Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isermulc2 | Structured version Visualization version GIF version |
Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Mario Carneiro, 1-Feb-2014.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isermulc2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isermulc2.4 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
isermulc2.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
isermulc2.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
isermulc2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
Ref | Expression |
---|---|
isermulc2 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2ser.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isermulc2.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | isermulc2.5 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
4 | isermulc2.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | seqex 13816 | . . 3 ⊢ seq𝑀( + , 𝐺) ∈ V | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ V) |
7 | isermulc2.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
8 | 1, 2, 7 | serf 13844 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
9 | 8 | ffvelcdmda 7011 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ) |
10 | addcl 11046 | . . . 4 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
11 | 10 | adantl 482 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
12 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℂ) |
13 | adddi 11053 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥))) | |
14 | 13 | 3expb 1119 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥))) |
15 | 12, 14 | sylan 580 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥))) |
16 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
17 | 16, 1 | eleqtrdi 2847 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
18 | elfzuz 13345 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
19 | 18, 1 | eleqtrrdi 2848 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ 𝑍) |
20 | 19, 7 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
21 | 20 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
22 | isermulc2.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) | |
23 | 19, 22 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
24 | 23 | adantlr 712 | . . 3 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
25 | 11, 15, 17, 21, 24 | seqdistr 13867 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑗) = (𝐶 · (seq𝑀( + , 𝐹)‘𝑗))) |
26 | 1, 2, 3, 4, 6, 9, 25 | climmulc2 15437 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 ℂcc 10962 + caddc 10967 · cmul 10969 ℤcz 12412 ℤ≥cuz 12675 ...cfz 13332 seqcseq 13814 ⇝ cli 15284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-sup 9291 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-fz 13333 df-seq 13815 df-exp 13876 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 |
This theorem is referenced by: isummulc2 15565 cvgcmpce 15621 mertens 15689 ege2le3 15890 eftlub 15909 geolim3 25597 abelthlem6 25693 abelthlem7 25695 logtayl2 25915 atantayl 26185 log2cnv 26192 log2tlbnd 26193 lgamgulmlem4 26279 geomcau 36015 binomcxplemnotnn0 42284 fouriersw 44097 |
Copyright terms: Public domain | W3C validator |