MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem2 Structured version   Visualization version   GIF version

Theorem ang180lem2 25057
Description: Lemma for ang180 25061. Show that the revolution number 𝑁 is strictly between -2 and 1. Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl 24822, but the resulting bound gives only 𝑁 ≤ 1 for the upper bound. The case 𝑁 = 1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 must lie on the negative real axis, which is a contradiction because clearly if 𝐴 is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem2
StepHypRef Expression
1 2cn 11549 . . . . . . 7 2 ∈ ℂ
2 1re 10476 . . . . . . . . 9 1 ∈ ℝ
32rehalfcli 11723 . . . . . . . 8 (1 / 2) ∈ ℝ
43recni 10490 . . . . . . 7 (1 / 2) ∈ ℂ
51, 4negsubdii 10808 . . . . . 6 -(2 − (1 / 2)) = (-2 + (1 / 2))
6 4d2e2 11644 . . . . . . . . 9 (4 / 2) = 2
76oveq1i 7017 . . . . . . . 8 ((4 / 2) − (1 / 2)) = (2 − (1 / 2))
8 4cn 11559 . . . . . . . . . 10 4 ∈ ℂ
9 ax-1cn 10430 . . . . . . . . . 10 1 ∈ ℂ
10 2cnne0 11684 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 ≠ 0)
11 divsubdir 11171 . . . . . . . . . 10 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((4 − 1) / 2) = ((4 / 2) − (1 / 2)))
128, 9, 10, 11mp3an 1451 . . . . . . . . 9 ((4 − 1) / 2) = ((4 / 2) − (1 / 2))
13 4m1e3 11603 . . . . . . . . . 10 (4 − 1) = 3
1413oveq1i 7017 . . . . . . . . 9 ((4 − 1) / 2) = (3 / 2)
1512, 14eqtr3i 2819 . . . . . . . 8 ((4 / 2) − (1 / 2)) = (3 / 2)
167, 15eqtr3i 2819 . . . . . . 7 (2 − (1 / 2)) = (3 / 2)
1716negeqi 10715 . . . . . 6 -(2 − (1 / 2)) = -(3 / 2)
185, 17eqtr3i 2819 . . . . 5 (-2 + (1 / 2)) = -(3 / 2)
19 3re 11554 . . . . . . . . . . . . 13 3 ∈ ℝ
2019rehalfcli 11723 . . . . . . . . . . . 12 (3 / 2) ∈ ℝ
2120recni 10490 . . . . . . . . . . 11 (3 / 2) ∈ ℂ
22 picn 24716 . . . . . . . . . . 11 π ∈ ℂ
2321, 1, 22mulassi 10487 . . . . . . . . . 10 (((3 / 2) · 2) · π) = ((3 / 2) · (2 · π))
24 3cn 11555 . . . . . . . . . . . 12 3 ∈ ℂ
25 2ne0 11578 . . . . . . . . . . . 12 2 ≠ 0
2624, 1, 25divcan1i 11221 . . . . . . . . . . 11 ((3 / 2) · 2) = 3
2726oveq1i 7017 . . . . . . . . . 10 (((3 / 2) · 2) · π) = (3 · π)
2823, 27eqtr3i 2819 . . . . . . . . 9 ((3 / 2) · (2 · π)) = (3 · π)
2928negeqi 10715 . . . . . . . 8 -((3 / 2) · (2 · π)) = -(3 · π)
30 2re 11548 . . . . . . . . . . 11 2 ∈ ℝ
31 pire 24715 . . . . . . . . . . 11 π ∈ ℝ
3230, 31remulcli 10492 . . . . . . . . . 10 (2 · π) ∈ ℝ
3332recni 10490 . . . . . . . . 9 (2 · π) ∈ ℂ
3421, 33mulneg1i 10923 . . . . . . . 8 (-(3 / 2) · (2 · π)) = -((3 / 2) · (2 · π))
3524, 22mulneg2i 10924 . . . . . . . 8 (3 · -π) = -(3 · π)
3629, 34, 353eqtr4i 2827 . . . . . . 7 (-(3 / 2) · (2 · π)) = (3 · -π)
3731renegcli 10784 . . . . . . . . . . . 12 -π ∈ ℝ
3830, 37remulcli 10492 . . . . . . . . . . 11 (2 · -π) ∈ ℝ
3938a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) ∈ ℝ)
4037a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π ∈ ℝ)
41 simp1 1127 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
42 subcl 10721 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
439, 41, 42sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
44 simp3 1129 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
4544necomd 3037 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
46 subeq0 10749 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
479, 41, 46sylancr 587 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
4847necon3bid 3026 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
4945, 48mpbird 258 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
5043, 49reccld 11246 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
5143, 49recne0d 11247 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
5250, 51logcld 24823 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
53 subcl 10721 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
5441, 9, 53sylancl 586 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
55 simp2 1128 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
5654, 41, 55divcld 11253 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
57 subeq0 10749 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
5841, 9, 57sylancl 586 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
