![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgsoddprmlem3c | Structured version Visualization version GIF version |
Description: Lemma 3 for 2lgsoddprmlem3 27476. (Contributed by AV, 20-Jul-2021.) |
Ref | Expression |
---|---|
2lgsoddprmlem3c | ⊢ (((5↑2) − 1) / 8) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12359 | . . . . . . 7 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 7458 | . . . . . 6 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 12378 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
4 | binom21 14268 | . . . . . . 7 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2, 5 | eqtri 2768 | . . . . 5 ⊢ (5↑2) = (((4↑2) + (2 · 4)) + 1) |
7 | 6 | oveq1i 7458 | . . . 4 ⊢ ((5↑2) − 1) = ((((4↑2) + (2 · 4)) + 1) − 1) |
8 | 3cn 12374 | . . . . . 6 ⊢ 3 ∈ ℂ | |
9 | 8cn 12390 | . . . . . 6 ⊢ 8 ∈ ℂ | |
10 | 8, 9 | mulcli 11297 | . . . . 5 ⊢ (3 · 8) ∈ ℂ |
11 | ax-1cn 11242 | . . . . 5 ⊢ 1 ∈ ℂ | |
12 | sq4e2t8 14248 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
13 | 2cn 12368 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
14 | 4t2e8 12461 | . . . . . . . . . 10 ⊢ (4 · 2) = 8 | |
15 | 9 | mullidi 11295 | . . . . . . . . . 10 ⊢ (1 · 8) = 8 |
16 | 14, 15 | eqtr4i 2771 | . . . . . . . . 9 ⊢ (4 · 2) = (1 · 8) |
17 | 3, 13, 16 | mulcomli 11299 | . . . . . . . 8 ⊢ (2 · 4) = (1 · 8) |
18 | 12, 17 | oveq12i 7460 | . . . . . . 7 ⊢ ((4↑2) + (2 · 4)) = ((2 · 8) + (1 · 8)) |
19 | 13, 11, 9 | adddiri 11303 | . . . . . . 7 ⊢ ((2 + 1) · 8) = ((2 · 8) + (1 · 8)) |
20 | 2p1e3 12435 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
21 | 20 | oveq1i 7458 | . . . . . . 7 ⊢ ((2 + 1) · 8) = (3 · 8) |
22 | 18, 19, 21 | 3eqtr2i 2774 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (3 · 8) |
23 | 22 | oveq1i 7458 | . . . . 5 ⊢ (((4↑2) + (2 · 4)) + 1) = ((3 · 8) + 1) |
24 | 10, 11, 23 | mvrraddi 11553 | . . . 4 ⊢ ((((4↑2) + (2 · 4)) + 1) − 1) = (3 · 8) |
25 | 7, 24 | eqtri 2768 | . . 3 ⊢ ((5↑2) − 1) = (3 · 8) |
26 | 25 | oveq1i 7458 | . 2 ⊢ (((5↑2) − 1) / 8) = ((3 · 8) / 8) |
27 | 0re 11292 | . . . 4 ⊢ 0 ∈ ℝ | |
28 | 8pos 12405 | . . . 4 ⊢ 0 < 8 | |
29 | 27, 28 | gtneii 11402 | . . 3 ⊢ 8 ≠ 0 |
30 | 8, 9, 29 | divcan4i 12041 | . 2 ⊢ ((3 · 8) / 8) = 3 |
31 | 26, 30 | eqtri 2768 | 1 ⊢ (((5↑2) − 1) / 8) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 / cdiv 11947 2c2 12348 3c3 12349 4c4 12350 5c5 12351 8c8 12354 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-exp 14113 |
This theorem is referenced by: 2lgsoddprmlem3 27476 |
Copyright terms: Public domain | W3C validator |