Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbachlt Structured version   Visualization version   GIF version

Theorem tgoldbachlt 47810
Description: The ternary Goldbach conjecture is valid for small odd numbers (i.e. for all odd numbers less than a fixed big 𝑚 greater than 8 x 10^30). This is verified for m = 8.875694 x 10^30 by Helfgott, see tgblthelfgott 47809. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
tgoldbachlt 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem tgoldbachlt
StepHypRef Expression
1 8nn0 12441 . . . 4 8 ∈ ℕ0
2 8nn 12257 . . . 4 8 ∈ ℕ
31, 2decnncl 12645 . . 3 88 ∈ ℕ
4 10nn 12641 . . . 4 10 ∈ ℕ
5 2nn0 12435 . . . . 5 2 ∈ ℕ0
6 9nn0 12442 . . . . 5 9 ∈ ℕ0
75, 6deccl 12640 . . . 4 29 ∈ ℕ0
8 nnexpcl 14015 . . . 4 ((10 ∈ ℕ ∧ 29 ∈ ℕ0) → (10↑29) ∈ ℕ)
94, 7, 8mp2an 692 . . 3 (10↑29) ∈ ℕ
103, 9nnmulcli 12187 . 2 (88 · (10↑29)) ∈ ℕ
11 id 22 . . 3 ((88 · (10↑29)) ∈ ℕ → (88 · (10↑29)) ∈ ℕ)
12 breq2 5106 . . . . 5 (𝑚 = (88 · (10↑29)) → ((8 · (10↑30)) < 𝑚 ↔ (8 · (10↑30)) < (88 · (10↑29))))
13 breq2 5106 . . . . . . . 8 (𝑚 = (88 · (10↑29)) → (𝑛 < 𝑚𝑛 < (88 · (10↑29))))
1413anbi2d 630 . . . . . . 7 (𝑚 = (88 · (10↑29)) → ((7 < 𝑛𝑛 < 𝑚) ↔ (7 < 𝑛𝑛 < (88 · (10↑29)))))
1514imbi1d 341 . . . . . 6 (𝑚 = (88 · (10↑29)) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) ↔ ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
1615ralbidv 3156 . . . . 5 (𝑚 = (88 · (10↑29)) → (∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) ↔ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
1712, 16anbi12d 632 . . . 4 (𝑚 = (88 · (10↑29)) → (((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )) ↔ ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))))
1817adantl 481 . . 3 (((88 · (10↑29)) ∈ ℕ ∧ 𝑚 = (88 · (10↑29))) → (((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )) ↔ ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))))
19 simplr 768 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 ∈ Odd )
20 simprl 770 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 7 < 𝑛)
21 simprr 772 . . . . . . 7 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 < (88 · (10↑29)))
22 tgblthelfgott 47809 . . . . . . 7 ((𝑛 ∈ Odd ∧ 7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )
2319, 20, 21, 22syl3anc 1373 . . . . . 6 ((((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) ∧ (7 < 𝑛𝑛 < (88 · (10↑29)))) → 𝑛 ∈ GoldbachOdd )
2423ex 412 . . . . 5 (((88 · (10↑29)) ∈ ℕ ∧ 𝑛 ∈ Odd ) → ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))
2524ralrimiva 3125 . . . 4 ((88 · (10↑29)) ∈ ℕ → ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd ))
262, 9nnmulcli 12187 . . . . . . 7 (8 · (10↑29)) ∈ ℕ
2726nngt0i 12201 . . . . . 6 0 < (8 · (10↑29))
2826nnrei 12171 . . . . . . 7 (8 · (10↑29)) ∈ ℝ
29 3nn0 12436 . . . . . . . . . . 11 3 ∈ ℕ0
30 0nn0 12433 . . . . . . . . . . 11 0 ∈ ℕ0
3129, 30deccl 12640 . . . . . . . . . 10 30 ∈ ℕ0
32 nnexpcl 14015 . . . . . . . . . 10 ((10 ∈ ℕ ∧ 30 ∈ ℕ0) → (10↑30) ∈ ℕ)
334, 31, 32mp2an 692 . . . . . . . . 9 (10↑30) ∈ ℕ
342, 33nnmulcli 12187 . . . . . . . 8 (8 · (10↑30)) ∈ ℕ
3534nnrei 12171 . . . . . . 7 (8 · (10↑30)) ∈ ℝ