5958necon3bid 3026 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
6044, 59mpbird 258 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
6154, 41, 60, 55divne0d 11269 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
6256, 61logcld 24823 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
6352, 62addcld 10495 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
6463imcld 14376 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ)
65 logcl 24821 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
66653adant3 1123 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
6766imcld 14376 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ∈ ℝ)
6852imcld 14376 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1 / (1 − 𝐴)))) ∈ ℝ)
6962imcld 14376 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∈ ℝ)
7050, 51logimcld 24824 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘(1 / (1 − 𝐴)))) ∧ (ℑ‘(log‘(1 / (1 − 𝐴)))) ≤ π))
7170simpld 495 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘(1 / (1 − 𝐴)))))
7256, 61logimcld 24824 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∧ (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π))
7372simpld 495 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘((𝐴 − 1) / 𝐴))))
7440, 40, 68, 69, 71, 73lt2addd 11100 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π + -π) < ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
75 negpicn 24719 . . . . . . . . . . . . 13 -π ∈ ℂ
76752timesi 11612 . . . . . . . . . . . 12 (2 · -π) = (-π + -π)
7776a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) = (-π + -π))
7852, 62imaddd 14396 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
7974, 77, 783brtr4d 4988 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) < (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))
80 logimcl 24822 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
81803adant3 1123 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
8281simpld 495 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘𝐴)))
8339, 40, 64, 67, 79, 82lt2addd 11100 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · -π) + -π) < ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
84 df-3 11538 . . . . . . . . . . . 12 3 = (2 + 1)
8584oveq1i 7017 . . . . . . . . . . 11 (3 · -π) = ((2 + 1) · -π)
861, 9, 75adddiri 10489 . . . . . . . . . . 11 ((2 + 1) · -π) = ((2 · -π) + (1 · -π))
8775mulid2i 10481 . . . . . . . . . . . 12 (1 · -π) = -π
8887oveq2i 7018 . . . . . . . . . . 11 ((2 · -π) + (1 · -π)) = ((2 · -π) + -π)
8985, 86, 883eqtri 2821 . . . . . . . . . 10 (3 · -π) = ((2 · -π) + -π)
9089a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) = ((2 · -π) + -π))
91 ang180lem1.2 . . . . . . . . . . 11 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
9291fveq2i 6533 . . . . . . . . . 10 (ℑ‘𝑇) = (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)))
9363, 66imaddd 14396 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
9492, 93syl5eq 2841 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
9583, 90, 943brtr4d 4988 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) < (ℑ‘𝑇))
9663, 66addcld 10495 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
9791, 96syl5eqel 2885 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
98 imval 14288 . . . . . . . . . 10 (𝑇 ∈ ℂ → (ℑ‘𝑇) = (ℜ‘(𝑇 / i)))
9997, 98syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (ℜ‘(𝑇 / i)))
100 ang.1 . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
101 ang180lem1.3 . . . . . . . . . . . 12 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
102100, 91, 101ang180lem1 25056 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
103102simprd 496 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ)
104103rered 14405 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℜ‘(𝑇 / i)) = (𝑇 / i))
10599, 104eqtrd 2829 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (𝑇 / i))
10695, 105breqtrd 4982 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) < (𝑇 / i))
10736, 106eqbrtrid 4991 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(3 / 2) · (2 · π)) < (𝑇 / i))
10820renegcli 10784 . . . . . . . 8 -(3 / 2) ∈ ℝ
109108a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) ∈ ℝ)
