Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpadd3 Structured version   Visualization version   GIF version

Theorem dpadd3 32891
Description: Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Hypotheses
Ref Expression
dpmul.a 𝐴 ∈ ℕ0
dpmul.b 𝐵 ∈ ℕ0
dpmul.c 𝐶 ∈ ℕ0
dpmul.d 𝐷 ∈ ℕ0
dpmul.e 𝐸 ∈ ℕ0
dpmul.g 𝐺 ∈ ℕ0
dpadd3.f 𝐹 ∈ ℕ0
dpadd3.h 𝐻 ∈ ℕ0
dpadd3.i 𝐼 ∈ ℕ0
dpadd3.1 (𝐴𝐵𝐶 + 𝐷𝐸𝐹) = 𝐺𝐻𝐼
Assertion
Ref Expression
dpadd3 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)

Proof of Theorem dpadd3
StepHypRef Expression
1 dpmul.a . . . . . 6 𝐴 ∈ ℕ0
2 dpmul.b . . . . . . . 8 𝐵 ∈ ℕ0
32nn0rei 12517 . . . . . . 7 𝐵 ∈ ℝ
4 dpmul.c . . . . . . . 8 𝐶 ∈ ℕ0
54nn0rei 12517 . . . . . . 7 𝐶 ∈ ℝ
6 dp2cl 32859 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵𝐶 ∈ ℝ)
73, 5, 6mp2an 692 . . . . . 6 𝐵𝐶 ∈ ℝ
8 dpcl 32870 . . . . . 6 ((𝐴 ∈ ℕ0𝐵𝐶 ∈ ℝ) → (𝐴.𝐵𝐶) ∈ ℝ)
91, 7, 8mp2an 692 . . . . 5 (𝐴.𝐵𝐶) ∈ ℝ
109recni 11254 . . . 4 (𝐴.𝐵𝐶) ∈ ℂ
11 dpmul.d . . . . . 6 𝐷 ∈ ℕ0
12 dpmul.e . . . . . . . 8 𝐸 ∈ ℕ0
1312nn0rei 12517 . . . . . . 7 𝐸 ∈ ℝ
14 dpadd3.f . . . . . . . 8 𝐹 ∈ ℕ0
1514nn0rei 12517 . . . . . . 7 𝐹 ∈ ℝ
16 dp2cl 32859 . . . . . . 7 ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → 𝐸𝐹 ∈ ℝ)
1713, 15, 16mp2an 692 . . . . . 6 𝐸𝐹 ∈ ℝ
18 dpcl 32870 . . . . . 6 ((𝐷 ∈ ℕ0𝐸𝐹 ∈ ℝ) → (𝐷.𝐸𝐹) ∈ ℝ)
1911, 17, 18mp2an 692 . . . . 5 (𝐷.𝐸𝐹) ∈ ℝ
2019recni 11254 . . . 4 (𝐷.𝐸𝐹) ∈ ℂ
2110, 20addcli 11246 . . 3 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ
22 dpmul.g . . . . 5 𝐺 ∈ ℕ0
23 dpadd3.h . . . . . . 7 𝐻 ∈ ℕ0
2423nn0rei 12517 . . . . . 6 𝐻 ∈ ℝ
25 dpadd3.i . . . . . . 7 𝐼 ∈ ℕ0
2625nn0rei 12517 . . . . . 6 𝐼 ∈ ℝ
27 dp2cl 32859 . . . . . 6 ((𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ) → 𝐻𝐼 ∈ ℝ)
2824, 26, 27mp2an 692 . . . . 5 𝐻𝐼 ∈ ℝ
29 dpcl 32870 . . . . 5 ((𝐺 ∈ ℕ0𝐻𝐼 ∈ ℝ) → (𝐺.𝐻𝐼) ∈ ℝ)
3022, 28, 29mp2an 692 . . . 4 (𝐺.𝐻𝐼) ∈ ℝ
3130recni 11254 . . 3 (𝐺.𝐻𝐼) ∈ ℂ
32 10nn 12729 . . . . . 6 10 ∈ ℕ
3332decnncl2 12737 . . . . 5 100 ∈ ℕ
3433nncni 12255 . . . 4 100 ∈ ℂ
3533nnne0i 12285 . . . 4 100 ≠ 0
3634, 35pm3.2i 470 . . 3 (100 ∈ ℂ ∧ 100 ≠ 0)
3721, 31, 363pm3.2i 1340 . 2 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0))
3810, 20, 34adddiri 11253 . . 3 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100))
39 dpadd3.1 . . . 4 (𝐴𝐵𝐶 + 𝐷𝐸𝐹) = 𝐺𝐻𝐼
401, 2, 5dpmul100 32876 . . . . 5 ((𝐴.𝐵𝐶) · 100) = 𝐴𝐵𝐶
4111, 12, 15dpmul100 32876 . . . . 5 ((𝐷.𝐸𝐹) · 100) = 𝐷𝐸𝐹
4240, 41oveq12i 7422 . . . 4 (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100)) = (𝐴𝐵𝐶 + 𝐷𝐸𝐹)
4322, 23, 26dpmul100 32876 . . . 4 ((𝐺.𝐻𝐼) · 100) = 𝐺𝐻𝐼
4439, 42, 433eqtr4i 2769 . . 3 (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100)) = ((𝐺.𝐻𝐼) · 100)
4538, 44eqtri 2759 . 2 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100)
46 mulcan2 11880 . . 3 ((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) → ((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100) ↔ ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)))
4746biimpa 476 . 2 (((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) ∧ (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100)) → ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼))
4837, 45, 47mp2an 692 1 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  0cn0 12506  cdc 12713  cdp2 32850  .cdp 32867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-dec 12714  df-dp2 32851  df-dp 32868
This theorem is referenced by:  1mhdrd  32895  hgt750lem2  34689
  Copyright terms: Public domain W3C validator