| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lgsoddprmlem3c | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for 2lgsoddprmlem3 27341. (Contributed by AV, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgsoddprmlem3c | ⊢ (((5↑2) − 1) / 8) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12212 | . . . . . . 7 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq1i 7363 | . . . . . 6 ⊢ (5↑2) = ((4 + 1)↑2) |
| 3 | 4cn 12231 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
| 4 | binom21 14144 | . . . . . . 7 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
| 6 | 2, 5 | eqtri 2752 | . . . . 5 ⊢ (5↑2) = (((4↑2) + (2 · 4)) + 1) |
| 7 | 6 | oveq1i 7363 | . . . 4 ⊢ ((5↑2) − 1) = ((((4↑2) + (2 · 4)) + 1) − 1) |
| 8 | 3cn 12227 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 9 | 8cn 12243 | . . . . . 6 ⊢ 8 ∈ ℂ | |
| 10 | 8, 9 | mulcli 11141 | . . . . 5 ⊢ (3 · 8) ∈ ℂ |
| 11 | ax-1cn 11086 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 12 | sq4e2t8 14124 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
| 13 | 2cn 12221 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 14 | 4t2e8 12309 | . . . . . . . . . 10 ⊢ (4 · 2) = 8 | |
| 15 | 9 | mullidi 11139 | . . . . . . . . . 10 ⊢ (1 · 8) = 8 |
| 16 | 14, 15 | eqtr4i 2755 | . . . . . . . . 9 ⊢ (4 · 2) = (1 · 8) |
| 17 | 3, 13, 16 | mulcomli 11143 | . . . . . . . 8 ⊢ (2 · 4) = (1 · 8) |
| 18 | 12, 17 | oveq12i 7365 | . . . . . . 7 ⊢ ((4↑2) + (2 · 4)) = ((2 · 8) + (1 · 8)) |
| 19 | 13, 11, 9 | adddiri 11147 | . . . . . . 7 ⊢ ((2 + 1) · 8) = ((2 · 8) + (1 · 8)) |
| 20 | 2p1e3 12283 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 21 | 20 | oveq1i 7363 | . . . . . . 7 ⊢ ((2 + 1) · 8) = (3 · 8) |
| 22 | 18, 19, 21 | 3eqtr2i 2758 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (3 · 8) |
| 23 | 22 | oveq1i 7363 | . . . . 5 ⊢ (((4↑2) + (2 · 4)) + 1) = ((3 · 8) + 1) |
| 24 | 10, 11, 23 | mvrraddi 11398 | . . . 4 ⊢ ((((4↑2) + (2 · 4)) + 1) − 1) = (3 · 8) |
| 25 | 7, 24 | eqtri 2752 | . . 3 ⊢ ((5↑2) − 1) = (3 · 8) |
| 26 | 25 | oveq1i 7363 | . 2 ⊢ (((5↑2) − 1) / 8) = ((3 · 8) / 8) |
| 27 | 0re 11136 | . . . 4 ⊢ 0 ∈ ℝ | |
| 28 | 8pos 12258 | . . . 4 ⊢ 0 < 8 | |
| 29 | 27, 28 | gtneii 11246 | . . 3 ⊢ 8 ≠ 0 |
| 30 | 8, 9, 29 | divcan4i 11889 | . 2 ⊢ ((3 · 8) / 8) = 3 |
| 31 | 26, 30 | eqtri 2752 | 1 ⊢ (((5↑2) − 1) / 8) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11365 / cdiv 11795 2c2 12201 3c3 12202 4c4 12203 5c5 12204 8c8 12207 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-n0 12403 df-z 12490 df-uz 12754 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: 2lgsoddprmlem3 27341 |
| Copyright terms: Public domain | W3C validator |