Proof of Theorem efieq1re
| Step | Hyp | Ref
| Expression |
| 1 | | replim 15140 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i ·
(ℑ‘𝐴)))) |
| 2 | 1 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (i
· 𝐴) = (i ·
((ℜ‘𝐴) + (i
· (ℑ‘𝐴))))) |
| 3 | | ax-icn 11193 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
| 4 | | recl 15134 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℝ) |
| 5 | 4 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℂ) |
| 6 | | imcl 15135 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℝ) |
| 7 | 6 | recnd 11268 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℂ) |
| 8 | | mulcl 11218 |
. . . . . . . . . . 11
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i ·
(ℑ‘𝐴)) ∈
ℂ) |
| 9 | 3, 7, 8 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (i
· (ℑ‘𝐴))
∈ ℂ) |
| 10 | | adddi 11223 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ ∧ (i ·
(ℑ‘𝐴)) ∈
ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i ·
(ℜ‘𝐴)) + (i
· (i · (ℑ‘𝐴))))) |
| 11 | 3, 5, 9, 10 | mp3an2i 1468 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (i
· ((ℜ‘𝐴)
+ (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i ·
(ℑ‘𝐴))))) |
| 12 | | ixi 11871 |
. . . . . . . . . . . 12
⊢ (i
· i) = -1 |
| 13 | 12 | oveq1i 7420 |
. . . . . . . . . . 11
⊢ ((i
· i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴)) |
| 14 | | mulass 11222 |
. . . . . . . . . . . 12
⊢ ((i
∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i)
· (ℑ‘𝐴))
= (i · (i · (ℑ‘𝐴)))) |
| 15 | 3, 3, 7, 14 | mp3an12i 1467 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → ((i
· i) · (ℑ‘𝐴)) = (i · (i ·
(ℑ‘𝐴)))) |
| 16 | 7 | mulm1d 11694 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (-1
· (ℑ‘𝐴))
= -(ℑ‘𝐴)) |
| 17 | 13, 15, 16 | 3eqtr3a 2795 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (i
· (i · (ℑ‘𝐴))) = -(ℑ‘𝐴)) |
| 18 | 17 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((i
· (ℜ‘𝐴))
+ (i · (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) |
| 19 | 11, 18 | eqtrd 2771 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (i
· ((ℜ‘𝐴)
+ (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) |
| 20 | 2, 19 | eqtrd 2771 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (i
· 𝐴) = ((i ·
(ℜ‘𝐴)) +
-(ℑ‘𝐴))) |
| 21 | 20 | fveq2d 6885 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘(i · 𝐴))
= (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))) |
| 22 | | mulcl 11218 |
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i ·
(ℜ‘𝐴)) ∈
ℂ) |
| 23 | 3, 5, 22 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (i
· (ℜ‘𝐴))
∈ ℂ) |
| 24 | 6 | renegcld 11669 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
-(ℑ‘𝐴) ∈
ℝ) |
| 25 | 24 | recnd 11268 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
-(ℑ‘𝐴) ∈
ℂ) |
| 26 | | efadd 16115 |
. . . . . . 7
⊢ (((i
· (ℜ‘𝐴))
∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (exp‘((i
· (ℜ‘𝐴))
+ -(ℑ‘𝐴))) =
((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) |
| 27 | 23, 25, 26 | syl2anc 584 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i ·
(ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) |
| 28 | 21, 27 | eqtrd 2771 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(exp‘(i · 𝐴))
= ((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) |
| 29 | 28 | eqeq1d 2738 |
. . . 4
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
= 1 ↔ ((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1)) |
| 30 | | efcl 16103 |
. . . . . . . . 9
⊢ ((i
· (ℜ‘𝐴))
∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ) |
