MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isermulc2 Structured version   Visualization version   GIF version

Theorem isermulc2 14836
Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
isermulc2.2 (𝜑𝑀 ∈ ℤ)
isermulc2.4 (𝜑𝐶 ∈ ℂ)
isermulc2.5 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
isermulc2.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
isermulc2.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
Assertion
Ref Expression
isermulc2 (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝐶,𝑘   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍

Proof of Theorem isermulc2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clim2ser.1 . 2 𝑍 = (ℤ𝑀)
2 isermulc2.2 . 2 (𝜑𝑀 ∈ ℤ)
3 isermulc2.5 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
4 isermulc2.4 . 2 (𝜑𝐶 ∈ ℂ)
5 seqex 13209 . . 3 seq𝑀( + , 𝐺) ∈ V
65a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐺) ∈ V)
7 isermulc2.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
81, 2, 7serf 13236 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
98ffvelrnda 6707 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
10 addcl 10454 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
1110adantl 482 . . 3 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
124adantr 481 . . . 4 ((𝜑𝑗𝑍) → 𝐶 ∈ ℂ)
13 adddi 10461 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥)))
14133expb 1111 . . . 4 ((𝐶 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥)))
1512, 14sylan 580 . . 3 (((𝜑𝑗𝑍) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 · (𝑘 + 𝑥)) = ((𝐶 · 𝑘) + (𝐶 · 𝑥)))
16 simpr 485 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝑍)
1716, 1syl6eleq 2891 . . 3 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
18 elfzuz 12743 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
1918, 1syl6eleqr 2892 . . . . 5 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
2019, 7sylan2 592 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
2120adantlr 711 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
22 isermulc2.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
2319, 22sylan2 592 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
2423adantlr 711 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))
2511, 15, 17, 21, 24seqdistr 13259 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐺)‘𝑗) = (𝐶 · (seq𝑀( + , 𝐹)‘𝑗)))
261, 2, 3, 4, 6, 9, 25climmulc2 14815 1 (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wcel 2079  Vcvv 3432   class class class wbr 4956  cfv 6217  (class class class)co 7007  cc 10370   + caddc 10375   · cmul 10377  cz 11818  cuz 12082  ...cfz 12731  seqcseq 13207  cli 14663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-sup 8742  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-n0 11735  df-z 11819  df-uz 12083  df-rp 12229  df-fz 12732  df-seq 13208  df-exp 13268  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-clim 14667
This theorem is referenced by:  isummulc2  14938  cvgcmpce  14994  mertens  15063  ege2le3  15264  eftlub  15283  geolim3  24599  abelthlem6  24695  abelthlem7  24697  logtayl2  24914  atantayl  25184  log2cnv  25192  log2tlbnd  25193  lgamgulmlem4  25279  geomcau  34512  binomcxplemnotnn0  40178  fouriersw  42012
  Copyright terms: Public domain W3C validator