MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq3sgn Structured version   Visualization version   GIF version

Theorem sincosq3sgn 26451
Description: The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq3sgn (𝐴 ∈ (Ο€(,)(3 Β· (Ο€ / 2))) β†’ ((sinβ€˜π΄) < 0 ∧ (cosβ€˜π΄) < 0))

Proof of Theorem sincosq3sgn
StepHypRef Expression
1 pire 26409 . . 3 Ο€ ∈ ℝ
2 3re 12320 . . . 4 3 ∈ ℝ
3 halfpire 26415 . . . 4 (Ο€ / 2) ∈ ℝ
42, 3remulcli 11258 . . 3 (3 Β· (Ο€ / 2)) ∈ ℝ
5 rexr 11288 . . . 4 (Ο€ ∈ ℝ β†’ Ο€ ∈ ℝ*)
6 rexr 11288 . . . 4 ((3 Β· (Ο€ / 2)) ∈ ℝ β†’ (3 Β· (Ο€ / 2)) ∈ ℝ*)
7 elioo2 13395 . . . 4 ((Ο€ ∈ ℝ* ∧ (3 Β· (Ο€ / 2)) ∈ ℝ*) β†’ (𝐴 ∈ (Ο€(,)(3 Β· (Ο€ / 2))) ↔ (𝐴 ∈ ℝ ∧ Ο€ < 𝐴 ∧ 𝐴 < (3 Β· (Ο€ / 2)))))
85, 6, 7syl2an 594 . . 3 ((Ο€ ∈ ℝ ∧ (3 Β· (Ο€ / 2)) ∈ ℝ) β†’ (𝐴 ∈ (Ο€(,)(3 Β· (Ο€ / 2))) ↔ (𝐴 ∈ ℝ ∧ Ο€ < 𝐴 ∧ 𝐴 < (3 Β· (Ο€ / 2)))))
91, 4, 8mp2an 690 . 2 (𝐴 ∈ (Ο€(,)(3 Β· (Ο€ / 2))) ↔ (𝐴 ∈ ℝ ∧ Ο€ < 𝐴 ∧ 𝐴 < (3 Β· (Ο€ / 2))))
10 pidiv2halves 26418 . . . . . . . . 9 ((Ο€ / 2) + (Ο€ / 2)) = Ο€
1110breq1i 5150 . . . . . . . 8 (((Ο€ / 2) + (Ο€ / 2)) < 𝐴 ↔ Ο€ < 𝐴)
12 ltaddsub 11716 . . . . . . . . 9 (((Ο€ / 2) ∈ ℝ ∧ (Ο€ / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) β†’ (((Ο€ / 2) + (Ο€ / 2)) < 𝐴 ↔ (Ο€ / 2) < (𝐴 βˆ’ (Ο€ / 2))))
133, 3, 12mp3an12 1447 . . . . . . . 8 (𝐴 ∈ ℝ β†’ (((Ο€ / 2) + (Ο€ / 2)) < 𝐴 ↔ (Ο€ / 2) < (𝐴 βˆ’ (Ο€ / 2))))
1411, 13bitr3id 284 . . . . . . 7 (𝐴 ∈ ℝ β†’ (Ο€ < 𝐴 ↔ (Ο€ / 2) < (𝐴 βˆ’ (Ο€ / 2))))
15 ltsubadd 11712 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (Ο€ / 2) ∈ ℝ ∧ Ο€ ∈ ℝ) β†’ ((𝐴 βˆ’ (Ο€ / 2)) < Ο€ ↔ 𝐴 < (Ο€ + (Ο€ / 2))))
163, 1, 15mp3an23 1449 . . . . . . . 8 (𝐴 ∈ ℝ β†’ ((𝐴 βˆ’ (Ο€ / 2)) < Ο€ ↔ 𝐴 < (Ο€ + (Ο€ / 2))))
17 df-3 12304 . . . . . . . . . . 11 3 = (2 + 1)
1817oveq1i 7425 . . . . . . . . . 10 (3 Β· (Ο€ / 2)) = ((2 + 1) Β· (Ο€ / 2))
19 2cn 12315 . . . . . . . . . . 11 2 ∈ β„‚
20 ax-1cn 11194 . . . . . . . . . . 11 1 ∈ β„‚
213recni 11256 . . . . . . . . . . 11 (Ο€ / 2) ∈ β„‚
2219, 20, 21adddiri 11255 . . . . . . . . . 10 ((2 + 1) Β· (Ο€ / 2)) = ((2 Β· (Ο€ / 2)) + (1 Β· (Ο€ / 2)))
231recni 11256 . . . . . . . . . . . 12 Ο€ ∈ β„‚
24 2ne0 12344 . . . . . . . . . . . 12 2 β‰  0
2523, 19, 24divcan2i 11985 . . . . . . . . . . 11 (2 Β· (Ο€ / 2)) = Ο€
2621mullidi 11247 . . . . . . . . . . 11 (1 Β· (Ο€ / 2)) = (Ο€ / 2)
2725, 26oveq12i 7427 . . . . . . . . . 10 ((2 Β· (Ο€ / 2)) + (1 Β· (Ο€ / 2))) = (Ο€ + (Ο€ / 2))
2818, 22, 273eqtrri 2758 . . . . . . . . 9 (Ο€ + (Ο€ / 2)) = (3 Β· (Ο€ / 2))
2928breq2i 5151 . . . . . . . 8 (𝐴 < (Ο€ + (Ο€ / 2)) ↔ 𝐴 < (3 Β· (Ο€ / 2)))
3016, 29bitr2di 287 . . . . . . 7 (𝐴 ∈ ℝ β†’ (𝐴 < (3 Β· (Ο€ / 2)) ↔ (𝐴 βˆ’ (Ο€ / 2)) < Ο€))
3114, 30anbi12d 630 . . . . . 6 (𝐴 ∈ ℝ β†’ ((Ο€ < 𝐴 ∧ 𝐴 < (3 Β· (Ο€ / 2))) ↔ ((Ο€ / 2) < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < Ο€)))
32 resubcl 11552 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (Ο€ / 2) ∈ ℝ) β†’ (𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ)
333, 32mpan2 689 . . . . . . . 8 (𝐴 ∈ ℝ β†’ (𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ)
34 sincosq2sgn 26450 . . . . . . . . 9 ((𝐴 βˆ’ (Ο€ / 2)) ∈ ((Ο€ / 2)(,)Ο€) β†’ (0 < (sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0))
