MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1ctr Structured version   Visualization version   GIF version

Theorem bcp1ctr 27242
Description: Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1ctr (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))))

Proof of Theorem bcp1ctr
StepHypRef Expression
1 2t1e2 12403 . . . . . . 7 (2 · 1) = 2
2 df-2 12303 . . . . . . 7 2 = (1 + 1)
31, 2eqtri 2758 . . . . . 6 (2 · 1) = (1 + 1)
43oveq2i 7416 . . . . 5 ((2 · 𝑁) + (2 · 1)) = ((2 · 𝑁) + (1 + 1))
5 nn0cn 12511 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
6 2cn 12315 . . . . . . 7 2 ∈ ℂ
7 ax-1cn 11187 . . . . . . 7 1 ∈ ℂ
8 adddi 11218 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
96, 7, 8mp3an13 1454 . . . . . 6 (𝑁 ∈ ℂ → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
105, 9syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
11 2nn0 12518 . . . . . . . 8 2 ∈ ℕ0
12 nn0mulcl 12537 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
1311, 12mpan 690 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℕ0)
1413nn0cnd 12564 . . . . . 6 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℂ)
15 addass 11216 . . . . . . 7 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
167, 7, 15mp3an23 1455 . . . . . 6 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
1714, 16syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
184, 10, 173eqtr4a 2796 . . . 4 (𝑁 ∈ ℕ0 → (2 · (𝑁 + 1)) = (((2 · 𝑁) + 1) + 1))
1918oveq1d 7420 . . 3 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
20 peano2nn0 12541 . . . . 5 ((2 · 𝑁) ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ0)
2113, 20syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ0)
22 nn0p1nn 12540 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
2322nnzd 12615 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
24 bcpasc 14339 . . . 4 ((((2 · 𝑁) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
2521, 23, 24syl2anc 584 . . 3 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
2619, 25eqtr4d 2773 . 2 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))))
27 nn0z 12613 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
28 bccl 14340 . . . . . . 7 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ ℤ) → ((2 · 𝑁)C𝑁) ∈ ℕ0)
2913, 27, 28syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
3029nn0cnd 12564 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) ∈ ℂ)
31 2cnd 12318 . . . . 5 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
3221nn0red 12563 . . . . . . 7 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℝ)
3332, 22nndivred 12294 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) ∈ ℝ)
3433recnd 11263 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) ∈ ℂ)
3530, 31, 34mul12d 11444 . . . 4 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1)))))
36 1cnd 11230 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3714, 36, 5addsubd 11615 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − 𝑁) = (((2 · 𝑁) − 𝑁) + 1))
3852timesd 12484 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁))
395, 5, 38mvrladdd 11650 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((2 · 𝑁) − 𝑁) = 𝑁)
4039oveq1d 7420 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) − 𝑁) + 1) = (𝑁 + 1))
4137, 40eqtr2d 2771 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (((2 · 𝑁) + 1) − 𝑁))
4241oveq2d 7421 . . . . . . 7 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) = (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁)))
4342oveq2d 7421 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1))) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
44 fzctr 13657 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
45 bcp1n 14334 . . . . . . 7 (𝑁 ∈ (0...(2 · 𝑁)) → (((2 · 𝑁) + 1)C𝑁) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
4644, 45syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
4743, 46eqtr4d 2773 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1))) = (((2 · 𝑁) + 1)C𝑁))
4847oveq2d 7421 . . . 4 (𝑁 ∈ ℕ0 → (2 · (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
4935, 48eqtrd 2770 . . 3 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
50 bccmpl 14327 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))))
5121, 23, 50syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))))
5222nncnd 12256 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
5338oveq1d 7420 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) = ((𝑁 + 𝑁) + 1))
545, 5, 36addassd 11257 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 + 𝑁) + 1) = (𝑁 + (𝑁 + 1)))
5553, 54eqtrd 2770 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) = (𝑁 + (𝑁 + 1)))
565, 52, 55mvrraddd 11649 . . . . . . 7 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = 𝑁)
5756oveq2d 7421 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))) = (((2 · 𝑁) + 1)C𝑁))
5851, 57eqtrd 2770 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C𝑁))
59 pncan 11488 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
605, 7, 59sylancl 586 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
6160oveq2d 7421 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C((𝑁 + 1) − 1)) = (((2 · 𝑁) + 1)C𝑁))
6258, 61oveq12d 7423 . . . 4 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1)C𝑁) + (((2 · 𝑁) + 1)C𝑁)))
63 bccl 14340 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℕ0𝑁 ∈ ℤ) → (((2 · 𝑁) + 1)C𝑁) ∈ ℕ0)
6421, 27, 63syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) ∈ ℕ0)
6564nn0cnd 12564 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) ∈ ℂ)
66652timesd 12484 . . . 4 (𝑁 ∈ ℕ0 → (2 · (((2 · 𝑁) + 1)C𝑁)) = ((((2 · 𝑁) + 1)C𝑁) + (((2 · 𝑁) + 1)C𝑁)))
6762, 66eqtr4d 2773 . . 3 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
6849, 67eqtr4d 2773 . 2 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))))
6926, 68eqtr4d 2773 1 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466   / cdiv 11894  2c2 12295  0cn0 12501  cz 12588  ...cfz 13524  Ccbc 14320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-fac 14292  df-bc 14321
This theorem is referenced by:  bclbnd  27243
  Copyright terms: Public domain W3C validator