11032a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℝ)
111 2pos 11577 . . . . . . . . 9 0 < 2
112 pipos 24717 . . . . . . . . 9 0 < π
11330, 31, 111, 112mulgt0ii 10609 . . . . . . . 8 0 < (2 · π)
114113a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 < (2 · π))
115 ltmuldiv 11350 . . . . . . 7 ((-(3 / 2) ∈ ℝ ∧ (𝑇 / i) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) < ((𝑇 / i) / (2 · π))))
116109, 103, 110, 114, 115syl112anc 1365 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) < ((𝑇 / i) / (2 · π))))
117107, 116mpbid 233 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) < ((𝑇 / i) / (2 · π)))
11818, 117eqbrtrid 4991 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 + (1 / 2)) < ((𝑇 / i) / (2 · π)))
11930renegcli 10784 . . . . . 6 -2 ∈ ℝ
120119a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 ∈ ℝ)
1213a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / 2) ∈ ℝ)
12232, 113gt0ne0ii 11013 . . . . . . 7 (2 · π) ≠ 0
123122a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
124103, 110, 123redivcld 11305 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℝ)
125120, 121, 124ltaddsubd 11077 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-2 + (1 / 2)) < ((𝑇 / i) / (2 · π)) ↔ -2 < (((𝑇 / i) / (2 · π)) − (1 / 2))))
126118, 125mpbid 233 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < (((𝑇 / i) / (2 · π)) − (1 / 2)))
127126, 101syl6breqr 4998 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁)
12831a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈ ℝ)
12970simprd 496 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1 / (1 − 𝐴)))) ≤ π)
13072simprd 496 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π)
13168, 69, 128, 128, 129, 130le2addd 11096 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))) ≤ (π + π))
132222timesi 11612 . . . . . . . . . . . 12 (2 · π) = (π + π)
133132a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) = (π + π))
134131, 78, 1333brtr4d 4988 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π))
13581simprd 496 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ≤ π)
13664, 67, 110, 128, 134, 135le2addd 11096 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))) ≤ ((2 · π) + π))
137105, 94eqtr3d 2831 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
13884oveq1i 7017 . . . . . . . . . . 11 (3 · π) = ((2 + 1) · π)
1391, 9, 22adddiri 10489 . . . . . . . . . . 11 ((2 + 1) · π) = ((2 · π) + (1 · π))
14022mulid2i 10481 . . . . . . . . . . . 12 (1 · π) = π
141140oveq2i 7018 . . . . . . . . . . 11 ((2 · π) + (1 · π)) = ((2 · π) + π)
142138, 139, 1413eqtri 2821 . . . . . . . . . 10 (3 · π) = ((2 · π) + π)
143142a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) = ((2 · π) + π))
144136, 137, 1433brtr4d 4988 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ≤ (3 · π))
14533subid1i 10795 . . . . . . . . . 10 ((2 · π) − 0) = (2 · π)
146145, 122eqnetri 3052 . . . . . . . . 9 ((2 · π) − 0) ≠ 0
147 negsub 10771 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + -𝐴) = (1 − 𝐴))
1489, 41, 147sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴))
149148adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) = (1 − 𝐴))
150 1rp 12232 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ+
151143, 137oveq12d 7025 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) − (𝑇 / i)) = (((2 · π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))))
15233a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
15322a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈ ℂ)
15464recnd 10504 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℂ)
15567recnd 10504 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ∈ ℂ)
156152, 153, 154, 155addsub4d 10881 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
157151, 156eqtrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) − (𝑇 / i)) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
158157adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π) − (𝑇 / i)) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
15919, 31remulcli 10492 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (3 · π) ∈ ℝ
160159recni 10490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 · π) ∈ ℂ
