Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpadd3 | Structured version Visualization version GIF version |
Description: Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
dpmul.a | ⊢ 𝐴 ∈ ℕ0 |
dpmul.b | ⊢ 𝐵 ∈ ℕ0 |
dpmul.c | ⊢ 𝐶 ∈ ℕ0 |
dpmul.d | ⊢ 𝐷 ∈ ℕ0 |
dpmul.e | ⊢ 𝐸 ∈ ℕ0 |
dpmul.g | ⊢ 𝐺 ∈ ℕ0 |
dpadd3.f | ⊢ 𝐹 ∈ ℕ0 |
dpadd3.h | ⊢ 𝐻 ∈ ℕ0 |
dpadd3.i | ⊢ 𝐼 ∈ ℕ0 |
dpadd3.1 | ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 |
Ref | Expression |
---|---|
dpadd3 | ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpmul.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
2 | dpmul.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 12294 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
4 | dpmul.c | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
5 | 4 | nn0rei 12294 | . . . . . . 7 ⊢ 𝐶 ∈ ℝ |
6 | dp2cl 31203 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
7 | 3, 5, 6 | mp2an 690 | . . . . . 6 ⊢ _𝐵𝐶 ∈ ℝ |
8 | dpcl 31214 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ _𝐵𝐶 ∈ ℝ) → (𝐴._𝐵𝐶) ∈ ℝ) | |
9 | 1, 7, 8 | mp2an 690 | . . . . 5 ⊢ (𝐴._𝐵𝐶) ∈ ℝ |
10 | 9 | recni 11039 | . . . 4 ⊢ (𝐴._𝐵𝐶) ∈ ℂ |
11 | dpmul.d | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
12 | dpmul.e | . . . . . . . 8 ⊢ 𝐸 ∈ ℕ0 | |
13 | 12 | nn0rei 12294 | . . . . . . 7 ⊢ 𝐸 ∈ ℝ |
14 | dpadd3.f | . . . . . . . 8 ⊢ 𝐹 ∈ ℕ0 | |
15 | 14 | nn0rei 12294 | . . . . . . 7 ⊢ 𝐹 ∈ ℝ |
16 | dp2cl 31203 | . . . . . . 7 ⊢ ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → _𝐸𝐹 ∈ ℝ) | |
17 | 13, 15, 16 | mp2an 690 | . . . . . 6 ⊢ _𝐸𝐹 ∈ ℝ |
18 | dpcl 31214 | . . . . . 6 ⊢ ((𝐷 ∈ ℕ0 ∧ _𝐸𝐹 ∈ ℝ) → (𝐷._𝐸𝐹) ∈ ℝ) | |
19 | 11, 17, 18 | mp2an 690 | . . . . 5 ⊢ (𝐷._𝐸𝐹) ∈ ℝ |
20 | 19 | recni 11039 | . . . 4 ⊢ (𝐷._𝐸𝐹) ∈ ℂ |
21 | 10, 20 | addcli 11031 | . . 3 ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ |
22 | dpmul.g | . . . . 5 ⊢ 𝐺 ∈ ℕ0 | |
23 | dpadd3.h | . . . . . . 7 ⊢ 𝐻 ∈ ℕ0 | |
24 | 23 | nn0rei 12294 | . . . . . 6 ⊢ 𝐻 ∈ ℝ |
25 | dpadd3.i | . . . . . . 7 ⊢ 𝐼 ∈ ℕ0 | |
26 | 25 | nn0rei 12294 | . . . . . 6 ⊢ 𝐼 ∈ ℝ |
27 | dp2cl 31203 | . . . . . 6 ⊢ ((𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ) → _𝐻𝐼 ∈ ℝ) | |
28 | 24, 26, 27 | mp2an 690 | . . . . 5 ⊢ _𝐻𝐼 ∈ ℝ |
29 | dpcl 31214 | . . . . 5 ⊢ ((𝐺 ∈ ℕ0 ∧ _𝐻𝐼 ∈ ℝ) → (𝐺._𝐻𝐼) ∈ ℝ) | |
30 | 22, 28, 29 | mp2an 690 | . . . 4 ⊢ (𝐺._𝐻𝐼) ∈ ℝ |
31 | 30 | recni 11039 | . . 3 ⊢ (𝐺._𝐻𝐼) ∈ ℂ |
32 | 10nn 12503 | . . . . . 6 ⊢ ;10 ∈ ℕ | |
33 | 32 | decnncl2 12511 | . . . . 5 ⊢ ;;100 ∈ ℕ |
34 | 33 | nncni 12033 | . . . 4 ⊢ ;;100 ∈ ℂ |
35 | 33 | nnne0i 12063 | . . . 4 ⊢ ;;100 ≠ 0 |
36 | 34, 35 | pm3.2i 472 | . . 3 ⊢ (;;100 ∈ ℂ ∧ ;;100 ≠ 0) |
37 | 21, 31, 36 | 3pm3.2i 1339 | . 2 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) |
38 | 10, 20, 34 | adddiri 11038 | . . 3 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) |
39 | dpadd3.1 | . . . 4 ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 | |
40 | 1, 2, 5 | dpmul100 31220 | . . . . 5 ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 |
41 | 11, 12, 15 | dpmul100 31220 | . . . . 5 ⊢ ((𝐷._𝐸𝐹) · ;;100) = ;;𝐷𝐸𝐹 |
42 | 40, 41 | oveq12i 7319 | . . . 4 ⊢ (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) = (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) |
43 | 22, 23, 26 | dpmul100 31220 | . . . 4 ⊢ ((𝐺._𝐻𝐼) · ;;100) = ;;𝐺𝐻𝐼 |
44 | 39, 42, 43 | 3eqtr4i 2774 | . . 3 ⊢ (((𝐴._𝐵𝐶) · ;;100) + ((𝐷._𝐸𝐹) · ;;100)) = ((𝐺._𝐻𝐼) · ;;100) |
45 | 38, 44 | eqtri 2764 | . 2 ⊢ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100) |
46 | mulcan2 11663 | . . 3 ⊢ ((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) → ((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100) ↔ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼))) | |
47 | 46 | biimpa 478 | . 2 ⊢ (((((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) ∈ ℂ ∧ (𝐺._𝐻𝐼) ∈ ℂ ∧ (;;100 ∈ ℂ ∧ ;;100 ≠ 0)) ∧ (((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) · ;;100) = ((𝐺._𝐻𝐼) · ;;100)) → ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼)) |
48 | 37, 45, 47 | mp2an 690 | 1 ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 (class class class)co 7307 ℂcc 10919 ℝcr 10920 0cc0 10921 1c1 10922 + caddc 10924 · cmul 10926 ℕ0cn0 12283 ;cdc 12487 _cdp2 31194 .cdp 31211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-dec 12488 df-dp2 31195 df-dp 31212 |
This theorem is referenced by: 1mhdrd 31239 hgt750lem2 32681 |
Copyright terms: Public domain | W3C validator |