MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq4sgn Structured version   Visualization version   GIF version

Theorem sincosq4sgn 26449
Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq4sgn (𝐴 ∈ ((3 Β· (Ο€ / 2))(,)(2 Β· Ο€)) β†’ ((sinβ€˜π΄) < 0 ∧ 0 < (cosβ€˜π΄)))

Proof of Theorem sincosq4sgn
StepHypRef Expression
1 3re 12317 . . . . 5 3 ∈ ℝ
2 halfpire 26412 . . . . 5 (Ο€ / 2) ∈ ℝ
31, 2remulcli 11255 . . . 4 (3 Β· (Ο€ / 2)) ∈ ℝ
43rexri 11297 . . 3 (3 Β· (Ο€ / 2)) ∈ ℝ*
5 2re 12311 . . . . 5 2 ∈ ℝ
6 pire 26406 . . . . 5 Ο€ ∈ ℝ
75, 6remulcli 11255 . . . 4 (2 Β· Ο€) ∈ ℝ
87rexri 11297 . . 3 (2 Β· Ο€) ∈ ℝ*
9 elioo2 13392 . . 3 (((3 Β· (Ο€ / 2)) ∈ ℝ* ∧ (2 Β· Ο€) ∈ ℝ*) β†’ (𝐴 ∈ ((3 Β· (Ο€ / 2))(,)(2 Β· Ο€)) ↔ (𝐴 ∈ ℝ ∧ (3 Β· (Ο€ / 2)) < 𝐴 ∧ 𝐴 < (2 Β· Ο€))))
104, 8, 9mp2an 690 . 2 (𝐴 ∈ ((3 Β· (Ο€ / 2))(,)(2 Β· Ο€)) ↔ (𝐴 ∈ ℝ ∧ (3 Β· (Ο€ / 2)) < 𝐴 ∧ 𝐴 < (2 Β· Ο€)))
11 df-3 12301 . . . . . . . . . . . 12 3 = (2 + 1)
1211oveq1i 7423 . . . . . . . . . . 11 (3 Β· (Ο€ / 2)) = ((2 + 1) Β· (Ο€ / 2))
13 2cn 12312 . . . . . . . . . . . 12 2 ∈ β„‚
14 ax-1cn 11191 . . . . . . . . . . . 12 1 ∈ β„‚
152recni 11253 . . . . . . . . . . . 12 (Ο€ / 2) ∈ β„‚
1613, 14, 15adddiri 11252 . . . . . . . . . . 11 ((2 + 1) Β· (Ο€ / 2)) = ((2 Β· (Ο€ / 2)) + (1 Β· (Ο€ / 2)))
176recni 11253 . . . . . . . . . . . . 13 Ο€ ∈ β„‚
18 2ne0 12341 . . . . . . . . . . . . 13 2 β‰  0
1917, 13, 18divcan2i 11982 . . . . . . . . . . . 12 (2 Β· (Ο€ / 2)) = Ο€
2015mullidi 11244 . . . . . . . . . . . 12 (1 Β· (Ο€ / 2)) = (Ο€ / 2)
2119, 20oveq12i 7425 . . . . . . . . . . 11 ((2 Β· (Ο€ / 2)) + (1 Β· (Ο€ / 2))) = (Ο€ + (Ο€ / 2))
2212, 16, 213eqtrri 2758 . . . . . . . . . 10 (Ο€ + (Ο€ / 2)) = (3 Β· (Ο€ / 2))
2322breq1i 5151 . . . . . . . . 9 ((Ο€ + (Ο€ / 2)) < 𝐴 ↔ (3 Β· (Ο€ / 2)) < 𝐴)
24 ltaddsub 11713 . . . . . . . . . 10 ((Ο€ ∈ ℝ ∧ (Ο€ / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) β†’ ((Ο€ + (Ο€ / 2)) < 𝐴 ↔ Ο€ < (𝐴 βˆ’ (Ο€ / 2))))
256, 2, 24mp3an12 1447 . . . . . . . . 9 (𝐴 ∈ ℝ β†’ ((Ο€ + (Ο€ / 2)) < 𝐴 ↔ Ο€ < (𝐴 βˆ’ (Ο€ / 2))))
2623, 25bitr3id 284 . . . . . . . 8 (𝐴 ∈ ℝ β†’ ((3 Β· (Ο€ / 2)) < 𝐴 ↔ Ο€ < (𝐴 βˆ’ (Ο€ / 2))))
27 ltsubadd 11709 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (Ο€ / 2) ∈ ℝ ∧ (3 Β· (Ο€ / 2)) ∈ ℝ) β†’ ((𝐴 βˆ’ (Ο€ / 2)) < (3 Β· (Ο€ / 2)) ↔ 𝐴 < ((3 Β· (Ο€ / 2)) + (Ο€ / 2))))
282, 3, 27mp3an23 1449 . . . . . . . . 9 (𝐴 ∈ ℝ β†’ ((𝐴 βˆ’ (Ο€ / 2)) < (3 Β· (Ο€ / 2)) ↔ 𝐴 < ((3 Β· (Ο€ / 2)) + (Ο€ / 2))))
29 df-4 12302 . . . . . . . . . . . . 13 4 = (3 + 1)
3029oveq1i 7423 . . . . . . . . . . . 12 (4 Β· (Ο€ / 2)) = ((3 + 1) Β· (Ο€ / 2))
