MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem2 Structured version   Visualization version   GIF version

Theorem ang180lem2 25865
Description: Lemma for ang180 25869. Show that the revolution number 𝑁 is strictly between -2 and 1. Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl 25630, but the resulting bound gives only 𝑁 ≤ 1 for the upper bound. The case 𝑁 = 1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 must lie on the negative real axis, which is a contradiction because clearly if 𝐴 is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem2
StepHypRef Expression
1 2cn 11978 . . . . . . 7 2 ∈ ℂ
2 1re 10906 . . . . . . . . 9 1 ∈ ℝ
32rehalfcli 12152 . . . . . . . 8 (1 / 2) ∈ ℝ
43recni 10920 . . . . . . 7 (1 / 2) ∈ ℂ
51, 4negsubdii 11236 . . . . . 6 -(2 − (1 / 2)) = (-2 + (1 / 2))
6 4d2e2 12073 . . . . . . . . 9 (4 / 2) = 2
76oveq1i 7265 . . . . . . . 8 ((4 / 2) − (1 / 2)) = (2 − (1 / 2))
8 4cn 11988 . . . . . . . . . 10 4 ∈ ℂ
9 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
10 2cnne0 12113 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 ≠ 0)
11 divsubdir 11599 . . . . . . . . . 10 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((4 − 1) / 2) = ((4 / 2) − (1 / 2)))
128, 9, 10, 11mp3an 1459 . . . . . . . . 9 ((4 − 1) / 2) = ((4 / 2) − (1 / 2))
13 4m1e3 12032 . . . . . . . . . 10 (4 − 1) = 3
1413oveq1i 7265 . . . . . . . . 9 ((4 − 1) / 2) = (3 / 2)
1512, 14eqtr3i 2768 . . . . . . . 8 ((4 / 2) − (1 / 2)) = (3 / 2)
167, 15eqtr3i 2768 . . . . . . 7 (2 − (1 / 2)) = (3 / 2)
1716negeqi 11144 . . . . . 6 -(2 − (1 / 2)) = -(3 / 2)
185, 17eqtr3i 2768 . . . . 5 (-2 + (1 / 2)) = -(3 / 2)
19 3re 11983 . . . . . . . . . . . . 13 3 ∈ ℝ
2019rehalfcli 12152 . . . . . . . . . . . 12 (3 / 2) ∈ ℝ
2120recni 10920 . . . . . . . . . . 11 (3 / 2) ∈ ℂ
22 picn 25521 . . . . . . . . . . 11 π ∈ ℂ
2321, 1, 22mulassi 10917 . . . . . . . . . 10 (((3 / 2) · 2) · π) = ((3 / 2) · (2 · π))
24 3cn 11984 . . . . . . . . . . . 12 3 ∈ ℂ
25 2ne0 12007 . . . . . . . . . . . 12 2 ≠ 0
2624, 1, 25divcan1i 11649 . . . . . . . . . . 11 ((3 / 2) · 2) = 3
2726oveq1i 7265 . . . . . . . . . 10 (((3 / 2) · 2) · π) = (3 · π)
2823, 27eqtr3i 2768 . . . . . . . . 9 ((3 / 2) · (2 · π)) = (3 · π)
2928negeqi 11144 . . . . . . . 8 -((3 / 2) · (2 · π)) = -(3 · π)
30 2re 11977 . . . . . . . . . . 11 2 ∈ ℝ
31 pire 25520 . . . . . . . . . . 11 π ∈ ℝ
3230, 31remulcli 10922 . . . . . . . . . 10 (2 · π) ∈ ℝ
3332recni 10920 . . . . . . . . 9 (2 · π) ∈ ℂ
3421, 33mulneg1i 11351 . . . . . . . 8 (-(3 / 2) · (2 · π)) = -((3 / 2) · (2 · π))
3524, 22mulneg2i 11352 . . . . . . . 8 (3 · -π) = -(3 · π)
3629, 34, 353eqtr4i 2776 . . . . . . 7 (-(3 / 2) · (2 · π)) = (3 · -π)
3731renegcli 11212 . . . . . . . . . . . 12 -π ∈ ℝ
3830, 37remulcli 10922 . . . . . . . . . . 11 (2 · -π) ∈ ℝ
3938a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) ∈ ℝ)
4037a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π ∈ ℝ)
41 simp1 1134 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
42 subcl 11150 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
439, 41, 42sylancr 586 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
44 simp3 1136 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
4544necomd 2998 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
46 subeq0 11177 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
479, 41, 46sylancr 586 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
4847necon3bid 2987 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
4945, 48mpbird 256 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
5043, 49reccld 11674 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
5143, 49recne0d 11675 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
5250, 51logcld 25631 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
53 subcl 11150 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
5441, 9, 53sylancl 585 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
55 simp2 1135 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
5654, 41, 55divcld 11681 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
57 subeq0 11177 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
5841, 9, 57sylancl 585 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
5958necon3bid 2987 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
6044, 59mpbird 256 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
6154, 41, 60, 55divne0d 11697 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
6256, 61logcld 25631 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
6352, 62addcld 10925 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
6463imcld 14834 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ)
65 logcl 25629 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
66653adant3 1130 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
6766imcld 14834 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ∈ ℝ)
