MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opoe Structured version   Visualization version   GIF version

Theorem opoe 16290
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
opoe (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))

Proof of Theorem opoe
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 16268 . . . . 5 (𝐴 ∈ ℤ → (¬ 2 ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴))
2 odd2np1 16268 . . . . 5 (𝐵 ∈ ℤ → (¬ 2 ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
31, 2bi2anan9 637 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵)))
4 reeanv 3226 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) ↔ (∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵))
5 2z 12578 . . . . . . . . 9 2 ∈ ℤ
6 zaddcl 12586 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
76peano2zd 12653 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑎 + 𝑏) + 1) ∈ ℤ)
8 dvdsmul1 16205 . . . . . . . . 9 ((2 ∈ ℤ ∧ ((𝑎 + 𝑏) + 1) ∈ ℤ) → 2 ∥ (2 · ((𝑎 + 𝑏) + 1)))
95, 7, 8sylancr 587 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (2 · ((𝑎 + 𝑏) + 1)))
10 zcn 12547 . . . . . . . . 9 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
11 zcn 12547 . . . . . . . . 9 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
12 addcl 11176 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
13 2cn 12271 . . . . . . . . . . . . . 14 2 ∈ ℂ
14 ax-1cn 11152 . . . . . . . . . . . . . 14 1 ∈ ℂ
15 adddi 11183 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑎 + 𝑏) ∈ ℂ ∧ 1 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
1613, 14, 15mp3an13 1452 . . . . . . . . . . . . 13 ((𝑎 + 𝑏) ∈ ℂ → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
1712, 16syl 17 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = ((2 · (𝑎 + 𝑏)) + (2 · 1)))
18 adddi 11183 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
1913, 18mp3an1 1448 . . . . . . . . . . . . 13 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · (𝑎 + 𝑏)) = ((2 · 𝑎) + (2 · 𝑏)))
2019oveq1d 7409 . . . . . . . . . . . 12 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((2 · (𝑎 + 𝑏)) + (2 · 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)))
2117, 20eqtrd 2772 . . . . . . . . . . 11 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)))
22 2t1e2 12359 . . . . . . . . . . . . 13 (2 · 1) = 2
23 df-2 12259 . . . . . . . . . . . . 13 2 = (1 + 1)
2422, 23eqtri 2760 . . . . . . . . . . . 12 (2 · 1) = (1 + 1)
2524oveq2i 7405 . . . . . . . . . . 11 (((2 · 𝑎) + (2 · 𝑏)) + (2 · 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1))
2621, 25eqtrdi 2788 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)))
27 mulcl 11178 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (2 · 𝑎) ∈ ℂ)
2813, 27mpan 688 . . . . . . . . . . 11 (𝑎 ∈ ℂ → (2 · 𝑎) ∈ ℂ)
29 mulcl 11178 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · 𝑏) ∈ ℂ)
3013, 29mpan 688 . . . . . . . . . . 11 (𝑏 ∈ ℂ → (2 · 𝑏) ∈ ℂ)
31 add4 11418 . . . . . . . . . . . 12 ((((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) ∧ (1 ∈ ℂ ∧ 1 ∈ ℂ)) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3214, 14, 31mpanr12 703 . . . . . . . . . . 11 (((2 · 𝑎) ∈ ℂ ∧ (2 · 𝑏) ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3328, 30, 32syl2an 596 . . . . . . . . . 10 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (((2 · 𝑎) + (2 · 𝑏)) + (1 + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3426, 33eqtrd 2772 . . . . . . . . 9 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
3510, 11, 34syl2an 596 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (2 · ((𝑎 + 𝑏) + 1)) = (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
369, 35breqtrd 5168 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 2 ∥ (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)))
37 oveq12 7403 . . . . . . . 8 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)) = (𝐴 + 𝐵))
3837breq2d 5154 . . . . . . 7 ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → (2 ∥ (((2 · 𝑎) + 1) + ((2 · 𝑏) + 1)) ↔ 2 ∥ (𝐴 + 𝐵)))
3936, 38syl5ibcom 244 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵)))
4039rexlimivv 3199 . . . . 5 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (((2 · 𝑎) + 1) = 𝐴 ∧ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵))
414, 40sylbir 234 . . . 4 ((∃𝑎 ∈ ℤ ((2 · 𝑎) + 1) = 𝐴 ∧ ∃𝑏 ∈ ℤ ((2 · 𝑏) + 1) = 𝐵) → 2 ∥ (𝐴 + 𝐵))
423, 41syl6bi 252 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 2 ∥ (𝐴 + 𝐵)))
4342imp 407 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
4443an4s 658 1 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3070   class class class wbr 5142  (class class class)co 7394  cc 11092  1c1 11095   + caddc 11097   · cmul 11099  2c2 12251  cz 12542  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-n0 12457  df-z 12543  df-dvds 16182
This theorem is referenced by:  sumodd  16315  pythagtriplem11  16742  prmlem0  17023  eupth2lem3lem4  29413
  Copyright terms: Public domain W3C validator