161 ax-icn 10431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 i ∈ ℂ
162161a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
163 ine0 10912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 i ≠ 0
164163a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
16597, 162, 164divcld 11253 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
166 subeq0 10749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((3 · π) ∈ ℂ ∧ (𝑇 / i) ∈ ℂ) → (((3 · π) − (𝑇 / i)) = 0 ↔ (3 · π) = (𝑇 / i)))
167160, 165, 166sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((3 · π) − (𝑇 / i)) = 0 ↔ (3 · π) = (𝑇 / i)))
168167biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π) − (𝑇 / i)) = 0)
169158, 168eqtr3d 2831 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0)
170 resubcl 10787 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2 · π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ)
17132, 64, 170sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ)
172 subge0 10990 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → (0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π)))
17332, 64, 172sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π)))
174134, 173mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))))
175 resubcl 10787 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (π − (ℑ‘(log‘𝐴))) ∈ ℝ)
17631, 67, 175sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (π − (ℑ‘(log‘𝐴))) ∈ ℝ)
177 subge0 10990 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 ≤ (π − (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π))
17831, 67, 177sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ (π − (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π))
179135, 178mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ (π − (ℑ‘(log‘𝐴))))
180 add20 10989 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ ∧ 0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))) ∧ ((π − (ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (π − (ℑ‘(log‘𝐴))))) → ((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0)))
181171, 174, 176, 179, 180syl22anc 835 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0)))
182181biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0))
183169, 182syldan 591 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0))
184183simprd 496 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (π − (ℑ‘(log‘𝐴))) = 0)
185155adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
186 subeq0 10749 . . . . . . . . . . . . . . . . . . . . . . 23 ((π ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((π − (ℑ‘(log‘𝐴))) = 0 ↔ π = (ℑ‘(log‘𝐴))))
18722, 185, 186sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((π − (ℑ‘(log‘𝐴))) = 0 ↔ π = (ℑ‘(log‘𝐴))))
188184, 187mpbid 233 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → π = (ℑ‘(log‘𝐴)))
189188eqcomd 2799 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘(log‘𝐴)) = π)
190 lognegb 24842 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
1911903adant3 1123 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
192191adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
193189, 192mpbird 258 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → -𝐴 ∈ ℝ+)
194 rpaddcl 12250 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+ ∧ -𝐴 ∈ ℝ+) → (1 + -𝐴) ∈ ℝ+)
195150, 193, 194sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) ∈ ℝ+)
196149, 195eqeltrrd 2882 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 − 𝐴) ∈ ℝ+)
197196rpreccld 12280 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 / (1 − 𝐴)) ∈ ℝ+)
198197relogcld 24875 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘(1 / (1 − 𝐴))) ∈ ℝ)
199 negsubdi2 10782 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
20041, 9, 199sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(𝐴 − 1) = (1 − 𝐴))
201200oveq1d 7022 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((1 − 𝐴) / -𝐴))
20254, 41, 55div2negd 11268 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((𝐴 − 1) / 𝐴))
203201, 202eqtr3d 2831 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴))
204203adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴))
205196, 193rpdivcld 12287 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) ∈ ℝ+)
