MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opoe Structured version   Visualization version   GIF version

Theorem opoe 16400
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
opoe (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))

Proof of Theorem opoe
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 16378 . . . . 5 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 odd2np1 16378 . . . . 5 (𝐵 ∈ ℤ → (¬ 2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
31, 2bi2anan9 638 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵)))
4 reeanv 3229 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
5 2z 12649 . . . . . . . . 9 2 ∈ ℤ
6 zaddcl 12657 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
76peano2zd 12725 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎 + 𝑏) + 1) ∈ ℤ)
8 dvdsmul1 16315 . . . . . . . . 9 ((2 ∈ ℤ ∧ ((𝑎 + 𝑏) + 1) ∈ ℤ) → 2 ∥ (2 · ((𝑎 + 𝑏) + 1)))
95, 7, 8sylancr 587 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (2 · ((𝑎 + 𝑏) + 1)))
10 zcn 12618 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
11 zcn 12618 . . . . . . . . 9 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
12 addcl 11237 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
13 2cn 12341 . . . . . . . . . . . . . 14 2 ∈ ℂ
14 ax-1cn 11213 . . . . . . . . . . . . . 14 1 ∈ ℂ
15 adddi 11244 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑎 + 𝑏) ∈ ℂ ∧ 1 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
1613, 14, 15mp3an13 1454 . . . . . . . . . . . . 13 ((𝑎 + 𝑏) ∈ ℂ → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
1712, 16syl 17 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
18 adddi 11244 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
1913, 18mp3an1 1450 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
2019oveq1d 7446 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎 + 𝑏)) + (2 · 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)))
2117, 20eqtrd 2777 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)))
22 2t1e2 12429 . . . . . . . . . . . . 13 (2 · 1) = 2
23 df-2 12329 . . . . . . . . . . . . 13 2 = (1 + 1)
2422, 23eqtri 2765 . . . . . . . . . . . 12 (2 · 1) = (1 + 1)
2524oveq2i 7442 . . . . . . . . . . 11 (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1))
2621, 25eqtrdi 2793 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)))
27 mulcl 11239 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
2813, 27mpan 690 . . . . . . . . . . 11 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
29 mulcl 11239 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
3013, 29mpan 690 . . . . . . . . . . 11 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
31 add4 11482 . . . . . . . . . . . 12 ((((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ)) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3214, 14, 31mpanr12 705 . . . . . . . . . . 11 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3328, 30, 32syl2an 596 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3426, 33eqtrd 2777 . . . . . . . . 9 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3510, 11, 34syl2an 596 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
369, 35breqtrd 5169 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
37 oveq12 7440 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)) = (𝐴 + 𝐵))
3837breq2d 5155 . . . . . . 7 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (2 ∥ (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)) ↔ 2 ∥ (𝐴 + 𝐵)))
3936, 38syl5ibcom 245 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵)))
4039rexlimivv 3201 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵))
414, 40sylbir 235 . . . 4 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵))
423, 41biimtrdi 253 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 2 ∥ (𝐴 + 𝐵)))
4342imp 406 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
4443an4s 660 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3070   class class class wbr 5143  (class class class)co 7431  cc 11153  1c1 11156   + caddc 11158   · cmul 11160  2c2 12321  cz 12613  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-dvds 16291
This theorem is referenced by:  sumodd  16425  pythagtriplem11  16863  prmlem0  17143  eupth2lem3lem4  30250  evenwodadd  46903
  Copyright terms: Public domain W3C validator