| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd3 | Structured version Visualization version GIF version | ||
| Description: Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| dpmul.a | ⊢ 𝐴 ∈ ℕ0 |
| dpmul.b | ⊢ 𝐵 ∈ ℕ0 |
| dpmul.c | ⊢ 𝐶 ∈ ℕ0 |
| dpmul.d | ⊢ 𝐷 ∈ ℕ0 |
| dpmul.e | ⊢ 𝐸 ∈ ℕ0 |
| dpmul.g | ⊢ 𝐺 ∈ ℕ0 |
| dpadd3.f | ⊢ 𝐹 ∈ ℕ0 |
| dpadd3.h | ⊢ 𝐻 ∈ ℕ0 |
| dpadd3.i | ⊢ 𝐼 ∈ ℕ0 |
| dpadd3.1 | ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 |
| Ref | Expression |
|---|---|
| dpadd3 | ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpmul.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dpmul.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 2 | nn0rei 12517 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
| 4 | dpmul.c | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | 4 | nn0rei 12517 | . . . . . . 7 ⊢ 𝐶 ∈ ℝ |
| 6 | dp2cl 32859 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
| 7 | 3, 5, 6 | mp2an 692 | . . . . . 6 ⊢ _𝐵𝐶 ∈ ℝ |
| 8 | dpcl 32870 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ _𝐵𝐶 ∈ ℝ) → (𝐴._𝐵𝐶) ∈ ℝ) | |
| 9 | 1, 7, 8 | mp2an 692 | . . . . 5 ⊢ (𝐴._𝐵𝐶) ∈ ℝ |
| 10 | 9 | recni 11254 | . . . 4 ⊢ (𝐴._𝐵𝐶) ∈ ℂ |
| 11 | dpmul.d | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
| 12 | dpmul.e | . . . . . . . 8 ⊢ 𝐸 ∈ ℕ0 | |
| 13 | 12 | nn0rei 12517 | . . . . . . 7 ⊢ 𝐸 ∈ ℝ |
| 14 | dpadd3.f | . . . . . . . 8 ⊢ 𝐹 ∈ ℕ0 | |
| 15 | 14 | nn0rei 12517 | . . . . . . 7 ⊢ 𝐹 ∈ ℝ |
| 16 | dp2cl 32859 | . . . . . . 7 ⊢ ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → _𝐸𝐹 ∈ ℝ) | |
| 17 | 13, 15, 16 | mp2an 692 | . . . . . 6 ⊢ _𝐸𝐹 ∈ ℝ |
| 18 | dpcl 32870 | . . . . . 6 ⊢ ((𝐷 ∈ ℕ0 ∧ _𝐸𝐹 ∈ ℝ) → (𝐷._𝐸𝐹) ∈ ℝ) | |
| 19 | 11, 17, 18 | mp2an 692 | . . . . 5 ⊢ (𝐷._𝐸𝐹) ∈ ℝ |
| 20 | 19 | recni 11254 | . . . 4 ⊢ (𝐷._𝐸𝐹) ∈ ℂ |
| 21 | 10, 20 | addcli 11246 | . . 3 ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ |
| 22 | dpmul.g | . . . . 5 ⊢ 𝐺 ∈ ℕ0 | |
| 23 | dpadd3.h | . . . . . . 7 ⊢ 𝐻 ∈ ℕ0 | |
| 24 | 23 | nn0rei 12517 | . . . . . 6 ⊢ 𝐻 ∈ ℝ |
| 25 | dpadd3.i | . . . . . . 7 ⊢ 𝐼 ∈ ℕ0 | |
| 26 | 25 | nn0rei 12517 | . . . . . 6 ⊢ 𝐼 ∈ ℝ |
| 27 | dp2cl 32859 | . . . . . 6 ⊢ ((𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ) → _𝐻𝐼 ∈ ℝ) | |
| 28 | 24, 26, 27 | mp2an 692 | . . . . 5 ⊢ _𝐻𝐼 ∈ ℝ |
| 29 | dpcl 32870 | . . . . 5 ⊢ ((𝐺 ∈ ℕ0 ∧ _𝐻𝐼 ∈ ℝ) → (𝐺._𝐻𝐼) ∈ ℝ) | |
| 30 | 22, 28, 29 | mp2an 692 | . . . 4 ⊢ (𝐺._𝐻𝐼) ∈ ℝ |
| 31 | 30 | recni 11254 | . . 3 ⊢ (𝐺._𝐻𝐼) ∈ ℂ |
| 32 | 10nn 12729 | . . . . . 6 ⊢ ;10 ∈ ℕ | |
| 33 | 32 | decnncl2 12737 | . . . . 5 ⊢ ;;100 ∈ ℕ |
| 34 | 33 | nncni 12255 | . . . 4 ⊢ ;;100 ∈ ℂ |
| 35 | 33 | nnne0i 12285 | . . . 4 ⊢ ;;100 ≠ 0 |
| 36 | 34, 35 | pm3.2i 470 | . . 3 ⊢ (;;100 ∈ ℂ ∧ ;;100 ≠ 0) |
| 37 | 21, 31, 36 | 3pm3.2i 1340 | . 2 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) |
| 38 | 10, 20, 34 | adddiri 11253 | . . 3 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) |
| 39 | dpadd3.1 | . . . 4 ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 | |
| 40 | 1, 2, 5 | dpmul100 32876 | . . . . 5 ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
| 41 | 11, 12, 15 | dpmul100 32876 | . . . . 5 ⊢ ((𝐷._𝐸𝐹) · ;;100) = ;;𝐷𝐸𝐹 |
| 42 | 40, 41 | oveq12i 7422 | . . . 4 ⊢ (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) = (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) |
| 43 | 22, 23, 26 | dpmul100 32876 | . . . 4 ⊢ ((𝐺._𝐻𝐼) · ;;100) = ;;𝐺𝐻𝐼 |
| 44 | 39, 42, 43 | 3eqtr4i 2769 | . . 3 ⊢ (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) = ((𝐺._𝐻𝐼) · ;;100) |
| 45 | 38, 44 | eqtri 2759 | . 2 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100) |
| 46 | mulcan2 11880 | . . 3 ⊢ ((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) → ((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100) ↔ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼))) | |
| 47 | 46 | biimpa 476 | . 2 ⊢ (((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) ∧ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100)) → ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼)) |
| 48 | 37, 45, 47 | mp2an 692 | 1 ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 ℕ0cn0 12506 ;cdc 12713 _cdp2 32850 .cdp 32867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-dec 12714 df-dp2 32851 df-dp 32868 |
| This theorem is referenced by: 1mhdrd 32895 hgt750lem2 34689 |
| Copyright terms: Public domain | W3C validator |