35 rexr 11288 . . . . . . . . . . 11 ((Ο€ / 2) ∈ ℝ β†’ (Ο€ / 2) ∈ ℝ*)
36 elioo2 13395 . . . . . . . . . . 11 (((Ο€ / 2) ∈ ℝ* ∧ Ο€ ∈ ℝ*) β†’ ((𝐴 βˆ’ (Ο€ / 2)) ∈ ((Ο€ / 2)(,)Ο€) ↔ ((𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ ∧ (Ο€ / 2) < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < Ο€)))
3735, 5, 36syl2an 594 . . . . . . . . . 10 (((Ο€ / 2) ∈ ℝ ∧ Ο€ ∈ ℝ) β†’ ((𝐴 βˆ’ (Ο€ / 2)) ∈ ((Ο€ / 2)(,)Ο€) ↔ ((𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ ∧ (Ο€ / 2) < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < Ο€)))
383, 1, 37mp2an 690 . . . . . . . . 9 ((𝐴 βˆ’ (Ο€ / 2)) ∈ ((Ο€ / 2)(,)Ο€) ↔ ((𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ ∧ (Ο€ / 2) < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < Ο€))
39 ancom 459 . . . . . . . . 9 ((0 < (sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0) ↔ ((cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ 0 < (sinβ€˜(𝐴 βˆ’ (Ο€ / 2)))))
4034, 38, 393imtr3i 290 . . . . . . . 8 (((𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ ∧ (Ο€ / 2) < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < Ο€) β†’ ((cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ 0 < (sinβ€˜(𝐴 βˆ’ (Ο€ / 2)))))
4133, 40syl3an1 1160 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (Ο€ / 2) < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < Ο€) β†’ ((cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ 0 < (sinβ€˜(𝐴 βˆ’ (Ο€ / 2)))))
42413expib 1119 . . . . . 6 (𝐴 ∈ ℝ β†’ (((Ο€ / 2) < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < Ο€) β†’ ((cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ 0 < (sinβ€˜(𝐴 βˆ’ (Ο€ / 2))))))
4331, 42sylbid 239 . . . . 5 (𝐴 ∈ ℝ β†’ ((Ο€ < 𝐴 ∧ 𝐴 < (3 Β· (Ο€ / 2))) β†’ ((cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ 0 < (sinβ€˜(𝐴 βˆ’ (Ο€ / 2))))))
4433resincld 16117 . . . . . . 7 (𝐴 ∈ ℝ β†’ (sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) ∈ ℝ)
4544lt0neg2d 11812 . . . . . 6 (𝐴 ∈ ℝ β†’ (0 < (sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) ↔ -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0))
4645anbi2d 628 . . . . 5 (𝐴 ∈ ℝ β†’ (((cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ 0 < (sinβ€˜(𝐴 βˆ’ (Ο€ / 2)))) ↔ ((cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0)))
4743, 46sylibd 238 . . . 4 (𝐴 ∈ ℝ β†’ ((Ο€ < 𝐴 ∧ 𝐴 < (3 Β· (Ο€ / 2))) β†’ ((cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0)))
48 recn 11226 . . . . . . . . 9 (𝐴 ∈ ℝ β†’ 𝐴 ∈ β„‚)
49 pncan3 11496 . . . . . . . . 9 (((Ο€ / 2) ∈ β„‚ ∧ 𝐴 ∈ β„‚) β†’ ((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2))) = 𝐴)
5021, 48, 49sylancr 585 . . . . . . . 8 (𝐴 ∈ ℝ β†’ ((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2))) = 𝐴)
5150fveq2d 6895 . . . . . . 7 (𝐴 ∈ ℝ β†’ (sinβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = (sinβ€˜π΄))
5233recnd 11270 . . . . . . . 8 (𝐴 ∈ ℝ β†’ (𝐴 βˆ’ (Ο€ / 2)) ∈ β„‚)
53 sinhalfpip 26443 . . . . . . . 8 ((𝐴 βˆ’ (Ο€ / 2)) ∈ β„‚ β†’ (sinβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))))
5452, 53syl 17 . . . . . . 7 (𝐴 ∈ ℝ β†’ (sinβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))))
