MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efieq1re Structured version   Visualization version   GIF version

Theorem efieq1re 15544
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
efieq1re ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)

Proof of Theorem efieq1re
StepHypRef Expression
1 replim 14467 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21oveq2d 7151 . . . . . . . 8 (𝐴 ∈ ℂ → (i · 𝐴) = (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
3 ax-icn 10585 . . . . . . . . . 10 i ∈ ℂ
4 recl 14461 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54recnd 10658 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
6 imcl 14462 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76recnd 10658 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
8 mulcl 10610 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
93, 7, 8sylancr 590 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
10 adddi 10615 . . . . . . . . . 10 ((i ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
113, 5, 9, 10mp3an2i 1463 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
12 ixi 11258 . . . . . . . . . . . 12 (i · i) = -1
1312oveq1i 7145 . . . . . . . . . . 11 ((i · i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴))
14 mulass 10614 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
153, 3, 7, 14mp3an12i 1462 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
167mulm1d 11081 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
1713, 15, 163eqtr3a 2857 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (i · (ℑ‘𝐴))) = -(ℑ‘𝐴))
1817oveq2d 7151 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
1911, 18eqtrd 2833 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
202, 19eqtrd 2833 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
2120fveq2d 6649 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))))
22 mulcl 10610 . . . . . . . 8 ((i ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · (ℜ‘𝐴)) ∈ ℂ)
233, 5, 22sylancr 590 . . . . . . 7 (𝐴 ∈ ℂ → (i · (ℜ‘𝐴)) ∈ ℂ)
246renegcld 11056 . . . . . . . 8 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
2524recnd 10658 . . . . . . 7 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℂ)
26 efadd 15439 . . . . . . 7 (((i · (ℜ‘𝐴)) ∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
2723, 25, 26syl2anc 587 . . . . . 6 (𝐴 ∈ ℂ → (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
2821, 27eqtrd 2833 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
2928eqeq1d 2800 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 ↔ ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1))
30 efcl 15428 . . . . . . . . 9 ((i · (ℜ‘𝐴)) ∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ)
3123, 30syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ)
32 efcl 15428 . . . . . . . . 9 (-(ℑ‘𝐴) ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ)
3325, 32syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ)
3431, 33absmuld 14806 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))) = ((abs‘(exp‘(i · (ℜ‘𝐴)))) · (abs‘(exp‘-(ℑ‘𝐴)))))
35 absefi 15541 . . . . . . . . 9 ((ℜ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1)
364, 35syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1)
3724reefcld 15433 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℝ)
38 efgt0 15448 . . . . . . . . . . 11 (-(ℑ‘𝐴) ∈ ℝ → 0 < (exp‘-(ℑ‘𝐴)))
3924, 38syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 < (exp‘-(ℑ‘𝐴)))
40 0re 10632 . . . . . . . . . . 11 0 ∈ ℝ
41 ltle 10718 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (exp‘-(ℑ‘𝐴)) ∈ ℝ) → (0 < (exp‘-(ℑ‘𝐴)) → 0 ≤ (exp‘-(ℑ‘𝐴))))
4240, 41mpan 689 . . . . . . . . . 10 ((exp‘-(ℑ‘𝐴)) ∈ ℝ → (0 < (exp‘-(ℑ‘𝐴)) → 0 ≤ (exp‘-(ℑ‘𝐴))))
4337, 39, 42sylc 65 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (exp‘-(ℑ‘𝐴)))
4437, 43absidd 14774 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘(exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴)))
4536, 44oveq12d 7153 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (ℜ‘𝐴)))) · (abs‘(exp‘-(ℑ‘𝐴)))) = (1 · (exp‘-(ℑ‘𝐴))))
4633mulid2d 10648 . . . . . . 7 (𝐴 ∈ ℂ → (1 · (exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴)))
4734, 45, 463eqtrrd 2838 . . . . . 6 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) = (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))))
48 fveq2 6645 . . . . . 6 (((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1 → (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))) = (abs‘1))
4947, 48sylan9eq 2853 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1) → (exp‘-(ℑ‘𝐴)) = (abs‘1))
5049ex 416 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1)))
5129, 50sylbid 243 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1)))
527negeq0d 10978 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 ↔ -(ℑ‘𝐴) = 0))
53 reim0b 14470 . . . 4 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
54 ef0 15436 . . . . . . 7 (exp‘0) = 1
55 abs1 14649 . . . . . . 7 (abs‘1) = 1
5654, 55eqtr4i 2824 . . . . . 6 (exp‘0) = (abs‘1)
5756eqeq2i 2811 . . . . 5 ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ (exp‘-(ℑ‘𝐴)) = (abs‘1))
58 reef11 15464 . . . . . 6 ((-(ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
5924, 40, 58sylancl 589 . . . . 5 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
6057, 59bitr3id 288 . . . 4 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ -(ℑ‘𝐴) = 0))
6152, 53, 603bitr4rd 315 . . 3 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ 𝐴 ∈ ℝ))
6251, 61sylibd 242 . 2 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 → 𝐴 ∈ ℝ))
6362imp 410 1 ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  -cneg 10860  cre 14448  cim 14449  abscabs 14585  expce 15407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator