Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachlt Structured version   Visualization version   GIF version

Theorem tgoldbachlt 47821
Description: The ternary Goldbach conjecture is valid for small odd numbers (i.e. for all odd numbers less than a fixed big 𝑚 greater than 8 x 10^30). This is verified for m = 8.875694 x 10^30 by Helfgott, see tgblthelfgott 47820. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
tgoldbachlt 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem tgoldbachlt
StepHypRef Expression
1 8nn0 12472 . . . 4 8 ∈ ℕ0
2 8nn 12288 . . . 4 8 ∈ ℕ
31, 2decnncl 12676 . . 3 88 ∈ ℕ
4 10nn 12672 . . . 4 10 ∈ ℕ
5 2nn0 12466 . . . . 5 2 ∈ ℕ0
6 9nn0 12473 . . . . 5 9 ∈ ℕ0
75, 6deccl 12671 . . . 4 29 ∈ ℕ0
8 nnexpcl 14046 . . . 4 ((10 ∈ ℕ ∧ 29 ∈ ℕ0) → (10↑29) ∈ ℕ)
94, 7, 8mp2an 692 . . 3 (10↑29) ∈ ℕ
103, 9nnmulcli 12218 . 2 (88 · (10↑29)) ∈ ℕ
11 id 22 . . 3 ((88 · (10↑29)) ∈ ℕ → (88 · (10↑29)) ∈ ℕ)
12 breq2 5114 . . . . 5 (𝑚 = (88 · (10↑29)) → ((8 · (10↑30)) < 𝑚 ↔ (8 · (10↑30)) < (88 · (10↑29))))
13 breq2 5114 . . . . . . . 8 (𝑚 = (88 · (10↑29)) → (𝑛 < 𝑚𝑛 < (88 · (10↑29))))
1413anbi2d 630 . . . . . . 7 (𝑚 = (88 · (10↑29)) → ((7 < 𝑛𝑛 < 𝑚) ↔ (7 < 𝑛𝑛 < (88 · (10↑29)))))
1514imbi1d 341 . . . . . 6 (𝑚 = (88 · (10↑29)) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) ↔ ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
1615ralbidv 3157 . . . . 5 (𝑚 = (88 · (10↑29)) → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) ↔ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
1712, 16anbi12d 632 . . . 4 (𝑚 = (88 · (10↑29)) → (((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )) ↔ ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))))
1817adantl 481 . . 3 (((88 · (10↑29)) ∈ ℕ ∧ 𝑚 = (88 · (10↑29))) → (((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )) ↔ ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))))
19 simplr 768 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 ∈ Odd )
20 simprl 770 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 7 < 𝑛)
21 simprr 772 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 < (88 · (10↑29)))
22 tgblthelfgott 47820 . . . . . . 7 ((𝑛 ∈ Odd ∧ 7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )
2319, 20, 21, 22syl3anc 1373 . . . . . 6 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 ∈ GoldbachOdd )
2423ex 412 . . . . 5 (((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) → ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))
2524ralrimiva 3126 . . . 4 ((88 · (10↑29)) ∈ ℕ → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))
262, 9nnmulcli 12218 . . . . . . 7 (8 · (10↑29)) ∈ ℕ
2726nngt0i 12232 . . . . . 6 0 < (8 · (10↑29))
2826nnrei 12202 . . . . . . 7 (8 · (10↑29)) ∈ ℝ
29 3nn0 12467 . . . . . . . . . . 11 3 ∈ ℕ0
30 0nn0 12464 . . . . . . . . . . 11 0 ∈ ℕ0
3129, 30deccl 12671 . . . . . . . . . 10 30 ∈ ℕ0
32 nnexpcl 14046 . . . . . . . . . 10 ((10 ∈ ℕ ∧ 30 ∈ ℕ0) → (10↑30) ∈ ℕ)
334, 31, 32mp2an 692 . . . . . . . . 9 (10↑30) ∈ ℕ
342, 33nnmulcli 12218 . . . . . . . 8 (8 · (10↑30)) ∈ ℕ
3534nnrei 12202 . . . . . . 7 (8 · (10↑30)) ∈ ℝ