6852imcld 14834 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1 / (1 − 𝐴)))) ∈ ℝ)
6962imcld 14834 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∈ ℝ)
7050, 51logimcld 25632 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘(1 / (1 − 𝐴)))) ∧ (ℑ‘(log‘(1 / (1 − 𝐴)))) ≤ π))
7170simpld 494 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘(1 / (1 − 𝐴)))))
7256, 61logimcld 25632 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∧ (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π))
7372simpld 494 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘((𝐴 − 1) / 𝐴))))
7440, 40, 68, 69, 71, 73lt2addd 11528 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π + -π) < ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
75 negpicn 25524 . . . . . . . . . . . . 13 -π ∈ ℂ
76752timesi 12041 . . . . . . . . . . . 12 (2 · -π) = (-π + -π)
7776a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) = (-π + -π))
7852, 62imaddd 14854 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
7974, 77, 783brtr4d 5102 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) < (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))
80 logimcl 25630 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
81803adant3 1130 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
8281simpld 494 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘𝐴)))
8339, 40, 64, 67, 79, 82lt2addd 11528 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · -π) + -π) < ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
84 df-3 11967 . . . . . . . . . . . 12 3 = (2 + 1)
8584oveq1i 7265 . . . . . . . . . . 11 (3 · -π) = ((2 + 1) · -π)
861, 9, 75adddiri 10919 . . . . . . . . . . 11 ((2 + 1) · -π) = ((2 · -π) + (1 · -π))
8775mulid2i 10911 . . . . . . . . . . . 12 (1 · -π) = -π
8887oveq2i 7266 . . . . . . . . . . 11 ((2 · -π) + (1 · -π)) = ((2 · -π) + -π)
8985, 86, 883eqtri 2770 . . . . . . . . . 10 (3 · -π) = ((2 · -π) + -π)
9089a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) = ((2 · -π) + -π))
91 ang180lem1.2 . . . . . . . . . . 11 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
9291fveq2i 6759 . . . . . . . . . 10 (ℑ‘𝑇) = (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)))
9363, 66imaddd 14854 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
9492, 93syl5eq 2791 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
9583, 90, 943brtr4d 5102 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) < (ℑ‘𝑇))
9663, 66addcld 10925 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
9791, 96eqeltrid 2843 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
98 imval 14746 . . . . . . . . . 10 (𝑇 ∈ ℂ → (ℑ‘𝑇) = (ℜ‘(𝑇 / i)))
9997, 98syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (ℜ‘(𝑇 / i)))
100 ang.1 . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
101 ang180lem1.3 . . . . . . . . . . . 12 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
102100, 91, 101ang180lem1 25864 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
103102simprd 495 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ)
104103rered 14863 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℜ‘(𝑇 / i)) = (𝑇 / i))
10599, 104eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (𝑇 / i))
10695, 105breqtrd 5096 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) < (𝑇 / i))
10736, 106eqbrtrid 5105 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(3 / 2) · (2 · π)) < (𝑇 / i))
10820renegcli 11212 . . . . . . . 8 -(3 / 2) ∈ ℝ
109108a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) ∈ ℝ)
11032a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℝ)
111 2pos 12006 . . . . . . . . 9 0 < 2
112 pipos 25522 . . . . . . . . 9 0 < π
11330, 31, 111, 112mulgt0ii 11038 . . . . . . . 8 0 < (2 · π)
114113a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 < (2 · π))
115 ltmuldiv 11778 . . . . . . 7 ((-(3 / 2) ∈ ℝ ∧ (𝑇 / i) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) < ((𝑇 / i) / (2 · π))))
116109, 103, 110, 114, 115syl112anc 1372 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) < ((𝑇 / i) / (2 · π))))
117107, 116mpbid 231 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) < ((𝑇 / i) / (2 · π)))
11818, 117eqbrtrid 5105 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 + (1 / 2)) < ((𝑇 / i) / (2 · π)))
11930renegcli 11212 . . . . . 6 -2 ∈ ℝ
120119a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 ∈ ℝ)
1213a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / 2) ∈ ℝ)
12232, 113gt0ne0ii 11441 . . . . . . 7 (2 · π) ≠ 0
123122a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
124103, 110, 123redivcld 11733 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℝ)
125120, 121, 124ltaddsubd 11505 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-2 + (1 / 2)) < ((𝑇 / i) / (2 · π)) ↔ -2 < (((𝑇 / i) / (2 · π)) − (1 / 2))))
126118, 125mpbid 231 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < (((𝑇 / i) / (2 · π)) − (1 / 2)))
