MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opoe Structured version   Visualization version   GIF version

Theorem opoe 16000
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
opoe (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))

Proof of Theorem opoe
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 15978 . . . . 5 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 odd2np1 15978 . . . . 5 (𝐵 ∈ ℤ → (¬ 2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
31, 2bi2anan9 635 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵)))
4 reeanv 3292 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
5 2z 12282 . . . . . . . . 9 2 ∈ ℤ
6 zaddcl 12290 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
76peano2zd 12358 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎 + 𝑏) + 1) ∈ ℤ)
8 dvdsmul1 15915 . . . . . . . . 9 ((2 ∈ ℤ ∧ ((𝑎 + 𝑏) + 1) ∈ ℤ) → 2 ∥ (2 · ((𝑎 + 𝑏) + 1)))
95, 7, 8sylancr 586 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (2 · ((𝑎 + 𝑏) + 1)))
10 zcn 12254 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
11 zcn 12254 . . . . . . . . 9 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
12 addcl 10884 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
13 2cn 11978 . . . . . . . . . . . . . 14 2 ∈ ℂ
14 ax-1cn 10860 . . . . . . . . . . . . . 14 1 ∈ ℂ
15 adddi 10891 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑎 + 𝑏) ∈ ℂ ∧ 1 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
1613, 14, 15mp3an13 1450 . . . . . . . . . . . . 13 ((𝑎 + 𝑏) ∈ ℂ → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
1712, 16syl 17 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
18 adddi 10891 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
1913, 18mp3an1 1446 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
2019oveq1d 7270 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎 + 𝑏)) + (2 · 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)))
2117, 20eqtrd 2778 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)))
22 2t1e2 12066 . . . . . . . . . . . . 13 (2 · 1) = 2
23 df-2 11966 . . . . . . . . . . . . 13 2 = (1 + 1)
2422, 23eqtri 2766 . . . . . . . . . . . 12 (2 · 1) = (1 + 1)
2524oveq2i 7266 . . . . . . . . . . 11 (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1))
2621, 25eqtrdi 2795 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)))
27 mulcl 10886 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
2813, 27mpan 686 . . . . . . . . . . 11 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
29 mulcl 10886 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
3013, 29mpan 686 . . . . . . . . . . 11 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
31 add4 11125 . . . . . . . . . . . 12 ((((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ)) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3214, 14, 31mpanr12 701 . . . . . . . . . . 11 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3328, 30, 32syl2an 595 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3426, 33eqtrd 2778 . . . . . . . . 9 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3510, 11, 34syl2an 595 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
369, 35breqtrd 5096 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
37 oveq12 7264 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)) = (𝐴 + 𝐵))
3837breq2d 5082 . . . . . . 7 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (2 ∥ (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)) ↔ 2 ∥ (𝐴 + 𝐵)))
3936, 38syl5ibcom 244 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵)))
4039rexlimivv 3220 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵))
414, 40sylbir 234 . . . 4 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵))
423, 41syl6bi 252 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 2 ∥ (𝐴 + 𝐵)))
4342imp 406 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
4443an4s 656 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  2c2 11958  cz 12249  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-dvds 15892
This theorem is referenced by:  sumodd  16025  pythagtriplem11  16454  prmlem0  16735  eupth2lem3lem4  28496
  Copyright terms: Public domain W3C validator