3628, 35ltaddposi 11734 . . . . . 6 (0 < (8 · (10↑29)) ↔ (8 · (10↑30)) < ((8 · (10↑30)) + (8 · (10↑29))))
3727, 36mpbi 230 . . . . 5 (8 · (10↑30)) < ((8 · (10↑30)) + (8 · (10↑29)))
38 dfdec10 12659 . . . . . . 7 88 = ((10 · 8) + 8)
3938oveq1i 7400 . . . . . 6 (88 · (10↑29)) = (((10 · 8) + 8) · (10↑29))
404, 2nnmulcli 12218 . . . . . . . 8 (10 · 8) ∈ ℕ
4140nncni 12203 . . . . . . 7 (10 · 8) ∈ ℂ
42 8cn 12290 . . . . . . 7 8 ∈ ℂ
439nncni 12203 . . . . . . 7 (10↑29) ∈ ℂ
4441, 42, 43adddiri 11194 . . . . . 6 (((10 · 8) + 8) · (10↑29)) = (((10 · 8) · (10↑29)) + (8 · (10↑29)))
4541, 43mulcomi 11189 . . . . . . . . 9 ((10 · 8) · (10↑29)) = ((10↑29) · (10 · 8))
464nncni 12203 . . . . . . . . . 10 10 ∈ ℂ
4743, 46, 42mulassi 11192 . . . . . . . . 9 (((10↑29) · 10) · 8) = ((10↑29) · (10 · 8))
48 nncn 12201 . . . . . . . . . . . . 13 (10 ∈ ℕ → 10 ∈ ℂ)
497a1i 11 . . . . . . . . . . . . 13 (10 ∈ ℕ → 29 ∈ ℕ0)
5048, 49expp1d 14119 . . . . . . . . . . . 12 (10 ∈ ℕ → (10↑(29 + 1)) = ((10↑29) · 10))
514, 50ax-mp 5 . . . . . . . . . . 11 (10↑(29 + 1)) = ((10↑29) · 10)
5251eqcomi 2739 . . . . . . . . . 10 ((10↑29) · 10) = (10↑(29 + 1))
5352oveq1i 7400 . . . . . . . . 9 (((10↑29) · 10) · 8) = ((10↑(29 + 1)) · 8)
5445, 47, 533eqtr2i 2759 . . . . . . . 8 ((10 · 8) · (10↑29)) = ((10↑(29 + 1)) · 8)
5554oveq1i 7400 . . . . . . 7 (((10 · 8) · (10↑29)) + (8 · (10↑29))) = (((10↑(29 + 1)) · 8) + (8 · (10↑29)))
56 2p1e3 12330 . . . . . . . . . . 11 (2 + 1) = 3
57 eqid 2730 . . . . . . . . . . 11 29 = 29
585, 56, 57decsucc 12697 . . . . . . . . . 10 (29 + 1) = 30
5958oveq2i 7401 . . . . . . . . 9 (10↑(29 + 1)) = (10↑30)
6059oveq1i 7400 . . . . . . . 8 ((10↑(29 + 1)) · 8) = ((10↑30) · 8)
6160oveq1i 7400 . . . . . . 7 (((10↑(29 + 1)) · 8) + (8 · (10↑29))) = (((10↑30) · 8) + (8 · (10↑29)))
6233nncni 12203 . . . . . . . 8 (10↑30) ∈ ℂ
63 mulcom 11161 . . . . . . . . 9 (((10↑30) ∈ ℂ ∧ 8 ∈ ℂ) → ((10↑30) · 8) = (8 · (10↑30)))
6463oveq1d 7405 . . . . . . . 8 (((10↑30) ∈ ℂ ∧ 8 ∈ ℂ) → (((10↑30) · 8) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29))))
6562, 42, 64mp2an 692 . . . . . . 7 (((10↑30) · 8) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29)))
6655, 61, 653eqtri 2757 . . . . . 6 (((10 · 8) · (10↑29)) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29)))
6739, 44, 663eqtri 2757 . . . . 5 (88 · (10↑29)) = ((8 · (10↑30)) + (8 · (10↑29)))
6837, 67breqtrri 5137 . . . 4 (8 · (10↑30)) < (88 · (10↑29))
6925, 68jctil 519 . . 3 ((88 · (10↑29)) ∈ ℕ → ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
7011, 18, 69rspcedvd 3593 . 2 ((88 · (10↑29)) ∈ ℕ → ∃𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )))
7110, 70ax-mp 5 1 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cn 12193  2c2 12248  3c3 12249  7c7 12253  8c8 12254  9c9 12255  0cn0 12449  cdc 12656  cexp 14033   Odd codd 47630   GoldbachOdd cgbo 47752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-bgbltosilva 47815  ax-hgprmladder 47819
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649  df-iccp 47419  df-even 47631  df-odd 47632  df-gbe 47753  df-gbo 47755
This theorem is referenced by:  tgoldbach  47822
  Copyright terms: Public domain W3C validator