Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpadd3 Structured version   Visualization version   GIF version

Theorem dpadd3 31235
Description: Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Hypotheses
Ref Expression
dpmul.a 𝐴 ∈ ℕ0
dpmul.b 𝐵 ∈ ℕ0
dpmul.c 𝐶 ∈ ℕ0
dpmul.d 𝐷 ∈ ℕ0
dpmul.e 𝐸 ∈ ℕ0
dpmul.g 𝐺 ∈ ℕ0
dpadd3.f 𝐹 ∈ ℕ0
dpadd3.h 𝐻 ∈ ℕ0
dpadd3.i 𝐼 ∈ ℕ0
dpadd3.1 (𝐴𝐵𝐶 + 𝐷𝐸𝐹) = 𝐺𝐻𝐼
Assertion
Ref Expression
dpadd3 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)

Proof of Theorem dpadd3
StepHypRef Expression
1 dpmul.a . . . . . 6 𝐴 ∈ ℕ0
2 dpmul.b . . . . . . . 8 𝐵 ∈ ℕ0
32nn0rei 12294 . . . . . . 7 𝐵 ∈ ℝ
4 dpmul.c . . . . . . . 8 𝐶 ∈ ℕ0
54nn0rei 12294 . . . . . . 7 𝐶 ∈ ℝ
6 dp2cl 31203 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵𝐶 ∈ ℝ)
73, 5, 6mp2an 690 . . . . . 6 𝐵𝐶 ∈ ℝ
8 dpcl 31214 . . . . . 6 ((𝐴 ∈ ℕ0𝐵𝐶 ∈ ℝ) → (𝐴.𝐵𝐶) ∈ ℝ)
91, 7, 8mp2an 690 . . . . 5 (𝐴.𝐵𝐶) ∈ ℝ
109recni 11039 . . . 4 (𝐴.𝐵𝐶) ∈ ℂ
11 dpmul.d . . . . . 6 𝐷 ∈ ℕ0
12 dpmul.e . . . . . . . 8 𝐸 ∈ ℕ0
1312nn0rei 12294 . . . . . . 7 𝐸 ∈ ℝ
14 dpadd3.f . . . . . . . 8 𝐹 ∈ ℕ0
1514nn0rei 12294 . . . . . . 7 𝐹 ∈ ℝ
16 dp2cl 31203 . . . . . . 7 ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → 𝐸𝐹 ∈ ℝ)
1713, 15, 16mp2an 690 . . . . . 6 𝐸𝐹 ∈ ℝ
18 dpcl 31214 . . . . . 6 ((𝐷 ∈ ℕ0𝐸𝐹 ∈ ℝ) → (𝐷.𝐸𝐹) ∈ ℝ)
1911, 17, 18mp2an 690 . . . . 5 (𝐷.𝐸𝐹) ∈ ℝ
2019recni 11039 . . . 4 (𝐷.𝐸𝐹) ∈ ℂ
2110, 20addcli 11031 . . 3 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ
22 dpmul.g . . . . 5 𝐺 ∈ ℕ0
23 dpadd3.h . . . . . . 7 𝐻 ∈ ℕ0
2423nn0rei 12294 . . . . . 6 𝐻 ∈ ℝ
25 dpadd3.i . . . . . . 7 𝐼 ∈ ℕ0
2625nn0rei 12294 . . . . . 6 𝐼 ∈ ℝ
27 dp2cl 31203 . . . . . 6 ((𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ) → 𝐻𝐼 ∈ ℝ)
2824, 26, 27mp2an 690 . . . . 5 𝐻𝐼 ∈ ℝ
29 dpcl 31214 . . . . 5 ((𝐺 ∈ ℕ0𝐻𝐼 ∈ ℝ) → (𝐺.𝐻𝐼) ∈ ℝ)
3022, 28, 29mp2an 690 . . . 4 (𝐺.𝐻𝐼) ∈ ℝ
3130recni 11039 . . 3 (𝐺.𝐻𝐼) ∈ ℂ
32 10nn 12503 . . . . . 6 10 ∈ ℕ
3332decnncl2 12511 . . . . 5 100 ∈ ℕ
3433nncni 12033 . . . 4 100 ∈ ℂ
3533nnne0i 12063 . . . 4 100 ≠ 0
3634, 35pm3.2i 472 . . 3 (100 ∈ ℂ ∧ 100 ≠ 0)
3721, 31, 363pm3.2i 1339 . 2 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0))
3810, 20, 34adddiri 11038 . . 3 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100))
39 dpadd3.1 . . . 4 (𝐴𝐵𝐶 + 𝐷𝐸𝐹) = 𝐺𝐻𝐼
401, 2, 5dpmul100 31220 . . . . 5 ((𝐴.𝐵𝐶) · 100) = 𝐴𝐵𝐶
4111, 12, 15dpmul100 31220 . . . . 5 ((𝐷.𝐸𝐹) · 100) = 𝐷𝐸𝐹
4240, 41oveq12i 7319 . . . 4 (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100)) = (𝐴𝐵𝐶 + 𝐷𝐸𝐹)
4322, 23, 26dpmul100 31220 . . . 4 ((𝐺.𝐻𝐼) · 100) = 𝐺𝐻𝐼
4439, 42, 433eqtr4i 2774 . . 3 (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100)) = ((𝐺.𝐻𝐼) · 100)
4538, 44eqtri 2764 . 2 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100)
46 mulcan2 11663 . . 3 ((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) → ((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100) ↔ ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)))
4746biimpa 478 . 2 (((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) ∧ (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100)) → ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼))
4837, 45, 47mp2an 690 1 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)
Colors of variables: wff setvar class
Syntax hints:  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  (class class class)co 7307  cc 10919  cr 10920  0cc0 10921  1c1 10922   + caddc 10924   · cmul 10926  0cn0 12283  cdc 12487  cdp2 31194  .cdp 31211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-5 12089  df-6 12090  df-7 12091  df-8 12092  df-9 12093  df-n0 12284  df-dec 12488  df-dp2 31195  df-dp 31212
This theorem is referenced by:  1mhdrd  31239  hgt750lem2  32681
  Copyright terms: Public domain W3C validator