Proof of Theorem efieq1re
Step | Hyp | Ref
| Expression |
1 | | replim 14524 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i ·
(ℑ‘𝐴)))) |
2 | 1 | oveq2d 7167 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (i
· 𝐴) = (i ·
((ℜ‘𝐴) + (i
· (ℑ‘𝐴))))) |
3 | | ax-icn 10635 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
4 | | recl 14518 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℝ) |
5 | 4 | recnd 10708 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℂ) |
6 | | imcl 14519 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℝ) |
7 | 6 | recnd 10708 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℂ) |
8 | | mulcl 10660 |
. . . . . . . . . . 11
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i ·
(ℑ‘𝐴)) ∈
ℂ) |
9 | 3, 7, 8 | sylancr 591 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (i
· (ℑ‘𝐴))
∈ ℂ) |
10 | | adddi 10665 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ ∧ (i ·
(ℑ‘𝐴)) ∈
ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i ·
(ℜ‘𝐴)) + (i
· (i · (ℑ‘𝐴))))) |
11 | 3, 5, 9, 10 | mp3an2i 1464 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (i
· ((ℜ‘𝐴)
+ (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i ·
(ℑ‘𝐴))))) |
12 | | ixi 11308 |
. . . . . . . . . . . 12
⊢ (i
· i) = -1 |
13 | 12 | oveq1i 7161 |
. . . . . . . . . . 11
⊢ ((i
· i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴)) |
14 | | mulass 10664 |
. . . . . . . . . . . 12
⊢ ((i
∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i)
· (ℑ‘𝐴))
= (i · (i · (ℑ‘𝐴)))) |
15 | 3, 3, 7, 14 | mp3an12i 1463 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → ((i
· i) · (ℑ‘𝐴)) = (i · (i ·
(ℑ‘𝐴)))) |
16 | 7 | mulm1d 11131 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (-1
· (ℑ‘𝐴))
= -(ℑ‘𝐴)) |
17 | 13, 15, 16 | 3eqtr3a 2818 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (i
· (i · (ℑ‘𝐴))) = -(ℑ‘𝐴)) |
18 | 17 | oveq2d 7167 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((i
· (ℜ‘𝐴))
+ (i · (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) |
19 | 11, 18 | eqtrd 2794 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (i
· ((ℜ‘𝐴)
+ (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) |
20 | 2, 19 | eqtrd 2794 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (i
· 𝐴) = ((i ·
(ℜ‘𝐴)) +
-(ℑ‘𝐴))) |
21 | 20 | fveq2d 6663 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘(i · 𝐴))
= (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))) |
22 | | mulcl 10660 |
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i ·
(ℜ‘𝐴)) ∈
ℂ) |
23 | 3, 5, 22 | sylancr 591 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (i
· (ℜ‘𝐴))
∈ ℂ) |
24 | 6 | renegcld 11106 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
-(ℑ‘𝐴) ∈
ℝ) |
25 | 24 | recnd 10708 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
-(ℑ‘𝐴) ∈
ℂ) |
26 | | efadd 15496 |
. . . . . . 7
⊢ (((i
· (ℜ‘𝐴))
∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (exp‘((i
· (ℜ‘𝐴))
+ -(ℑ‘𝐴))) =
((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) |
27 | 23, 25, 26 | syl2anc 588 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i ·
(ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) |
28 | 21, 27 | eqtrd 2794 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(exp‘(i · 𝐴))
= ((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) |
29 | 28 | eqeq1d 2761 |
. . . 4
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
= 1 ↔ ((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1)) |
30 | | efcl 15485 |
. . . . . . . . 9
⊢ ((i
· (ℜ‘𝐴))
∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ) |
