MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1ctr Structured version   Visualization version   GIF version

Theorem bcp1ctr 27190
Description: Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1ctr (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))))

Proof of Theorem bcp1ctr
StepHypRef Expression
1 2t1e2 12344 . . . . . . 7 (2 · 1) = 2
2 df-2 12249 . . . . . . 7 2 = (1 + 1)
31, 2eqtri 2752 . . . . . 6 (2 · 1) = (1 + 1)
43oveq2i 7398 . . . . 5 ((2 · 𝑁) + (2 · 1)) = ((2 · 𝑁) + (1 + 1))
5 nn0cn 12452 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
6 2cn 12261 . . . . . . 7 2 ∈ ℂ
7 ax-1cn 11126 . . . . . . 7 1 ∈ ℂ
8 adddi 11157 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
96, 7, 8mp3an13 1454 . . . . . 6 (𝑁 ∈ ℂ → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
105, 9syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
11 2nn0 12459 . . . . . . . 8 2 ∈ ℕ0
12 nn0mulcl 12478 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
1311, 12mpan 690 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℕ0)
1413nn0cnd 12505 . . . . . 6 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℂ)
15 addass 11155 . . . . . . 7 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
167, 7, 15mp3an23 1455 . . . . . 6 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
1714, 16syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
184, 10, 173eqtr4a 2790 . . . 4 (𝑁 ∈ ℕ0 → (2 · (𝑁 + 1)) = (((2 · 𝑁) + 1) + 1))
1918oveq1d 7402 . . 3 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
20 peano2nn0 12482 . . . . 5 ((2 · 𝑁) ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ0)
2113, 20syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ0)
22 nn0p1nn 12481 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
2322nnzd 12556 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
24 bcpasc 14286 . . . 4 ((((2 · 𝑁) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
2521, 23, 24syl2anc 584 . . 3 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
2619, 25eqtr4d 2767 . 2 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))))
27 nn0z 12554 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
28 bccl 14287 . . . . . . 7 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ ℤ) → ((2 · 𝑁)C𝑁) ∈ ℕ0)
2913, 27, 28syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
3029nn0cnd 12505 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) ∈ ℂ)
31 2cnd 12264 . . . . 5 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
3221nn0red 12504 . . . . . . 7 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℝ)
3332, 22nndivred 12240 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) ∈ ℝ)
3433recnd 11202 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) ∈ ℂ)
3530, 31, 34mul12d 11383 . . . 4 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1)))))
36 1cnd 11169 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3714, 36, 5addsubd 11554 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − 𝑁) = (((2 · 𝑁) − 𝑁) + 1))
3852timesd 12425 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁))
395, 5, 38mvrladdd 11591 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((2 · 𝑁) − 𝑁) = 𝑁)
4039oveq1d 7402 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) − 𝑁) + 1) = (𝑁 + 1))
4137, 40eqtr2d 2765 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (((2 · 𝑁) + 1) − 𝑁))
4241oveq2d 7403 . . . . . . 7 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) = (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁)))
4342oveq2d 7403 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1))) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
44 fzctr 13601 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
45 bcp1n 14281 . . . . . . 7 (𝑁 ∈ (0...(2 · 𝑁)) → (((2 · 𝑁) + 1)C𝑁) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
4644, 45syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
4743, 46eqtr4d 2767 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1))) = (((2 · 𝑁) + 1)C𝑁))
4847oveq2d 7403 . . . 4 (𝑁 ∈ ℕ0 → (2 · (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
4935, 48eqtrd 2764 . . 3 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
50 bccmpl 14274 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))))
5121, 23, 50syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))))
5222nncnd 12202 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
5338oveq1d 7402 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) = ((𝑁 + 𝑁) + 1))
545, 5, 36addassd 11196 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 + 𝑁) + 1) = (𝑁 + (𝑁 + 1)))
5553, 54eqtrd 2764 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) = (𝑁 + (𝑁 + 1)))
565, 52, 55mvrraddd 11590 . . . . . . 7 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = 𝑁)
5756oveq2d 7403 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))) = (((2 · 𝑁) + 1)C𝑁))
5851, 57eqtrd 2764 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C𝑁))
59 pncan 11427 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
605, 7, 59sylancl 586 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
6160oveq2d 7403 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C((𝑁 + 1) − 1)) = (((2 · 𝑁) + 1)C𝑁))
6258, 61oveq12d 7405 . . . 4 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1)C𝑁) + (((2 · 𝑁) + 1)C𝑁)))
63 bccl 14287 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℕ0𝑁 ∈ ℤ) → (((2 · 𝑁) + 1)C𝑁) ∈ ℕ0)
6421, 27, 63syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) ∈ ℕ0)
6564nn0cnd 12505 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) ∈ ℂ)
66652timesd 12425 . . . 4 (𝑁 ∈ ℕ0 → (2 · (((2 · 𝑁) + 1)C𝑁)) = ((((2 · 𝑁) + 1)C𝑁) + (((2 · 𝑁) + 1)C𝑁)))
6762, 66eqtr4d 2767 . . 3 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
6849, 67eqtr4d 2767 . 2 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))))
6926, 68eqtr4d 2767 1 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835  2c2 12241  0cn0 12442  cz 12529  ...cfz 13468  Ccbc 14267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-fac 14239  df-bc 14268
This theorem is referenced by:  bclbnd  27191
  Copyright terms: Public domain W3C validator