Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachlt Structured version   Visualization version   GIF version

Theorem tgoldbachlt 45268
Description: The ternary Goldbach conjecture is valid for small odd numbers (i.e. for all odd numbers less than a fixed big 𝑚 greater than 8 x 10^30). This is verified for m = 8.875694 x 10^30 by Helfgott, see tgblthelfgott 45267. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
tgoldbachlt 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem tgoldbachlt
StepHypRef Expression
1 8nn0 12256 . . . 4 8 ∈ ℕ0
2 8nn 12068 . . . 4 8 ∈ ℕ
31, 2decnncl 12457 . . 3 88 ∈ ℕ
4 10nn 12453 . . . 4 10 ∈ ℕ
5 2nn0 12250 . . . . 5 2 ∈ ℕ0
6 9nn0 12257 . . . . 5 9 ∈ ℕ0
75, 6deccl 12452 . . . 4 29 ∈ ℕ0
8 nnexpcl 13795 . . . 4 ((10 ∈ ℕ ∧ 29 ∈ ℕ0) → (10↑29) ∈ ℕ)
94, 7, 8mp2an 689 . . 3 (10↑29) ∈ ℕ
103, 9nnmulcli 11998 . 2 (88 · (10↑29)) ∈ ℕ
11 id 22 . . 3 ((88 · (10↑29)) ∈ ℕ → (88 · (10↑29)) ∈ ℕ)
12 breq2 5078 . . . . 5 (𝑚 = (88 · (10↑29)) → ((8 · (10↑30)) < 𝑚 ↔ (8 · (10↑30)) < (88 · (10↑29))))
13 breq2 5078 . . . . . . . 8 (𝑚 = (88 · (10↑29)) → (𝑛 < 𝑚𝑛 < (88 · (10↑29))))
1413anbi2d 629 . . . . . . 7 (𝑚 = (88 · (10↑29)) → ((7 < 𝑛𝑛 < 𝑚) ↔ (7 < 𝑛𝑛 < (88 · (10↑29)))))
1514imbi1d 342 . . . . . 6 (𝑚 = (88 · (10↑29)) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) ↔ ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
1615ralbidv 3112 . . . . 5 (𝑚 = (88 · (10↑29)) → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) ↔ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
1712, 16anbi12d 631 . . . 4 (𝑚 = (88 · (10↑29)) → (((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )) ↔ ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))))
1817adantl 482 . . 3 (((88 · (10↑29)) ∈ ℕ ∧ 𝑚 = (88 · (10↑29))) → (((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )) ↔ ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))))
19 simplr 766 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 ∈ Odd )
20 simprl 768 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 7 < 𝑛)
21 simprr 770 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 < (88 · (10↑29)))
22 tgblthelfgott 45267 . . . . . . 7 ((𝑛 ∈ Odd ∧ 7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )
2319, 20, 21, 22syl3anc 1370 . . . . . 6 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 ∈ GoldbachOdd )
2423ex 413 . . . . 5 (((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) → ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))
2524ralrimiva 3103 . . . 4 ((88 · (10↑29)) ∈ ℕ → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))
262, 9nnmulcli 11998 . . . . . . 7 (8 · (10↑29)) ∈ ℕ
2726nngt0i 12012 . . . . . 6 0 < (8 · (10↑29))
2826nnrei 11982 . . . . . . 7 (8 · (10↑29)) ∈ ℝ
29 3nn0 12251 . . . . . . . . . . 11 3 ∈ ℕ0
30 0nn0 12248 . . . . . . . . . . 11 0 ∈ ℕ0
3129, 30deccl 12452 . . . . . . . . . 10 30 ∈ ℕ0
32 nnexpcl 13795 . . . . . . . . . 10 ((10 ∈ ℕ ∧ 30 ∈ ℕ0) → (10↑30) ∈ ℕ)
334, 31, 32mp2an 689 . . . . . . . . 9 (10↑30) ∈ ℕ
342, 33nnmulcli 11998 . . . . . . . 8 (8 · (10↑30)) ∈ ℕ
3534nnrei 11982 . . . . . . 7 (8 · (10↑30)) ∈ ℝ
