![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd3 | Structured version Visualization version GIF version |
Description: Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
dpmul.a | ⊢ 𝐴 ∈ ℕ0 |
dpmul.b | ⊢ 𝐵 ∈ ℕ0 |
dpmul.c | ⊢ 𝐶 ∈ ℕ0 |
dpmul.d | ⊢ 𝐷 ∈ ℕ0 |
dpmul.e | ⊢ 𝐸 ∈ ℕ0 |
dpmul.g | ⊢ 𝐺 ∈ ℕ0 |
dpadd3.f | ⊢ 𝐹 ∈ ℕ0 |
dpadd3.h | ⊢ 𝐻 ∈ ℕ0 |
dpadd3.i | ⊢ 𝐼 ∈ ℕ0 |
dpadd3.1 | ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 |
Ref | Expression |
---|---|
dpadd3 | ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpmul.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
2 | dpmul.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 12564 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
4 | dpmul.c | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
5 | 4 | nn0rei 12564 | . . . . . . 7 ⊢ 𝐶 ∈ ℝ |
6 | dp2cl 32844 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
7 | 3, 5, 6 | mp2an 691 | . . . . . 6 ⊢ _𝐵𝐶 ∈ ℝ |
8 | dpcl 32855 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ _𝐵𝐶 ∈ ℝ) → (𝐴._𝐵𝐶) ∈ ℝ) | |
9 | 1, 7, 8 | mp2an 691 | . . . . 5 ⊢ (𝐴._𝐵𝐶) ∈ ℝ |
10 | 9 | recni 11304 | . . . 4 ⊢ (𝐴._𝐵𝐶) ∈ ℂ |
11 | dpmul.d | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
12 | dpmul.e | . . . . . . . 8 ⊢ 𝐸 ∈ ℕ0 | |
13 | 12 | nn0rei 12564 | . . . . . . 7 ⊢ 𝐸 ∈ ℝ |
14 | dpadd3.f | . . . . . . . 8 ⊢ 𝐹 ∈ ℕ0 | |
15 | 14 | nn0rei 12564 | . . . . . . 7 ⊢ 𝐹 ∈ ℝ |
16 | dp2cl 32844 | . . . . . . 7 ⊢ ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → _𝐸𝐹 ∈ ℝ) | |
17 | 13, 15, 16 | mp2an 691 | . . . . . 6 ⊢ _𝐸𝐹 ∈ ℝ |
18 | dpcl 32855 | . . . . . 6 ⊢ ((𝐷 ∈ ℕ0 ∧ _𝐸𝐹 ∈ ℝ) → (𝐷._𝐸𝐹) ∈ ℝ) | |
19 | 11, 17, 18 | mp2an 691 | . . . . 5 ⊢ (𝐷._𝐸𝐹) ∈ ℝ |
20 | 19 | recni 11304 | . . . 4 ⊢ (𝐷._𝐸𝐹) ∈ ℂ |
21 | 10, 20 | addcli 11296 | . . 3 ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ |
22 | dpmul.g | . . . . 5 ⊢ 𝐺 ∈ ℕ0 | |
23 | dpadd3.h | . . . . . . 7 ⊢ 𝐻 ∈ ℕ0 | |
24 | 23 | nn0rei 12564 | . . . . . 6 ⊢ 𝐻 ∈ ℝ |
25 | dpadd3.i | . . . . . . 7 ⊢ 𝐼 ∈ ℕ0 | |
26 | 25 | nn0rei 12564 | . . . . . 6 ⊢ 𝐼 ∈ ℝ |
27 | dp2cl 32844 | . . . . . 6 ⊢ ((𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ) → _𝐻𝐼 ∈ ℝ) | |
28 | 24, 26, 27 | mp2an 691 | . . . . 5 ⊢ _𝐻𝐼 ∈ ℝ |
29 | dpcl 32855 | . . . . 5 ⊢ ((𝐺 ∈ ℕ0 ∧ _𝐻𝐼 ∈ ℝ) → (𝐺._𝐻𝐼) ∈ ℝ) | |
30 | 22, 28, 29 | mp2an 691 | . . . 4 ⊢ (𝐺._𝐻𝐼) ∈ ℝ |
31 | 30 | recni 11304 | . . 3 ⊢ (𝐺._𝐻𝐼) ∈ ℂ |
32 | 10nn 12774 | . . . . . 6 ⊢ ;10 ∈ ℕ | |
33 | 32 | decnncl2 12782 | . . . . 5 ⊢ ;;100 ∈ ℕ |
34 | 33 | nncni 12303 | . . . 4 ⊢ ;;100 ∈ ℂ |
35 | 33 | nnne0i 12333 | . . . 4 ⊢ ;;100 ≠ 0 |
36 | 34, 35 | pm3.2i 470 | . . 3 ⊢ (;;100 ∈ ℂ ∧ ;;100 ≠ 0) |
37 | 21, 31, 36 | 3pm3.2i 1339 | . 2 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) |
38 | 10, 20, 34 | adddiri 11303 | . . 3 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) |
39 | dpadd3.1 | . . . 4 ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 | |
40 | 1, 2, 5 | dpmul100 32861 | . . . . 5 ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
41 | 11, 12, 15 | dpmul100 32861 | . . . . 5 ⊢ ((𝐷._𝐸𝐹) · ;;100) = ;;𝐷𝐸𝐹 |
42 | 40, 41 | oveq12i 7460 | . . . 4 ⊢ (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) = (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) |
43 | 22, 23, 26 | dpmul100 32861 | . . . 4 ⊢ ((𝐺._𝐻𝐼) · ;;100) = ;;𝐺𝐻𝐼 |
44 | 39, 42, 43 | 3eqtr4i 2778 | . . 3 ⊢ (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) = ((𝐺._𝐻𝐼) · ;;100) |
45 | 38, 44 | eqtri 2768 | . 2 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100) |
46 | mulcan2 11928 | . . 3 ⊢ ((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) → ((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100) ↔ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼))) | |
47 | 46 | biimpa 476 | . 2 ⊢ (((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) ∧ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100)) → ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼)) |
48 | 37, 45, 47 | mp2an 691 | 1 ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 ℕ0cn0 12553 ;cdc 12758 _cdp2 32835 .cdp 32852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 df-dp2 32836 df-dp 32853 |
This theorem is referenced by: 1mhdrd 32880 hgt750lem2 34629 |
Copyright terms: Public domain | W3C validator |