Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpadd3 Structured version   Visualization version   GIF version

Theorem dpadd3 30761
Description: Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Hypotheses
Ref Expression
dpmul.a 𝐴 ∈ ℕ0
dpmul.b 𝐵 ∈ ℕ0
dpmul.c 𝐶 ∈ ℕ0
dpmul.d 𝐷 ∈ ℕ0
dpmul.e 𝐸 ∈ ℕ0
dpmul.g 𝐺 ∈ ℕ0
dpadd3.f 𝐹 ∈ ℕ0
dpadd3.h 𝐻 ∈ ℕ0
dpadd3.i 𝐼 ∈ ℕ0
dpadd3.1 (𝐴𝐵𝐶 + 𝐷𝐸𝐹) = 𝐺𝐻𝐼
Assertion
Ref Expression
dpadd3 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)

Proof of Theorem dpadd3
StepHypRef Expression
1 dpmul.a . . . . . 6 𝐴 ∈ ℕ0
2 dpmul.b . . . . . . . 8 𝐵 ∈ ℕ0
32nn0rei 11987 . . . . . . 7 𝐵 ∈ ℝ
4 dpmul.c . . . . . . . 8 𝐶 ∈ ℕ0
54nn0rei 11987 . . . . . . 7 𝐶 ∈ ℝ
6 dp2cl 30729 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵𝐶 ∈ ℝ)
73, 5, 6mp2an 692 . . . . . 6 𝐵𝐶 ∈ ℝ
8 dpcl 30740 . . . . . 6 ((𝐴 ∈ ℕ0𝐵𝐶 ∈ ℝ) → (𝐴.𝐵𝐶) ∈ ℝ)
91, 7, 8mp2an 692 . . . . 5 (𝐴.𝐵𝐶) ∈ ℝ
109recni 10733 . . . 4 (𝐴.𝐵𝐶) ∈ ℂ
11 dpmul.d . . . . . 6 𝐷 ∈ ℕ0
12 dpmul.e . . . . . . . 8 𝐸 ∈ ℕ0
1312nn0rei 11987 . . . . . . 7 𝐸 ∈ ℝ
14 dpadd3.f . . . . . . . 8 𝐹 ∈ ℕ0
1514nn0rei 11987 . . . . . . 7 𝐹 ∈ ℝ
16 dp2cl 30729 . . . . . . 7 ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → 𝐸𝐹 ∈ ℝ)
1713, 15, 16mp2an 692 . . . . . 6 𝐸𝐹 ∈ ℝ
18 dpcl 30740 . . . . . 6 ((𝐷 ∈ ℕ0𝐸𝐹 ∈ ℝ) → (𝐷.𝐸𝐹) ∈ ℝ)
1911, 17, 18mp2an 692 . . . . 5 (𝐷.𝐸𝐹) ∈ ℝ
2019recni 10733 . . . 4 (𝐷.𝐸𝐹) ∈ ℂ
2110, 20addcli 10725 . . 3 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ
22 dpmul.g . . . . 5 𝐺 ∈ ℕ0
23 dpadd3.h . . . . . . 7 𝐻 ∈ ℕ0
2423nn0rei 11987 . . . . . 6 𝐻 ∈ ℝ
25 dpadd3.i . . . . . . 7 𝐼 ∈ ℕ0
2625nn0rei 11987 . . . . . 6 𝐼 ∈ ℝ
27 dp2cl 30729 . . . . . 6 ((𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ) → 𝐻𝐼 ∈ ℝ)
2824, 26, 27mp2an 692 . . . . 5 𝐻𝐼 ∈ ℝ
29 dpcl 30740 . . . . 5 ((𝐺 ∈ ℕ0𝐻𝐼 ∈ ℝ) → (𝐺.𝐻𝐼) ∈ ℝ)
3022, 28, 29mp2an 692 . . . 4 (𝐺.𝐻𝐼) ∈ ℝ
3130recni 10733 . . 3 (𝐺.𝐻𝐼) ∈ ℂ
32 10nn 12195 . . . . . 6 10 ∈ ℕ
3332decnncl2 12203 . . . . 5 100 ∈ ℕ
3433nncni 11726 . . . 4 100 ∈ ℂ
3533nnne0i 11756 . . . 4 100 ≠ 0
3634, 35pm3.2i 474 . . 3 (100 ∈ ℂ ∧ 100 ≠ 0)
3721, 31, 363pm3.2i 1340 . 2 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0))
3810, 20, 34adddiri 10732 . . 3 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100))
39 dpadd3.1 . . . 4 (𝐴𝐵𝐶 + 𝐷𝐸𝐹) = 𝐺𝐻𝐼
401, 2, 5dpmul100 30746 . . . . 5 ((𝐴.𝐵𝐶) · 100) = 𝐴𝐵𝐶
4111, 12, 15dpmul100 30746 . . . . 5 ((𝐷.𝐸𝐹) · 100) = 𝐷𝐸𝐹
4240, 41oveq12i 7182 . . . 4 (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100)) = (𝐴𝐵𝐶 + 𝐷𝐸𝐹)
4322, 23, 26dpmul100 30746 . . . 4 ((𝐺.𝐻𝐼) · 100) = 𝐺𝐻𝐼
4439, 42, 433eqtr4i 2771 . . 3 (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100)) = ((𝐺.𝐻𝐼) · 100)
4538, 44eqtri 2761 . 2 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100)
46 mulcan2 11356 . . 3 ((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) → ((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100) ↔ ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)))
4746biimpa 480 . 2 (((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) ∧ (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100)) → ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼))
4837, 45, 47mp2an 692 1 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620  0cn0 11976  cdc 12179  cdp2 30720  .cdp 30737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-dec 12180  df-dp2 30721  df-dp 30738
This theorem is referenced by:  1mhdrd  30765  hgt750lem2  32202
  Copyright terms: Public domain W3C validator