31 | 23, 30 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(exp‘(i · (ℜ‘𝐴))) ∈ ℂ) |
32 | | efcl 15485 |
. . . . . . . . 9
⊢
(-(ℑ‘𝐴)
∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ) |
33 | 25, 32 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(exp‘-(ℑ‘𝐴)) ∈ ℂ) |
34 | 31, 33 | absmuld 14863 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
(abs‘((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) = ((abs‘(exp‘(i ·
(ℜ‘𝐴))))
· (abs‘(exp‘-(ℑ‘𝐴))))) |
35 | | absefi 15598 |
. . . . . . . . 9
⊢
((ℜ‘𝐴)
∈ ℝ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1) |
36 | 4, 35 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(abs‘(exp‘(i · (ℜ‘𝐴)))) = 1) |
37 | 24 | reefcld 15490 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(exp‘-(ℑ‘𝐴)) ∈ ℝ) |
38 | | efgt0 15505 |
. . . . . . . . . . 11
⊢
(-(ℑ‘𝐴)
∈ ℝ → 0 < (exp‘-(ℑ‘𝐴))) |
39 | 24, 38 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → 0 <
(exp‘-(ℑ‘𝐴))) |
40 | | 0re 10682 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
41 | | ltle 10768 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ (exp‘-(ℑ‘𝐴)) ∈ ℝ) → (0 <
(exp‘-(ℑ‘𝐴)) → 0 ≤
(exp‘-(ℑ‘𝐴)))) |
42 | 40, 41 | mpan 690 |
. . . . . . . . . 10
⊢
((exp‘-(ℑ‘𝐴)) ∈ ℝ → (0 <
(exp‘-(ℑ‘𝐴)) → 0 ≤
(exp‘-(ℑ‘𝐴)))) |
43 | 37, 39, 42 | sylc 65 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → 0 ≤
(exp‘-(ℑ‘𝐴))) |
44 | 37, 43 | absidd 14831 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(abs‘(exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴))) |
45 | 36, 44 | oveq12d 7169 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
((abs‘(exp‘(i · (ℜ‘𝐴)))) ·
(abs‘(exp‘-(ℑ‘𝐴)))) = (1 ·
(exp‘-(ℑ‘𝐴)))) |
46 | 33 | mulid2d 10698 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (1
· (exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴))) |
47 | 34, 45, 46 | 3eqtrrd 2799 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘-(ℑ‘𝐴)) = (abs‘((exp‘(i ·
(ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))))) |
48 | | fveq2 6659 |
. . . . . 6
⊢
(((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1 → (abs‘((exp‘(i
· (ℜ‘𝐴)))
· (exp‘-(ℑ‘𝐴)))) = (abs‘1)) |
49 | 47, 48 | sylan9eq 2814 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1) →
(exp‘-(ℑ‘𝐴)) = (abs‘1)) |
50 | 49 | ex 417 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1 →
(exp‘-(ℑ‘𝐴)) = (abs‘1))) |
51 | 29, 50 | sylbid 243 |
. . 3
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
= 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1))) |
52 | 7 | negeq0d 11028 |
. . . 4
⊢ (𝐴 ∈ ℂ →
((ℑ‘𝐴) = 0
↔ -(ℑ‘𝐴) =
0)) |
53 | | reim0b 14527 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔
(ℑ‘𝐴) =
0)) |
54 | | ef0 15493 |
. . . . . . 7
⊢
(exp‘0) = 1 |
55 | | abs1 14706 |
. . . . . . 7
⊢
(abs‘1) = 1 |
56 | 54, 55 | eqtr4i 2785 |
. . . . . 6
⊢
(exp‘0) = (abs‘1) |
57 | 56 | eqeq2i 2772 |
. . . . 5
⊢
((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔
(exp‘-(ℑ‘𝐴)) = (abs‘1)) |
58 | | reef11 15521 |
. . . . . 6
⊢
((-(ℑ‘𝐴)
∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔
-(ℑ‘𝐴) =
0)) |
59 | 24, 40, 58 | sylancl 590 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔
-(ℑ‘𝐴) =
0)) |
60 | 57, 59 | bitr3id 288 |
. . . 4
⊢ (𝐴 ∈ ℂ →
((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔
-(ℑ‘𝐴) =
0)) |
61 | 52, 53, 60 | 3bitr4rd 316 |
. . 3
⊢ (𝐴 ∈ ℂ →
((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ 𝐴 ∈ ℝ)) |
62 | 51, 61 | sylibd 242 |
. 2
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
= 1 → 𝐴 ∈
ℝ)) |
63 | 62 | imp 411 |
1
⊢ ((𝐴 ∈ ℂ ∧
(exp‘(i · 𝐴))
= 1) → 𝐴 ∈
ℝ) |