MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1ctr Structured version   Visualization version   GIF version

Theorem bcp1ctr 27337
Description: Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1ctr (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))))

Proof of Theorem bcp1ctr
StepHypRef Expression
1 2t1e2 12426 . . . . . . 7 (2 · 1) = 2
2 df-2 12326 . . . . . . 7 2 = (1 + 1)
31, 2eqtri 2762 . . . . . 6 (2 · 1) = (1 + 1)
43oveq2i 7441 . . . . 5 ((2 · 𝑁) + (2 · 1)) = ((2 · 𝑁) + (1 + 1))
5 nn0cn 12533 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
6 2cn 12338 . . . . . . 7 2 ∈ ℂ
7 ax-1cn 11210 . . . . . . 7 1 ∈ ℂ
8 adddi 11241 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
96, 7, 8mp3an13 1451 . . . . . 6 (𝑁 ∈ ℂ → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
105, 9syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
11 2nn0 12540 . . . . . . . 8 2 ∈ ℕ0
12 nn0mulcl 12559 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
1311, 12mpan 690 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℕ0)
1413nn0cnd 12586 . . . . . 6 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℂ)
15 addass 11239 . . . . . . 7 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
167, 7, 15mp3an23 1452 . . . . . 6 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
1714, 16syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
184, 10, 173eqtr4a 2800 . . . 4 (𝑁 ∈ ℕ0 → (2 · (𝑁 + 1)) = (((2 · 𝑁) + 1) + 1))
1918oveq1d 7445 . . 3 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
20 peano2nn0 12563 . . . . 5 ((2 · 𝑁) ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ0)
2113, 20syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ0)
22 nn0p1nn 12562 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
2322nnzd 12637 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
24 bcpasc 14356 . . . 4 ((((2 · 𝑁) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
2521, 23, 24syl2anc 584 . . 3 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
2619, 25eqtr4d 2777 . 2 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))))
27 nn0z 12635 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
28 bccl 14357 . . . . . . 7 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ ℤ) → ((2 · 𝑁)C𝑁) ∈ ℕ0)
2913, 27, 28syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
3029nn0cnd 12586 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) ∈ ℂ)
31 2cnd 12341 . . . . 5 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
3221nn0red 12585 . . . . . . 7 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℝ)
3332, 22nndivred 12317 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) ∈ ℝ)
3433recnd 11286 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) ∈ ℂ)
3530, 31, 34mul12d 11467 . . . 4 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1)))))
36 1cnd 11253 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3714, 36, 5addsubd 11638 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − 𝑁) = (((2 · 𝑁) − 𝑁) + 1))
3852timesd 12506 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁))
395, 5, 38mvrladdd 11673 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((2 · 𝑁) − 𝑁) = 𝑁)
4039oveq1d 7445 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) − 𝑁) + 1) = (𝑁 + 1))
4137, 40eqtr2d 2775 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (((2 · 𝑁) + 1) − 𝑁))
4241oveq2d 7446 . . . . . . 7 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) = (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁)))
4342oveq2d 7446 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1))) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
44 fzctr 13676 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
45 bcp1n 14351 . . . . . . 7 (𝑁 ∈ (0...(2 · 𝑁)) → (((2 · 𝑁) + 1)C𝑁) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
4644, 45syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
4743, 46eqtr4d 2777 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1))) = (((2 · 𝑁) + 1)C𝑁))
4847oveq2d 7446 . . . 4 (𝑁 ∈ ℕ0 → (2 · (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
4935, 48eqtrd 2774 . . 3 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
50 bccmpl 14344 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))))
5121, 23, 50syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))))
5222nncnd 12279 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
5338oveq1d 7445 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) = ((𝑁 + 𝑁) + 1))
545, 5, 36addassd 11280 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 + 𝑁) + 1) = (𝑁 + (𝑁 + 1)))
5553, 54eqtrd 2774 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) = (𝑁 + (𝑁 + 1)))
565, 52, 55mvrraddd 11672 . . . . . . 7 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = 𝑁)
5756oveq2d 7446 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))) = (((2 · 𝑁) + 1)C𝑁))
5851, 57eqtrd 2774 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C𝑁))
59 pncan 11511 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
605, 7, 59sylancl 586 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
6160oveq2d 7446 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C((𝑁 + 1) − 1)) = (((2 · 𝑁) + 1)C𝑁))
6258, 61oveq12d 7448 . . . 4 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1)C𝑁) + (((2 · 𝑁) + 1)C𝑁)))
63 bccl 14357 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℕ0𝑁 ∈ ℤ) → (((2 · 𝑁) + 1)C𝑁) ∈ ℕ0)
6421, 27, 63syl2anc 584 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) ∈ ℕ0)
6564nn0cnd 12586 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) ∈ ℂ)
66652timesd 12506 . . . 4 (𝑁 ∈ ℕ0 → (2 · (((2 · 𝑁) + 1)C𝑁)) = ((((2 · 𝑁) + 1)C𝑁) + (((2 · 𝑁) + 1)C𝑁)))
6762, 66eqtr4d 2777 . . 3 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
6849, 67eqtr4d 2777 . 2 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))))
6926, 68eqtr4d 2777 1 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489   / cdiv 11917  2c2 12318  0cn0 12523  cz 12610  ...cfz 13543  Ccbc 14337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-fac 14309  df-bc 14338
This theorem is referenced by:  bclbnd  27338
  Copyright terms: Public domain W3C validator