MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efieq1re Structured version   Visualization version   GIF version

Theorem efieq1re 16232
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
efieq1re ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)

Proof of Theorem efieq1re
StepHypRef Expression
1 replim 15152 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21oveq2d 7447 . . . . . . . 8 (𝐴 ∈ ℂ → (i · 𝐴) = (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
3 ax-icn 11212 . . . . . . . . . 10 i ∈ ℂ
4 recl 15146 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54recnd 11287 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
6 imcl 15147 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76recnd 11287 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
8 mulcl 11237 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
93, 7, 8sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
10 adddi 11242 . . . . . . . . . 10 ((i ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
113, 5, 9, 10mp3an2i 1465 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
12 ixi 11890 . . . . . . . . . . . 12 (i · i) = -1
1312oveq1i 7441 . . . . . . . . . . 11 ((i · i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴))
14 mulass 11241 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
153, 3, 7, 14mp3an12i 1464 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
167mulm1d 11713 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
1713, 15, 163eqtr3a 2799 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (i · (ℑ‘𝐴))) = -(ℑ‘𝐴))
1817oveq2d 7447 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
1911, 18eqtrd 2775 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
202, 19eqtrd 2775 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
2120fveq2d 6911 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))))
22 mulcl 11237 . . . . . . . 8 ((i ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · (ℜ‘𝐴)) ∈ ℂ)
233, 5, 22sylancr 587 . . . . . . 7 (𝐴 ∈ ℂ → (i · (ℜ‘𝐴)) ∈ ℂ)
246renegcld 11688 . . . . . . . 8 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
2524recnd 11287 . . . . . . 7 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℂ)
26 efadd 16127 . . . . . . 7 (((i · (ℜ‘𝐴)) ∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
2723, 25, 26syl2anc 584 . . . . . 6 (𝐴 ∈ ℂ → (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
2821, 27eqtrd 2775 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
2928eqeq1d 2737 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 ↔ ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1))
30 efcl 16115 . . . . . . . . 9 ((i · (ℜ‘𝐴)) ∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ)
3123, 30syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ)
32 efcl 16115 . . . . . . . . 9 (-(ℑ‘𝐴) ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ)
3325, 32syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ)
3431, 33absmuld 15490 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))) = ((abs‘(exp‘(i · (ℜ‘𝐴)))) · (abs‘(exp‘-(ℑ‘𝐴)))))
35 absefi 16229 . . . . . . . . 9 ((ℜ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1)
364, 35syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1)
3724reefcld 16121 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℝ)
38 efgt0 16136 . . . . . . . . . . 11 (-(ℑ‘𝐴) ∈ ℝ → 0 < (exp‘-(ℑ‘𝐴)))
3924, 38syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 < (exp‘-(ℑ‘𝐴)))
40 0re 11261 . . . . . . . . . . 11 0 ∈ ℝ
41 ltle 11347 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (exp‘-(ℑ‘𝐴)) ∈ ℝ) → (0 < (exp‘-(ℑ‘𝐴)) → 0 ≤ (exp‘-(ℑ‘𝐴))))
4240, 41mpan 690 . . . . . . . . . 10 ((exp‘-(ℑ‘𝐴)) ∈ ℝ → (0 < (exp‘-(ℑ‘𝐴)) → 0 ≤ (exp‘-(ℑ‘𝐴))))
4337, 39, 42sylc 65 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (exp‘-(ℑ‘𝐴)))
4437, 43absidd 15458 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘(exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴)))
4536, 44oveq12d 7449 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (ℜ‘𝐴)))) · (abs‘(exp‘-(ℑ‘𝐴)))) = (1 · (exp‘-(ℑ‘𝐴))))
4633mullidd 11277 . . . . . . 7 (𝐴 ∈ ℂ → (1 · (exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴)))
4734, 45, 463eqtrrd 2780 . . . . . 6 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) = (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))))
48 fveq2 6907 . . . . . 6 (((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1 → (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))) = (abs‘1))
4947, 48sylan9eq 2795 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1) → (exp‘-(ℑ‘𝐴)) = (abs‘1))
5049ex 412 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1)))
5129, 50sylbid 240 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1)))
527negeq0d 11610 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 ↔ -(ℑ‘𝐴) = 0))
53 reim0b 15155 . . . 4 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
54 ef0 16124 . . . . . . 7 (exp‘0) = 1
55 abs1 15333 . . . . . . 7 (abs‘1) = 1
5654, 55eqtr4i 2766 . . . . . 6 (exp‘0) = (abs‘1)
5756eqeq2i 2748 . . . . 5 ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ (exp‘-(ℑ‘𝐴)) = (abs‘1))
58 reef11 16152 . . . . . 6 ((-(ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
5924, 40, 58sylancl 586 . . . . 5 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
6057, 59bitr3id 285 . . . 4 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ -(ℑ‘𝐴) = 0))
6152, 53, 603bitr4rd 312 . . 3 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ 𝐴 ∈ ℝ))
6251, 61sylibd 239 . 2 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 → 𝐴 ∈ ℝ))
6362imp 406 1 ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154  ici 11155   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  -cneg 11491  cre 15133  cim 15134  abscabs 15270  expce 16094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator