![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgsoddprmlem3c | Structured version Visualization version GIF version |
Description: Lemma 3 for 2lgsoddprmlem3 25707. (Contributed by AV, 20-Jul-2021.) |
Ref | Expression |
---|---|
2lgsoddprmlem3c | ⊢ (((5↑2) − 1) / 8) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11504 | . . . . . . 7 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 6984 | . . . . . 6 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 11524 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
4 | binom21 13393 | . . . . . . 7 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2, 5 | eqtri 2795 | . . . . 5 ⊢ (5↑2) = (((4↑2) + (2 · 4)) + 1) |
7 | 6 | oveq1i 6984 | . . . 4 ⊢ ((5↑2) − 1) = ((((4↑2) + (2 · 4)) + 1) − 1) |
8 | 3cn 11519 | . . . . . 6 ⊢ 3 ∈ ℂ | |
9 | 8cn 11540 | . . . . . 6 ⊢ 8 ∈ ℂ | |
10 | 8, 9 | mulcli 10445 | . . . . 5 ⊢ (3 · 8) ∈ ℂ |
11 | ax-1cn 10391 | . . . . 5 ⊢ 1 ∈ ℂ | |
12 | sq4e2t8 13375 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
13 | 2cn 11513 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
14 | 4t2e8 11613 | . . . . . . . . . 10 ⊢ (4 · 2) = 8 | |
15 | 9 | mulid2i 10443 | . . . . . . . . . 10 ⊢ (1 · 8) = 8 |
16 | 14, 15 | eqtr4i 2798 | . . . . . . . . 9 ⊢ (4 · 2) = (1 · 8) |
17 | 3, 13, 16 | mulcomli 10447 | . . . . . . . 8 ⊢ (2 · 4) = (1 · 8) |
18 | 12, 17 | oveq12i 6986 | . . . . . . 7 ⊢ ((4↑2) + (2 · 4)) = ((2 · 8) + (1 · 8)) |
19 | 13, 11, 9 | adddiri 10451 | . . . . . . 7 ⊢ ((2 + 1) · 8) = ((2 · 8) + (1 · 8)) |
20 | 2p1e3 11587 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
21 | 20 | oveq1i 6984 | . . . . . . 7 ⊢ ((2 + 1) · 8) = (3 · 8) |
22 | 18, 19, 21 | 3eqtr2i 2801 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (3 · 8) |
23 | 22 | oveq1i 6984 | . . . . 5 ⊢ (((4↑2) + (2 · 4)) + 1) = ((3 · 8) + 1) |
24 | 10, 11, 23 | mvrraddi 10702 | . . . 4 ⊢ ((((4↑2) + (2 · 4)) + 1) − 1) = (3 · 8) |
25 | 7, 24 | eqtri 2795 | . . 3 ⊢ ((5↑2) − 1) = (3 · 8) |
26 | 25 | oveq1i 6984 | . 2 ⊢ (((5↑2) − 1) / 8) = ((3 · 8) / 8) |
27 | 0re 10439 | . . . 4 ⊢ 0 ∈ ℝ | |
28 | 8pos 11557 | . . . 4 ⊢ 0 < 8 | |
29 | 27, 28 | gtneii 10550 | . . 3 ⊢ 8 ≠ 0 |
30 | 8, 9, 29 | divcan4i 11186 | . 2 ⊢ ((3 · 8) / 8) = 3 |
31 | 26, 30 | eqtri 2795 | 1 ⊢ (((5↑2) − 1) / 8) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ∈ wcel 2051 (class class class)co 6974 ℂcc 10331 0cc0 10333 1c1 10334 + caddc 10336 · cmul 10338 − cmin 10668 / cdiv 11096 2c2 11493 3c3 11494 4c4 11495 5c5 11496 8c8 11499 ↑cexp 13242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-n0 11706 df-z 11792 df-uz 12057 df-seq 13183 df-exp 13243 |
This theorem is referenced by: 2lgsoddprmlem3 25707 |
Copyright terms: Public domain | W3C validator |