Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd3 | Structured version Visualization version GIF version |
Description: Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
dpmul.a | ⊢ 𝐴 ∈ ℕ0 |
dpmul.b | ⊢ 𝐵 ∈ ℕ0 |
dpmul.c | ⊢ 𝐶 ∈ ℕ0 |
dpmul.d | ⊢ 𝐷 ∈ ℕ0 |
dpmul.e | ⊢ 𝐸 ∈ ℕ0 |
dpmul.g | ⊢ 𝐺 ∈ ℕ0 |
dpadd3.f | ⊢ 𝐹 ∈ ℕ0 |
dpadd3.h | ⊢ 𝐻 ∈ ℕ0 |
dpadd3.i | ⊢ 𝐼 ∈ ℕ0 |
dpadd3.1 | ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 |
Ref | Expression |
---|---|
dpadd3 | ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpmul.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
2 | dpmul.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 11987 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
4 | dpmul.c | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
5 | 4 | nn0rei 11987 | . . . . . . 7 ⊢ 𝐶 ∈ ℝ |
6 | dp2cl 30729 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
7 | 3, 5, 6 | mp2an 692 | . . . . . 6 ⊢ _𝐵𝐶 ∈ ℝ |
8 | dpcl 30740 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ _𝐵𝐶 ∈ ℝ) → (𝐴._𝐵𝐶) ∈ ℝ) | |
9 | 1, 7, 8 | mp2an 692 | . . . . 5 ⊢ (𝐴._𝐵𝐶) ∈ ℝ |
10 | 9 | recni 10733 | . . . 4 ⊢ (𝐴._𝐵𝐶) ∈ ℂ |
11 | dpmul.d | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
12 | dpmul.e | . . . . . . . 8 ⊢ 𝐸 ∈ ℕ0 | |
13 | 12 | nn0rei 11987 | . . . . . . 7 ⊢ 𝐸 ∈ ℝ |
14 | dpadd3.f | . . . . . . . 8 ⊢ 𝐹 ∈ ℕ0 | |
15 | 14 | nn0rei 11987 | . . . . . . 7 ⊢ 𝐹 ∈ ℝ |
16 | dp2cl 30729 | . . . . . . 7 ⊢ ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → _𝐸𝐹 ∈ ℝ) | |
17 | 13, 15, 16 | mp2an 692 | . . . . . 6 ⊢ _𝐸𝐹 ∈ ℝ |
18 | dpcl 30740 | . . . . . 6 ⊢ ((𝐷 ∈ ℕ0 ∧ _𝐸𝐹 ∈ ℝ) → (𝐷._𝐸𝐹) ∈ ℝ) | |
19 | 11, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐷._𝐸𝐹) ∈ ℝ |
20 | 19 | recni 10733 | . . . 4 ⊢ (𝐷._𝐸𝐹) ∈ ℂ |
21 | 10, 20 | addcli 10725 | . . 3 ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ |
22 | dpmul.g | . . . . 5 ⊢ 𝐺 ∈ ℕ0 | |
23 | dpadd3.h | . . . . . . 7 ⊢ 𝐻 ∈ ℕ0 | |
24 | 23 | nn0rei 11987 | . . . . . 6 ⊢ 𝐻 ∈ ℝ |
25 | dpadd3.i | . . . . . . 7 ⊢ 𝐼 ∈ ℕ0 | |
26 | 25 | nn0rei 11987 | . . . . . 6 ⊢ 𝐼 ∈ ℝ |
27 | dp2cl 30729 | . . . . . 6 ⊢ ((𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ) → _𝐻𝐼 ∈ ℝ) | |
28 | 24, 26, 27 | mp2an 692 | . . . . 5 ⊢ _𝐻𝐼 ∈ ℝ |
29 | dpcl 30740 | . . . . 5 ⊢ ((𝐺 ∈ ℕ0 ∧ _𝐻𝐼 ∈ ℝ) → (𝐺._𝐻𝐼) ∈ ℝ) | |
30 | 22, 28, 29 | mp2an 692 | . . . 4 ⊢ (𝐺._𝐻𝐼) ∈ ℝ |
31 | 30 | recni 10733 | . . 3 ⊢ (𝐺._𝐻𝐼) ∈ ℂ |
32 | 10nn 12195 | . . . . . 6 ⊢ ;10 ∈ ℕ | |
33 | 32 | decnncl2 12203 | . . . . 5 ⊢ ;;100 ∈ ℕ |
34 | 33 | nncni 11726 | . . . 4 ⊢ ;;100 ∈ ℂ |
35 | 33 | nnne0i 11756 | . . . 4 ⊢ ;;100 ≠ 0 |
36 | 34, 35 | pm3.2i 474 | . . 3 ⊢ (;;100 ∈ ℂ ∧ ;;100 ≠ 0) |
37 | 21, 31, 36 | 3pm3.2i 1340 | . 2 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) |
38 | 10, 20, 34 | adddiri 10732 | . . 3 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) |
39 | dpadd3.1 | . . . 4 ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 | |
40 | 1, 2, 5 | dpmul100 30746 | . . . . 5 ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
41 | 11, 12, 15 | dpmul100 30746 | . . . . 5 ⊢ ((𝐷._𝐸𝐹) · ;;100) = ;;𝐷𝐸𝐹 |
42 | 40, 41 | oveq12i 7182 | . . . 4 ⊢ (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) = (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) |
43 | 22, 23, 26 | dpmul100 30746 | . . . 4 ⊢ ((𝐺._𝐻𝐼) · ;;100) = ;;𝐺𝐻𝐼 |
44 | 39, 42, 43 | 3eqtr4i 2771 | . . 3 ⊢ (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) = ((𝐺._𝐻𝐼) · ;;100) |
45 | 38, 44 | eqtri 2761 | . 2 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100) |
46 | mulcan2 11356 | . . 3 ⊢ ((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) → ((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100) ↔ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼))) | |
47 | 46 | biimpa 480 | . 2 ⊢ (((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) ∧ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100)) → ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼)) |
48 | 37, 45, 47 | mp2an 692 | 1 ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 (class class class)co 7170 ℂcc 10613 ℝcr 10614 0cc0 10615 1c1 10616 + caddc 10618 · cmul 10620 ℕ0cn0 11976 ;cdc 12179 _cdp2 30720 .cdp 30737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-dec 12180 df-dp2 30721 df-dp 30738 |
This theorem is referenced by: 1mhdrd 30765 hgt750lem2 32202 |
Copyright terms: Public domain | W3C validator |