3628, 35ltaddposi 11703 . . . . . 6 (0 < (8 · (10↑29)) ↔ (8 · (10↑30)) < ((8 · (10↑30)) + (8 · (10↑29))))
3727, 36mpbi 230 . . . . 5 (8 · (10↑30)) < ((8 · (10↑30)) + (8 · (10↑29)))
38 dfdec10 12628 . . . . . . 7 88 = ((10 · 8) + 8)
3938oveq1i 7379 . . . . . 6 (88 · (10↑29)) = (((10 · 8) + 8) · (10↑29))
404, 2nnmulcli 12187 . . . . . . . 8 (10 · 8) ∈ ℕ
4140nncni 12172 . . . . . . 7 (10 · 8) ∈ ℂ
42 8cn 12259 . . . . . . 7 8 ∈ ℂ
439nncni 12172 . . . . . . 7 (10↑29) ∈ ℂ
4441, 42, 43adddiri 11163 . . . . . 6 (((10 · 8) + 8) · (10↑29)) = (((10 · 8) · (10↑29)) + (8 · (10↑29)))
4541, 43mulcomi 11158 . . . . . . . . 9 ((10 · 8) · (10↑29)) = ((10↑29) · (10 · 8))
464nncni 12172 . . . . . . . . . 10 10 ∈ ℂ
4743, 46, 42mulassi 11161 . . . . . . . . 9 (((10↑29) · 10) · 8) = ((10↑29) · (10 · 8))
48 nncn 12170 . . . . . . . . . . . . 13 (10 ∈ ℕ → 10 ∈ ℂ)
497a1i 11 . . . . . . . . . . . . 13 (10 ∈ ℕ → 29 ∈ ℕ0)
5048, 49expp1d 14088 . . . . . . . . . . . 12 (10 ∈ ℕ → (10↑(29 + 1)) = ((10↑29) · 10))
514, 50ax-mp 5 . . . . . . . . . . 11 (10↑(29 + 1)) = ((10↑29) · 10)
5251eqcomi 2738 . . . . . . . . . 10 ((10↑29) · 10) = (10↑(29 + 1))
5352oveq1i 7379 . . . . . . . . 9 (((10↑29) · 10) · 8) = ((10↑(29 + 1)) · 8)
5445, 47, 533eqtr2i 2758 . . . . . . . 8 ((10 · 8) · (10↑29)) = ((10↑(29 + 1)) · 8)
5554oveq1i 7379 . . . . . . 7 (((10 · 8) · (10↑29)) + (8 · (10↑29))) = (((10↑(29 + 1)) · 8) + (8 · (10↑29)))
56 2p1e3 12299 . . . . . . . . . . 11 (2 + 1) = 3
57 eqid 2729 . . . . . . . . . . 11 29 = 29
585, 56, 57decsucc 12666 . . . . . . . . . 10 (29 + 1) = 30
5958oveq2i 7380 . . . . . . . . 9 (10↑(29 + 1)) = (10↑30)
6059oveq1i 7379 . . . . . . . 8 ((10↑(29 + 1)) · 8) = ((10↑30) · 8)
6160oveq1i 7379 . . . . . . 7 (((10↑(29 + 1)) · 8) + (8 · (10↑29))) = (((10↑30) · 8) + (8 · (10↑29)))
6233nncni 12172 . . . . . . . 8 (10↑30) ∈ ℂ
63 mulcom 11130 . . . . . . . . 9 (((10↑30) ∈ ℂ ∧ 8 ∈ ℂ) → ((10↑30) · 8) = (8 · (10↑30)))
6463oveq1d 7384 . . . . . . . 8 (((10↑30) ∈ ℂ ∧ 8 ∈ ℂ) → (((10↑30) · 8) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29))))
6562, 42, 64mp2an 692 . . . . . . 7 (((10↑30) · 8) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29)))
6655, 61, 653eqtri 2756 . . . . . 6 (((10 · 8) · (10↑29)) + (8 · (10↑29))) = ((8 · (10↑30)) + (8 · (10↑29)))
6739, 44, 663eqtri 2756 . . . . 5 (88 · (10↑29)) = ((8 · (10↑30)) + (8 · (10↑29)))
6837, 67breqtrri 5129 . . . 4 (8 · (10↑30)) < (88 · (10↑29))
6925, 68jctil 519 . . 3 ((88 · (10↑29)) ∈ ℕ → ((8 · (10↑30)) < (88 · (10↑29)) ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < (88 · (10↑29))) → 𝑛 ∈ GoldbachOdd )))
7011, 18, 69rspcedvd 3587 . 2 ((88 · (10↑29)) ∈ ℕ → ∃𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )))
7110, 70ax-mp 5 1 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cn 12162  2c2 12217  3c3 12218  7c7 12222  8c8 12223  9c9 12224  0cn0 12418  cdc 12625  cexp 14002   Odd codd 47619   GoldbachOdd cgbo 47741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-bgbltosilva 47804  ax-hgprmladder 47808
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618  df-iccp 47408  df-even 47620  df-odd 47621  df-gbe 47742  df-gbo 47744
This theorem is referenced by:  tgoldbach  47811
  Copyright terms: Public domain W3C validator