206204, 205eqeltrrd 2882 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((𝐴 − 1) / 𝐴) ∈ ℝ+)
207206relogcld 24875 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℝ)
208198, 207readdcld 10505 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℝ)
209208reim0d 14406 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = 0)
210209oveq2d 7023 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = ((2 · π) − 0))
211183simpld 495 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0)
212210, 211eqtr3d 2831 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − 0) = 0)
213212ex 413 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) = (𝑇 / i) → ((2 · π) − 0) = 0))
214213necon3d 3003 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) − 0) ≠ 0 → (3 · π) ≠ (𝑇 / i)))
215146, 214mpi 20 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) ≠ (𝑇 / i))
216 ltlen 10577 . . . . . . . . 9 (((𝑇 / i) ∈ ℝ ∧ (3 · π) ∈ ℝ) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π) ∧ (3 · π) ≠ (𝑇 / i))))
217103, 159, 216sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π) ∧ (3 · π) ≠ (𝑇 / i))))
218144, 215, 217mpbir2and 709 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < (3 · π))
219218, 28syl6breqr 4998 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < ((3 / 2) · (2 · π)))
22020a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 / 2) ∈ ℝ)
221 ltdivmul2 11354 . . . . . . 7 (((𝑇 / i) ∈ ℝ ∧ (3 / 2) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → (((𝑇 / i) / (2 · π)) < (3 / 2) ↔ (𝑇 / i) < ((3 / 2) · (2 · π))))
222103, 220, 110, 114, 221syl112anc 1365 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) < (3 / 2) ↔ (𝑇 / i) < ((3 / 2) · (2 · π))))
223219, 222mpbird 258 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (3 / 2))
22484oveq1i 7017 . . . . . 6 (3 / 2) = ((2 + 1) / 2)
2251, 9, 1, 25divdiri 11234 . . . . . 6 ((2 + 1) / 2) = ((2 / 2) + (1 / 2))
226 2div2e1 11615 . . . . . . 7 (2 / 2) = 1
227226oveq1i 7017 . . . . . 6 ((2 / 2) + (1 / 2)) = (1 + (1 / 2))
228224, 225, 2273eqtri 2821 . . . . 5 (3 / 2) = (1 + (1 / 2))
229223, 228syl6breq 4997 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (1 + (1 / 2)))
2302a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈ ℝ)
231124, 121, 230ltsubaddd 11073 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) < 1 ↔ ((𝑇 / i) / (2 · π)) < (1 + (1 / 2))))
232229, 231mpbird 258 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2)) < 1)
233101, 232eqbrtrid 4991 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1)
234127, 233jca 512 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982  cdif 3851  {csn 4466   class class class wbr 4956  cfv 6217  (class class class)co 7007  cmpo 7009  cc 10370  cr 10371  0cc0 10372  1c1 10373  ici 10374   + caddc 10375   · cmul 10377   < clt 10510  cle 10511  cmin 10706  -cneg 10707   / cdiv 11134  2c2 11529  3c3 11530  4c4 11531  cz 11818  +crp 12228  cre 14278  cim 14279  πcpi 15241  logclog 24807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-map 8249  df-pm 8250  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ioc 12582  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-mod 13076  df-seq 13208  df-exp 13268  df-fac 13472  df-bc 13501  df-hash 13529  df-shft 14248  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-limsup 14650  df-clim 14667  df-rlim 14668  df-sum 14865  df-ef 15242  df-sin 15244  df-cos 15245  df-pi 15247  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-xrs 16592  df-qtop 16597  df-imas 16598  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-submnd 17763  df-mulg 17970  df-cntz 18176  df-cmn 18623  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-fbas 20212  df-fg 20213  df-cnfld 20216  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cld 21299  df-ntr 21300  df-cls 21301  df-nei 21378  df-lp 21416  df-perf 21417  df-cn 21507  df-cnp 21508  df-haus 21595  df-tx 21842  df-hmeo 22035  df-fil 22126  df-fm 22218  df-flim 22219  df-flf 22220  df-xms 22601  df-ms 22602  df-tms 22603  df-cncf 23157  df-limc 24135  df-dv 24136  df-log 24809
This theorem is referenced by:  ang180lem3  25058
  Copyright terms: Public domain W3C validator