![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd3 | Structured version Visualization version GIF version |
Description: Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
dpmul.a | ⊢ 𝐴 ∈ ℕ0 |
dpmul.b | ⊢ 𝐵 ∈ ℕ0 |
dpmul.c | ⊢ 𝐶 ∈ ℕ0 |
dpmul.d | ⊢ 𝐷 ∈ ℕ0 |
dpmul.e | ⊢ 𝐸 ∈ ℕ0 |
dpmul.g | ⊢ 𝐺 ∈ ℕ0 |
dpadd3.f | ⊢ 𝐹 ∈ ℕ0 |
dpadd3.h | ⊢ 𝐻 ∈ ℕ0 |
dpadd3.i | ⊢ 𝐼 ∈ ℕ0 |
dpadd3.1 | ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 |
Ref | Expression |
---|---|
dpadd3 | ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpmul.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
2 | dpmul.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 12535 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
4 | dpmul.c | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
5 | 4 | nn0rei 12535 | . . . . . . 7 ⊢ 𝐶 ∈ ℝ |
6 | dp2cl 32847 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
7 | 3, 5, 6 | mp2an 692 | . . . . . 6 ⊢ _𝐵𝐶 ∈ ℝ |
8 | dpcl 32858 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ _𝐵𝐶 ∈ ℝ) → (𝐴._𝐵𝐶) ∈ ℝ) | |
9 | 1, 7, 8 | mp2an 692 | . . . . 5 ⊢ (𝐴._𝐵𝐶) ∈ ℝ |
10 | 9 | recni 11273 | . . . 4 ⊢ (𝐴._𝐵𝐶) ∈ ℂ |
11 | dpmul.d | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
12 | dpmul.e | . . . . . . . 8 ⊢ 𝐸 ∈ ℕ0 | |
13 | 12 | nn0rei 12535 | . . . . . . 7 ⊢ 𝐸 ∈ ℝ |
14 | dpadd3.f | . . . . . . . 8 ⊢ 𝐹 ∈ ℕ0 | |
15 | 14 | nn0rei 12535 | . . . . . . 7 ⊢ 𝐹 ∈ ℝ |
16 | dp2cl 32847 | . . . . . . 7 ⊢ ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → _𝐸𝐹 ∈ ℝ) | |
17 | 13, 15, 16 | mp2an 692 | . . . . . 6 ⊢ _𝐸𝐹 ∈ ℝ |
18 | dpcl 32858 | . . . . . 6 ⊢ ((𝐷 ∈ ℕ0 ∧ _𝐸𝐹 ∈ ℝ) → (𝐷._𝐸𝐹) ∈ ℝ) | |
19 | 11, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐷._𝐸𝐹) ∈ ℝ |
20 | 19 | recni 11273 | . . . 4 ⊢ (𝐷._𝐸𝐹) ∈ ℂ |
21 | 10, 20 | addcli 11265 | . . 3 ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ |
22 | dpmul.g | . . . . 5 ⊢ 𝐺 ∈ ℕ0 | |
23 | dpadd3.h | . . . . . . 7 ⊢ 𝐻 ∈ ℕ0 | |
24 | 23 | nn0rei 12535 | . . . . . 6 ⊢ 𝐻 ∈ ℝ |
25 | dpadd3.i | . . . . . . 7 ⊢ 𝐼 ∈ ℕ0 | |
26 | 25 | nn0rei 12535 | . . . . . 6 ⊢ 𝐼 ∈ ℝ |
27 | dp2cl 32847 | . . . . . 6 ⊢ ((𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ) → _𝐻𝐼 ∈ ℝ) | |
28 | 24, 26, 27 | mp2an 692 | . . . . 5 ⊢ _𝐻𝐼 ∈ ℝ |
29 | dpcl 32858 | . . . . 5 ⊢ ((𝐺 ∈ ℕ0 ∧ _𝐻𝐼 ∈ ℝ) → (𝐺._𝐻𝐼) ∈ ℝ) | |
30 | 22, 28, 29 | mp2an 692 | . . . 4 ⊢ (𝐺._𝐻𝐼) ∈ ℝ |
31 | 30 | recni 11273 | . . 3 ⊢ (𝐺._𝐻𝐼) ∈ ℂ |
32 | 10nn 12747 | . . . . . 6 ⊢ ;10 ∈ ℕ | |
33 | 32 | decnncl2 12755 | . . . . 5 ⊢ ;;100 ∈ ℕ |
34 | 33 | nncni 12274 | . . . 4 ⊢ ;;100 ∈ ℂ |
35 | 33 | nnne0i 12304 | . . . 4 ⊢ ;;100 ≠ 0 |
36 | 34, 35 | pm3.2i 470 | . . 3 ⊢ (;;100 ∈ ℂ ∧ ;;100 ≠ 0) |
37 | 21, 31, 36 | 3pm3.2i 1338 | . 2 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) |
38 | 10, 20, 34 | adddiri 11272 | . . 3 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) |
39 | dpadd3.1 | . . . 4 ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 | |
40 | 1, 2, 5 | dpmul100 32864 | . . . . 5 ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
41 | 11, 12, 15 | dpmul100 32864 | . . . . 5 ⊢ ((𝐷._𝐸𝐹) · ;;100) = ;;𝐷𝐸𝐹 |
42 | 40, 41 | oveq12i 7443 | . . . 4 ⊢ (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) = (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) |
43 | 22, 23, 26 | dpmul100 32864 | . . . 4 ⊢ ((𝐺._𝐻𝐼) · ;;100) = ;;𝐺𝐻𝐼 |
44 | 39, 42, 43 | 3eqtr4i 2773 | . . 3 ⊢ (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) = ((𝐺._𝐻𝐼) · ;;100) |
45 | 38, 44 | eqtri 2763 | . 2 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100) |
46 | mulcan2 11899 | . . 3 ⊢ ((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) → ((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100) ↔ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼))) | |
47 | 46 | biimpa 476 | . 2 ⊢ (((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) ∧ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100)) → ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼)) |
48 | 37, 45, 47 | mp2an 692 | 1 ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 ℕ0cn0 12524 ;cdc 12731 _cdp2 32838 .cdp 32855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-dec 12732 df-dp2 32839 df-dp 32856 |
This theorem is referenced by: 1mhdrd 32883 hgt750lem2 34646 |
Copyright terms: Public domain | W3C validator |