| 31 | 23, 30 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(exp‘(i · (ℜ‘𝐴))) ∈ ℂ) |
| 32 | | efcl 16103 |
. . . . . . . . 9
⊢
(-(ℑ‘𝐴)
∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ) |
| 33 | 25, 32 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(exp‘-(ℑ‘𝐴)) ∈ ℂ) |
| 34 | 31, 33 | absmuld 15478 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
(abs‘((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) = ((abs‘(exp‘(i ·
(ℜ‘𝐴))))
· (abs‘(exp‘-(ℑ‘𝐴))))) |
| 35 | | absefi 16219 |
. . . . . . . . 9
⊢
((ℜ‘𝐴)
∈ ℝ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1) |
| 36 | 4, 35 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(abs‘(exp‘(i · (ℜ‘𝐴)))) = 1) |
| 37 | 24 | reefcld 16109 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(exp‘-(ℑ‘𝐴)) ∈ ℝ) |
| 38 | | efgt0 16126 |
. . . . . . . . . . 11
⊢
(-(ℑ‘𝐴)
∈ ℝ → 0 < (exp‘-(ℑ‘𝐴))) |
| 39 | 24, 38 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → 0 <
(exp‘-(ℑ‘𝐴))) |
| 40 | | 0re 11242 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 41 | | ltle 11328 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ (exp‘-(ℑ‘𝐴)) ∈ ℝ) → (0 <
(exp‘-(ℑ‘𝐴)) → 0 ≤
(exp‘-(ℑ‘𝐴)))) |
| 42 | 40, 41 | mpan 690 |
. . . . . . . . . 10
⊢
((exp‘-(ℑ‘𝐴)) ∈ ℝ → (0 <
(exp‘-(ℑ‘𝐴)) → 0 ≤
(exp‘-(ℑ‘𝐴)))) |
| 43 | 37, 39, 42 | sylc 65 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → 0 ≤
(exp‘-(ℑ‘𝐴))) |
| 44 | 37, 43 | absidd 15446 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(abs‘(exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴))) |
| 45 | 36, 44 | oveq12d 7428 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
((abs‘(exp‘(i · (ℜ‘𝐴)))) ·
(abs‘(exp‘-(ℑ‘𝐴)))) = (1 ·
(exp‘-(ℑ‘𝐴)))) |
| 46 | 33 | mullidd 11258 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (1
· (exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴))) |
| 47 | 34, 45, 46 | 3eqtrrd 2776 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘-(ℑ‘𝐴)) = (abs‘((exp‘(i ·
(ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))))) |
| 48 | | fveq2 6881 |
. . . . . 6
⊢
(((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1 → (abs‘((exp‘(i
· (ℜ‘𝐴)))
· (exp‘-(ℑ‘𝐴)))) = (abs‘1)) |
| 49 | 47, 48 | sylan9eq 2791 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1) →
(exp‘-(ℑ‘𝐴)) = (abs‘1)) |
| 50 | 49 | ex 412 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1 →
(exp‘-(ℑ‘𝐴)) = (abs‘1))) |
| 51 | 29, 50 | sylbid 240 |
. . 3
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
= 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1))) |
| 52 | 7 | negeq0d 11591 |
. . . 4
⊢ (𝐴 ∈ ℂ →
((ℑ‘𝐴) = 0
↔ -(ℑ‘𝐴) =
0)) |
| 53 | | reim0b 15143 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔
(ℑ‘𝐴) =
0)) |
| 54 | | ef0 16112 |
. . . . . . 7
⊢
(exp‘0) = 1 |
| 55 | | abs1 15321 |
. . . . . . 7
⊢
(abs‘1) = 1 |
| 56 | 54, 55 | eqtr4i 2762 |
. . . . . 6
⊢
(exp‘0) = (abs‘1) |
| 57 | 56 | eqeq2i 2749 |
. . . . 5
⊢
((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔
(exp‘-(ℑ‘𝐴)) = (abs‘1)) |
| 58 | | reef11 16142 |
. . . . . 6
⊢
((-(ℑ‘𝐴)
∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔
-(ℑ‘𝐴) =
0)) |
| 59 | 24, 40, 58 | sylancl 586 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔
-(ℑ‘𝐴) =
0)) |
| 60 | 57, 59 | bitr3id 285 |
. . . 4
⊢ (𝐴 ∈ ℂ →
((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔
-(ℑ‘𝐴) =
0)) |
| 61 | 52, 53, 60 | 3bitr4rd 312 |
. . 3
⊢ (𝐴 ∈ ℂ →
((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ 𝐴 ∈ ℝ)) |
| 62 | 51, 61 | sylibd 239 |
. 2
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
= 1 → 𝐴 ∈
ℝ)) |
| 63 | 62 | imp 406 |
1
⊢ ((𝐴 ∈ ℂ ∧
(exp‘(i · 𝐴))
= 1) → 𝐴 ∈
ℝ) |