . . . . . . 7 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℝ)
3332, 22nndivred 11685 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) ∈ ℝ)
3433recnd 10663 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) ∈ ℂ)
3530, 31, 34mul12d 10843 . . . 4 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1)))))
36 1cnd 10630 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3714, 36, 5addsubd 11012 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − 𝑁) = (((2 · 𝑁) − 𝑁) + 1))
3852timesd 11874 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁))
395, 5, 38mvrladdd 11047 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((2 · 𝑁) − 𝑁) = 𝑁)
4039oveq1d 7165 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) − 𝑁) + 1) = (𝑁 + 1))
4137, 40eqtr2d 2862 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (((2 · 𝑁) + 1) − 𝑁))
4241oveq2d 7166 . . . . . . 7 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) = (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁)))
4342oveq2d 7166 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1))) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
44 fzctr 13014 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
45 bcp1n 13671 . . . . . . 7 (𝑁 ∈ (0...(2 · 𝑁)) → (((2 · 𝑁) + 1)C𝑁) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
4644, 45syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
4743, 46eqtr4d 2864 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1))) = (((2 · 𝑁) + 1)C𝑁))
4847oveq2d 7166 . . . 4 (𝑁 ∈ ℕ0 → (2 · (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
4935, 48eqtrd 2861 . . 3 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
50 bccmpl 13664 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))))
5121, 23, 50syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))))
5222nncnd 11648 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
5338oveq1d 7165 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) = ((𝑁 + 𝑁) + 1))
545, 5, 36addassd 10657 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 + 𝑁) + 1) = (𝑁 + (𝑁 + 1)))
5553, 54eqtrd 2861 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) = (𝑁 + (𝑁 + 1)))
565, 52, 55mvrraddd 11046 . . . . . . 7 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = 𝑁)
5756oveq2d 7166 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))) = (((2 · 𝑁) + 1)C𝑁))
5851, 57eqtrd 2861 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C𝑁))
59 pncan 10886 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
605, 7, 59sylancl 586 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
6160oveq2d 7166 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C((𝑁 + 1) − 1)) = (((2 · 𝑁) + 1)C𝑁))
6258, 61oveq12d 7168 . . . 4 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1)C𝑁) + (((2 · 𝑁) + 1)C𝑁)))
63 bccl 13677 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℕ0𝑁 ∈ ℤ) → (((2 · 𝑁) + 1)C𝑁) ∈ ℕ0)
6421, 27, 63syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) ∈ ℕ0)
6564nn0cnd 11951 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) ∈ ℂ)
66652timesd 11874 . . . 4 (𝑁 ∈ ℕ0 → (2 · (((2 · 𝑁) + 1)C𝑁)) = ((((2 · 𝑁) + 1)C𝑁) + (((2 · 𝑁) + 1)C𝑁)))
6762, 66eqtr4d 2864 . . 3 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
6849, 67eqtr4d 2864 . 2 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))))
6926, 68eqtr4d 2864 1 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864   / cdiv 11291  2c2 11686  0cn0 11891  cz 11975  ...cfz 12887  Ccbc 13657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12385  df-fz 12888  df-seq 13365  df-fac 13629  df-bc 13658
This theorem is referenced by:  bclbnd  25789
  Copyright terms: Public domain W3C validator