3628, 35ltaddposi 11524 . . . . . 6 (0 < (8 · (10↑29)) ↔ (8 · (10↑30)) < ((8 · (10↑30)) + (8 · (10↑29))))
3727, 36mpbi 229 . . . . 5 (8 · (10↑30)) < ((8 · (10↑30)) + (8 · (10↑29)))
38 dfdec10 12440 . . . . . . 7 88 = ((10 · 8) + 8)
3938oveq1i 7285 . . . . . 6 (88 · (10↑29)) = (((10 · 8) + 8) · (10↑29))
404, 2nnmulcli 11998 . . . . . . . 8 (10 · 8) ∈ ℕ
4140nncni 11983 . . . . . . 7 (10 · 8) ∈ ℂ
42 8cn 12070 . . . . . . 7 8 ∈ ℂ
439nncni 11983 . . . . . . 7 (10↑29) ∈ ℂ
4441, 42, 43adddiri 10988 . . . . . 6 (((10 · 8) + 8) · (10↑29)) = (((10 · 8) · (10↑29)) + (8 · (10↑29)))
4541, 43mulcomi 10983 . . . . . . . . 9 ((10 · 8) · (10↑29)) = ((10↑29) · (10 · 8))
464nncni 11983 . . . . . . . . . 10 10 ∈ ℂ
4743, 46, 42mulassi 10986 . . . . . . . . 9 (((10↑29) · 10) · 8) = ((10↑29) · (10 · 8))
48 nncn 11981 . . . . . . . . . . . . 13 (10 ∈ ℕ → 10 ∈ ℂ)
497a1i 11 . . . . . . . . . . . . 13 (10 ∈ ℕ → 29 ∈ ℕ0)
5048, 49expp1d 13865 . . . . . . . . . . . 12 (10 ∈ ℕ → (10↑(29 + 1)) = ((10↑29) · 10))
514, 50ax-mp 5 . . . . . . . . . . 11 (10↑(29 + 1)) = ((10↑29) · 10)
5251eqcomi 2747 . . . . . . . . . 10 ((10↑29) · 10) = (10↑(29 + 1))
5352oveq1i 7285 . . . . . . . . 9 (((10↑29) · 10) · 8) = ((10↑(29 + 1)) · 8)
5445, 47, 533eqtr2i 2772 . . . . . . . 8 ((10 · 8) · (10↑29)) = ((10↑(29 + 1)) · 8)
5554oveq1i 7285 . . . . . . 7 (((10 · 8) · (10↑29)) + (8 · (10↑29))) = (((10↑(29 + 1)) · 8) + (8 · (10↑29)))
56 2p1e3 12115 . . . . . . . . . . 11 (2 + 1) = 3
57 eqid 2738 . . . . . . . . . . 11 29 = 29
585, 56, 57decsucc 12478 . . . . . . . . . 10 (29 + 1) = 30
5958oveq2i 7286 . . . . . . . . 9 (10↑(29 + 1)) = (10↑30)
6059oveq1i 7285 . . . . . . . 8 ((10↑(29 + 1)) · 8) = ((10↑30) · 8)
6160oveq1i 7285 . . . . . . 7 (((10↑(29 + 1)) · 8) + (8 · (10↑29))) = (((10↑30) · 8) + (8 · (10↑29)))
6233nncni 11983 . . . . . . . 8 (10↑30) ∈ ℂ
63 mulcom 10957 . . . . . . . . 9 (((10↑30) ∈ ℂ ∧ 8 ∈ ℂ) → ((10↑30) · 8) = (8 · (10↑30)))
6463oveq1d 7290 . . . . . . . 8 (((10↑30) ∈ ℂ ∧ 8 ∈ ℂ) → (((10↑30) · 8) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29))))
6562, 42, 64mp2an 689 . . . . . . 7 (((10↑30) · 8) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29)))
6655, 61, 653eqtri 2770 . . . . . 6 (((10 · 8) · (10↑29)) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29)))
6739, 44, 663eqtri 2770 . . . . 5 (88 · (10↑29)) = ((8 · (10↑30)) + (8 · (10↑29)))
6837, 67breqtrri 5101 . . . 4 (8 · (10↑30)) < (88 · (10↑29))
6925, 68jctil 520 . . 3 ((88 · (10↑29)) ∈ ℕ → ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
7011, 18, 69rspcedvd 3563 . 2 ((88 · (10↑29)) ∈ ℕ → ∃𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )))
7110, 70ax-mp 5 1 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cn 11973  2c2 12028  3c3 12029  7c7 12033  8c8 12034  9c9 12035  0cn0 12233  cdc 12437  cexp 13782   Odd codd 45077   GoldbachOdd cgbo 45199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-bgbltosilva 45262  ax-hgprmladder 45266
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-prm 16377  df-iccp 44866  df-even 45078  df-odd 45079  df-gbe 45200  df-gbo 45202
This theorem is referenced by:  tgoldbach  45269
  Copyright terms: Public domain W3C validator