MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq3sgn Structured version   Visualization version   GIF version

Theorem sincosq3sgn 26461
Description: The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq3sgn (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))

Proof of Theorem sincosq3sgn
StepHypRef Expression
1 pire 26418 . . 3 π ∈ ℝ
2 3re 12320 . . . 4 3 ∈ ℝ
3 halfpire 26425 . . . 4 (π / 2) ∈ ℝ
42, 3remulcli 11251 . . 3 (3 · (π / 2)) ∈ ℝ
5 rexr 11281 . . . 4 (π ∈ ℝ → π ∈ ℝ*)
6 rexr 11281 . . . 4 ((3 · (π / 2)) ∈ ℝ → (3 · (π / 2)) ∈ ℝ*)
7 elioo2 13403 . . . 4 ((π ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2)))))
85, 6, 7syl2an 596 . . 3 ((π ∈ ℝ ∧ (3 · (π / 2)) ∈ ℝ) → (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2)))))
91, 4, 8mp2an 692 . 2 (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2))))
10 pidiv2halves 26428 . . . . . . . . 9 ((π / 2) + (π / 2)) = π
1110breq1i 5126 . . . . . . . 8 (((π / 2) + (π / 2)) < 𝐴 ↔ π < 𝐴)
12 ltaddsub 11711 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((π / 2) + (π / 2)) < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
133, 3, 12mp3an12 1453 . . . . . . . 8 (𝐴 ∈ ℝ → (((π / 2) + (π / 2)) < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
1411, 13bitr3id 285 . . . . . . 7 (𝐴 ∈ ℝ → (π < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
15 ltsubadd 11707 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − (π / 2)) < π ↔ 𝐴 < (π + (π / 2))))
163, 1, 15mp3an23 1455 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < π ↔ 𝐴 < (π + (π / 2))))
17 df-3 12304 . . . . . . . . . . 11 3 = (2 + 1)
1817oveq1i 7415 . . . . . . . . . 10 (3 · (π / 2)) = ((2 + 1) · (π / 2))
19 2cn 12315 . . . . . . . . . . 11 2 ∈ ℂ
20 ax-1cn 11187 . . . . . . . . . . 11 1 ∈ ℂ
213recni 11249 . . . . . . . . . . 11 (π / 2) ∈ ℂ
2219, 20, 21adddiri 11248 . . . . . . . . . 10 ((2 + 1) · (π / 2)) = ((2 · (π / 2)) + (1 · (π / 2)))
231recni 11249 . . . . . . . . . . . 12 π ∈ ℂ
24 2ne0 12344 . . . . . . . . . . . 12 2 ≠ 0
2523, 19, 24divcan2i 11984 . . . . . . . . . . 11 (2 · (π / 2)) = π
2621mullidi 11240 . . . . . . . . . . 11 (1 · (π / 2)) = (π / 2)
2725, 26oveq12i 7417 . . . . . . . . . 10 ((2 · (π / 2)) + (1 · (π / 2))) = (π + (π / 2))
2818, 22, 273eqtrri 2763 . . . . . . . . 9 (π + (π / 2)) = (3 · (π / 2))
2928breq2i 5127 . . . . . . . 8 (𝐴 < (π + (π / 2)) ↔ 𝐴 < (3 · (π / 2)))
3016, 29bitr2di 288 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < (3 · (π / 2)) ↔ (𝐴 − (π / 2)) < π))
3114, 30anbi12d 632 . . . . . 6 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) ↔ ((π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
32 resubcl 11547 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
333, 32mpan2 691 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
34 sincosq2sgn 26460 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) → (0 < (sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0))
35 rexr 11281 . . . . . . . . . . 11 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
36 elioo2 13403 . . . . . . . . . . 11 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
3735, 5, 36syl2an 596 . . . . . . . . . 10 (((π / 2) ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
383, 1, 37mp2an 692 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π))
39 ancom 460 . . . . . . . . 9 ((0 < (sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
4034, 38, 393imtr3i 291 . . . . . . . 8 (((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
4133, 40syl3an1 1163 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
42413expib 1122 . . . . . 6 (𝐴 ∈ ℝ → (((π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2))))))
4331, 42sylbid 240 . . . . 5 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2))))))
4433resincld 16161 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
4544lt0neg2d 11807 . . . . . 6 (𝐴 ∈ ℝ → (0 < (sin‘(𝐴 − (π / 2))) ↔ -(sin‘(𝐴 − (π / 2))) < 0))
4645anbi2d 630 . . . . 5 (𝐴 ∈ ℝ → (((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
4743, 46sylibd 239 . . . 4 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
48 recn 11219 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
49 pncan3 11490 . . . . . . . . 9 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
5021, 48, 49sylancr 587 . . . . . . . 8 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
5150fveq2d 6880 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
5233recnd 11263 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
53 sinhalfpip 26453 . . . . . . . 8 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
5452, 53syl 17 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
5551, 54eqtr3d 2772 . . . . . 6 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
5655breq1d 5129 . . . . 5 (𝐴 ∈ ℝ → ((sin‘𝐴) < 0 ↔ (cos‘(𝐴 − (π / 2))) < 0))
5750fveq2d 6880 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
58 coshalfpip 26455 . . . . . . . 8 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
5952, 58syl 17 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6057, 59eqtr3d 2772 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
6160breq1d 5129 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) < 0 ↔ -(sin‘(𝐴 − (π / 2))) < 0))
6256, 61anbi12d 632 . . . 4 (𝐴 ∈ ℝ → (((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
6347, 62sylibrd 259 . . 3 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0)))
64633impib 1116 . 2 ((𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))
659, 64sylbi 217 1 (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269  cmin 11466  -cneg 11467   / cdiv 11894  2c2 12295  3c3 12296  (,)cioo 13362  sincsin 16079  cosccos 16080  πcpi 16082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  sincosq4sgn  26462
  Copyright terms: Public domain W3C validator