127126, 101breqtrrdi 5112 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁)
12831a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈ ℝ)
12970simprd 495 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1 / (1 − 𝐴)))) ≤ π)
13072simprd 495 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π)
13168, 69, 128, 128, 129, 130le2addd 11524 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))) ≤ (π + π))
132222timesi 12041 . . . . . . . . . . . 12 (2 · π) = (π + π)
133132a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) = (π + π))
134131, 78, 1333brtr4d 5102 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π))
13581simprd 495 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ≤ π)
13664, 67, 110, 128, 134, 135le2addd 11524 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))) ≤ ((2 · π) + π))
137105, 94eqtr3d 2780 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
13884oveq1i 7265 . . . . . . . . . . 11 (3 · π) = ((2 + 1) · π)
1391, 9, 22adddiri 10919 . . . . . . . . . . 11 ((2 + 1) · π) = ((2 · π) + (1 · π))
14022mulid2i 10911 . . . . . . . . . . . 12 (1 · π) = π
141140oveq2i 7266 . . . . . . . . . . 11 ((2 · π) + (1 · π)) = ((2 · π) + π)
142138, 139, 1413eqtri 2770 . . . . . . . . . 10 (3 · π) = ((2 · π) + π)
143142a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) = ((2 · π) + π))
144136, 137, 1433brtr4d 5102 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ≤ (3 · π))
14533subid1i 11223 . . . . . . . . . 10 ((2 · π) − 0) = (2 · π)
146145, 122eqnetri 3013 . . . . . . . . 9 ((2 · π) − 0) ≠ 0
147 negsub 11199 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + -𝐴) = (1 − 𝐴))
1489, 41, 147sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴))
149148adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) = (1 − 𝐴))
150 1rp 12663 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ+
151143, 137oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) − (𝑇 / i)) = (((2 · π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))))
15233a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
15322a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈ ℂ)
15464recnd 10934 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℂ)
15567recnd 10934 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ∈ ℂ)
156152, 153, 154, 155addsub4d 11309 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
157151, 156eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) − (𝑇 / i)) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
158157adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π) − (𝑇 / i)) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
15919, 31remulcli 10922 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (3 · π) ∈ ℝ
160159recni 10920 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 · π) ∈ ℂ
161 ax-icn 10861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 i ∈ ℂ
162161a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
163 ine0 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 i ≠ 0
164163a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
16597, 162, 164divcld 11681 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
166 subeq0 11177 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((3 · π) ∈ ℂ ∧ (𝑇 / i) ∈ ℂ) → (((3 · π) − (𝑇 / i)) = 0 ↔ (3 · π) = (𝑇 / i)))
167160, 165, 166sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((3 · π) − (𝑇 / i)) = 0 ↔ (3 · π) = (𝑇 / i)))
168167biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π) − (𝑇 / i)) = 0)
169158, 168eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0)
170 resubcl 11215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2 · π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ)
17132, 64, 170sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ)
172 subge0 11418 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → (0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π)))
17332, 64, 172sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π)))
174134, 173mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))))
175 resubcl 11215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (π − (ℑ‘(log‘𝐴))) ∈ ℝ)
17631, 67, 175sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (π − (ℑ‘(log‘𝐴))) ∈ ℝ)
177 subge0 11418 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 ≤ (π − (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π))
17831, 67, 177sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ (π − (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π))
179135, 178mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ (π − (ℑ‘(log‘𝐴))))
180 add20 11417 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ ∧ 0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))) ∧ ((π − (ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (π − (ℑ‘(log‘𝐴))))) → ((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0)))
181171, 174, 176, 179, 180syl22anc 835 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0)))
182181biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0))