5551, 54eqtr3d 2767 . . . . . 6 (𝐴 ∈ ℝ β†’ (sinβ€˜π΄) = (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))))
5655breq1d 5153 . . . . 5 (𝐴 ∈ ℝ β†’ ((sinβ€˜π΄) < 0 ↔ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0))
5750fveq2d 6895 . . . . . . 7 (𝐴 ∈ ℝ β†’ (cosβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = (cosβ€˜π΄))
58 coshalfpip 26445 . . . . . . . 8 ((𝐴 βˆ’ (Ο€ / 2)) ∈ β„‚ β†’ (cosβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))))
5952, 58syl 17 . . . . . . 7 (𝐴 ∈ ℝ β†’ (cosβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))))
6057, 59eqtr3d 2767 . . . . . 6 (𝐴 ∈ ℝ β†’ (cosβ€˜π΄) = -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))))
6160breq1d 5153 . . . . 5 (𝐴 ∈ ℝ β†’ ((cosβ€˜π΄) < 0 ↔ -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0))
6256, 61anbi12d 630 . . . 4 (𝐴 ∈ ℝ β†’ (((sinβ€˜π΄) < 0 ∧ (cosβ€˜π΄) < 0) ↔ ((cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0)))
6347, 62sylibrd 258 . . 3 (𝐴 ∈ ℝ β†’ ((Ο€ < 𝐴 ∧ 𝐴 < (3 Β· (Ο€ / 2))) β†’ ((sinβ€˜π΄) < 0 ∧ (cosβ€˜π΄) < 0)))
64633impib 1113 . 2 ((𝐴 ∈ ℝ ∧ Ο€ < 𝐴 ∧ 𝐴 < (3 Β· (Ο€ / 2))) β†’ ((sinβ€˜π΄) < 0 ∧ (cosβ€˜π΄) < 0))
659, 64sylbi 216 1 (𝐴 ∈ (Ο€(,)(3 Β· (Ο€ / 2))) β†’ ((sinβ€˜π΄) < 0 ∧ (cosβ€˜π΄) < 0))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5143  β€˜cfv 6542  (class class class)co 7415  β„‚cc 11134  β„cr 11135  0cc0 11136  1c1 11137   + caddc 11139   Β· cmul 11141  β„*cxr 11275   < clt 11276   βˆ’ cmin 11472  -cneg 11473   / cdiv 11899  2c2 12295  3c3 12296  (,)cioo 13354  sincsin 16037  cosccos 16038  Ο€cpi 16040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-om 7868  df-1st 7989  df-2nd 7990  df-supp 8162  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-er 8721  df-map 8843  df-pm 8844  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-fi 9432  df-sup 9463  df-inf 9464  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-q 12961  df-rp 13005  df-xneg 13122  df-xadd 13123  df-xmul 13124  df-ioo 13358  df-ioc 13359  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13658  df-fl 13787  df-seq 13997  df-exp 14057  df-fac 14263  df-bc 14292  df-hash 14320  df-shft 15044  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-limsup 15445  df-clim 15462  df-rlim 15463  df-sum 15663  df-ef 16041  df-sin 16043  df-cos 16044  df-pi 16046  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-starv 17245  df-sca 17246  df-vsca 17247  df-ip 17248  df-tset 17249  df-ple 17250  df-ds 17252  df-unif 17253  df-hom 17254  df-cco 17255  df-rest 17401  df-topn 17402  df-0g 17420  df-gsum 17421  df-topgen 17422  df-pt 17423  df-prds 17426  df-xrs 17481  df-qtop 17486  df-imas 17487  df-xps 17489  df-mre 17563  df-mrc 17564  df-acs 17566  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-submnd 18738  df-mulg 19026  df-cntz 19270  df-cmn 19739  df-psmet 21273  df-xmet 21274  df-met 21275  df-bl 21276  df-mopn 21277  df-fbas 21278  df-fg 21279  df-cnfld 21282  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22865  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24814  df-limc 25811  df-dv 25812
This theorem is referenced by:  sincosq4sgn  26452
  Copyright terms: Public domain W3C validator