| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2lgsoddprmlem3c | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for 2lgsoddprmlem3 27353. (Contributed by AV, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgsoddprmlem3c | ⊢ (((5↑2) − 1) / 8) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12191 | . . . . . . 7 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq1i 7356 | . . . . . 6 ⊢ (5↑2) = ((4 + 1)↑2) |
| 3 | 4cn 12210 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
| 4 | binom21 14126 | . . . . . . 7 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
| 6 | 2, 5 | eqtri 2754 | . . . . 5 ⊢ (5↑2) = (((4↑2) + (2 · 4)) + 1) |
| 7 | 6 | oveq1i 7356 | . . . 4 ⊢ ((5↑2) − 1) = ((((4↑2) + (2 · 4)) + 1) − 1) |
| 8 | 3cn 12206 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 9 | 8cn 12222 | . . . . . 6 ⊢ 8 ∈ ℂ | |
| 10 | 8, 9 | mulcli 11119 | . . . . 5 ⊢ (3 · 8) ∈ ℂ |
| 11 | ax-1cn 11064 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 12 | sq4e2t8 14106 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
| 13 | 2cn 12200 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 14 | 4t2e8 12288 | . . . . . . . . . 10 ⊢ (4 · 2) = 8 | |
| 15 | 9 | mullidi 11117 | . . . . . . . . . 10 ⊢ (1 · 8) = 8 |
| 16 | 14, 15 | eqtr4i 2757 | . . . . . . . . 9 ⊢ (4 · 2) = (1 · 8) |
| 17 | 3, 13, 16 | mulcomli 11121 | . . . . . . . 8 ⊢ (2 · 4) = (1 · 8) |
| 18 | 12, 17 | oveq12i 7358 | . . . . . . 7 ⊢ ((4↑2) + (2 · 4)) = ((2 · 8) + (1 · 8)) |
| 19 | 13, 11, 9 | adddiri 11125 | . . . . . . 7 ⊢ ((2 + 1) · 8) = ((2 · 8) + (1 · 8)) |
| 20 | 2p1e3 12262 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 21 | 20 | oveq1i 7356 | . . . . . . 7 ⊢ ((2 + 1) · 8) = (3 · 8) |
| 22 | 18, 19, 21 | 3eqtr2i 2760 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (3 · 8) |
| 23 | 22 | oveq1i 7356 | . . . . 5 ⊢ (((4↑2) + (2 · 4)) + 1) = ((3 · 8) + 1) |
| 24 | 10, 11, 23 | mvrraddi 11377 | . . . 4 ⊢ ((((4↑2) + (2 · 4)) + 1) − 1) = (3 · 8) |
| 25 | 7, 24 | eqtri 2754 | . . 3 ⊢ ((5↑2) − 1) = (3 · 8) |
| 26 | 25 | oveq1i 7356 | . 2 ⊢ (((5↑2) − 1) / 8) = ((3 · 8) / 8) |
| 27 | 0re 11114 | . . . 4 ⊢ 0 ∈ ℝ | |
| 28 | 8pos 12237 | . . . 4 ⊢ 0 < 8 | |
| 29 | 27, 28 | gtneii 11225 | . . 3 ⊢ 8 ≠ 0 |
| 30 | 8, 9, 29 | divcan4i 11868 | . 2 ⊢ ((3 · 8) / 8) = 3 |
| 31 | 26, 30 | eqtri 2754 | 1 ⊢ (((5↑2) − 1) / 8) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 / cdiv 11774 2c2 12180 3c3 12181 4c4 12182 5c5 12183 8c8 12186 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: 2lgsoddprmlem3 27353 |
| Copyright terms: Public domain | W3C validator |