183169, 182syldan 590 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0))
184183simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (π − (ℑ‘(log‘𝐴))) = 0)
185155adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
186 subeq0 11177 . . . . . . . . . . . . . . . . . . . . . . 23 ((π ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((π − (ℑ‘(log‘𝐴))) = 0 ↔ π = (ℑ‘(log‘𝐴))))
18722, 185, 186sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((π − (ℑ‘(log‘𝐴))) = 0 ↔ π = (ℑ‘(log‘𝐴))))
188184, 187mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → π = (ℑ‘(log‘𝐴)))
189188eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘(log‘𝐴)) = π)
190 lognegb 25650 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
1911903adant3 1130 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
192191adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
193189, 192mpbird 256 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → -𝐴 ∈ ℝ+)
194 rpaddcl 12681 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+ ∧ -𝐴 ∈ ℝ+) → (1 + -𝐴) ∈ ℝ+)
195150, 193, 194sylancr 586 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) ∈ ℝ+)
196149, 195eqeltrrd 2840 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 − 𝐴) ∈ ℝ+)
197196rpreccld 12711 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 / (1 − 𝐴)) ∈ ℝ+)
198197relogcld 25683 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘(1 / (1 − 𝐴))) ∈ ℝ)
199 negsubdi2 11210 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
20041, 9, 199sylancl 585 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(𝐴 − 1) = (1 − 𝐴))
201200oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((1 − 𝐴) / -𝐴))
20254, 41, 55div2negd 11696 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((𝐴 − 1) / 𝐴))
203201, 202eqtr3d 2780 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴))
204203adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴))
205196, 193rpdivcld 12718 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) ∈ ℝ+)
206204, 205eqeltrrd 2840 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((𝐴 − 1) / 𝐴) ∈ ℝ+)
207206relogcld 25683 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℝ)
208198, 207readdcld 10935 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℝ)
209208reim0d 14864 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = 0)
210209oveq2d 7271 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = ((2 · π) − 0))
211183simpld 494 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0)
212210, 211eqtr3d 2780 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − 0) = 0)
213212ex 412 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) = (𝑇 / i) → ((2 · π) − 0) = 0))
214213necon3d 2963 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) − 0) ≠ 0 → (3 · π) ≠ (𝑇 / i)))
215146, 214mpi 20 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) ≠ (𝑇 / i))
216 ltlen 11006 . . . . . . . . 9 (((𝑇 / i) ∈ ℝ ∧ (3 · π) ∈ ℝ) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π) ∧ (3 · π) ≠ (𝑇 / i))))
217103, 159, 216sylancl 585 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π) ∧ (3 · π) ≠ (𝑇 / i))))
218144, 215, 217mpbir2and 709 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < (3 · π))
219218, 28breqtrrdi 5112 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < ((3 / 2) · (2 · π)))
22020a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 / 2) ∈ ℝ)
221 ltdivmul2 11782 . . . . . . 7 (((𝑇 / i) ∈ ℝ ∧ (3 / 2) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → (((𝑇 / i) / (2 · π)) < (3 / 2) ↔ (𝑇 / i) < ((3 / 2) · (2 · π))))
222103, 220, 110, 114, 221syl112anc 1372 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) < (3 / 2) ↔ (𝑇 / i) < ((3 / 2) · (2 · π))))
223219, 222mpbird 256 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (3 / 2))
22484oveq1i 7265 . . . . . 6 (3 / 2) = ((2 + 1) / 2)
2251, 9, 1, 25divdiri 11662 . . . . . 6 ((2 + 1) / 2) = ((2 / 2) + (1 / 2))
226 2div2e1 12044 . . . . . . 7 (2 / 2) = 1
227226oveq1i 7265 . . . . . 6 ((2 / 2) + (1 / 2)) = (1 + (1 / 2))
228224, 225, 2273eqtri 2770 . . . . 5 (3 / 2) = (1 + (1 / 2))
229223, 228breqtrdi 5111 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (1 + (1 / 2)))
2302a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈ ℝ)
231124, 121, 230ltsubaddd 11501 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) < 1 ↔ ((𝑇 / i) / (2 · π)) < (1 + (1 / 2))))
232229, 231mpbird 256 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2)) < 1)
233101, 232eqbrtrid 5105 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1)
234127, 233jca 511 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  cmpo 7257  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  3c3 11959  4c4 11960  cz 12249  +crp 12659  cre 14736  cim 14737  πcpi 15704  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617
This theorem is referenced by:  ang180lem3  25866
  Copyright terms: Public domain W3C validator