311recni 11253 . . . . . . . . . . . . 13 3 ∈ β„‚
3231, 14, 15adddiri 11252 . . . . . . . . . . . 12 ((3 + 1) Β· (Ο€ / 2)) = ((3 Β· (Ο€ / 2)) + (1 Β· (Ο€ / 2)))
3320oveq2i 7424 . . . . . . . . . . . 12 ((3 Β· (Ο€ / 2)) + (1 Β· (Ο€ / 2))) = ((3 Β· (Ο€ / 2)) + (Ο€ / 2))
3430, 32, 333eqtrri 2758 . . . . . . . . . . 11 ((3 Β· (Ο€ / 2)) + (Ο€ / 2)) = (4 Β· (Ο€ / 2))
35 4cn 12322 . . . . . . . . . . . . 13 4 ∈ β„‚
36 2cnne0 12447 . . . . . . . . . . . . 13 (2 ∈ β„‚ ∧ 2 β‰  0)
37 div12 11919 . . . . . . . . . . . . 13 ((4 ∈ β„‚ ∧ Ο€ ∈ β„‚ ∧ (2 ∈ β„‚ ∧ 2 β‰  0)) β†’ (4 Β· (Ο€ / 2)) = (Ο€ Β· (4 / 2)))
3835, 17, 36, 37mp3an 1457 . . . . . . . . . . . 12 (4 Β· (Ο€ / 2)) = (Ο€ Β· (4 / 2))
39 4d2e2 12407 . . . . . . . . . . . . . 14 (4 / 2) = 2
4039oveq2i 7424 . . . . . . . . . . . . 13 (Ο€ Β· (4 / 2)) = (Ο€ Β· 2)
4117, 13mulcomi 11247 . . . . . . . . . . . . 13 (Ο€ Β· 2) = (2 Β· Ο€)
4240, 41eqtri 2753 . . . . . . . . . . . 12 (Ο€ Β· (4 / 2)) = (2 Β· Ο€)
4338, 42eqtri 2753 . . . . . . . . . . 11 (4 Β· (Ο€ / 2)) = (2 Β· Ο€)
4434, 43eqtri 2753 . . . . . . . . . 10 ((3 Β· (Ο€ / 2)) + (Ο€ / 2)) = (2 Β· Ο€)
4544breq2i 5152 . . . . . . . . 9 (𝐴 < ((3 Β· (Ο€ / 2)) + (Ο€ / 2)) ↔ 𝐴 < (2 Β· Ο€))
4628, 45bitr2di 287 . . . . . . . 8 (𝐴 ∈ ℝ β†’ (𝐴 < (2 Β· Ο€) ↔ (𝐴 βˆ’ (Ο€ / 2)) < (3 Β· (Ο€ / 2))))
4726, 46anbi12d 630 . . . . . . 7 (𝐴 ∈ ℝ β†’ (((3 Β· (Ο€ / 2)) < 𝐴 ∧ 𝐴 < (2 Β· Ο€)) ↔ (Ο€ < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < (3 Β· (Ο€ / 2)))))
48 resubcl 11549 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (Ο€ / 2) ∈ ℝ) β†’ (𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ)
492, 48mpan2 689 . . . . . . . . 9 (𝐴 ∈ ℝ β†’ (𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ)
506rexri 11297 . . . . . . . . . . 11 Ο€ ∈ ℝ*
51 elioo2 13392 . . . . . . . . . . 11 ((Ο€ ∈ ℝ* ∧ (3 Β· (Ο€ / 2)) ∈ ℝ*) β†’ ((𝐴 βˆ’ (Ο€ / 2)) ∈ (Ο€(,)(3 Β· (Ο€ / 2))) ↔ ((𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ ∧ Ο€ < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < (3 Β· (Ο€ / 2)))))
5250, 4, 51mp2an 690 . . . . . . . . . 10 ((𝐴 βˆ’ (Ο€ / 2)) ∈ (Ο€(,)(3 Β· (Ο€ / 2))) ↔ ((𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ ∧ Ο€ < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < (3 Β· (Ο€ / 2))))
53 sincosq3sgn 26448 . . . . . . . . . 10 ((𝐴 βˆ’ (Ο€ / 2)) ∈ (Ο€(,)(3 Β· (Ο€ / 2))) β†’ ((sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0))
5452, 53sylbir 234 . . . . . . . . 9 (((𝐴 βˆ’ (Ο€ / 2)) ∈ ℝ ∧ Ο€ < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < (3 Β· (Ο€ / 2))) β†’ ((sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0))
5549, 54syl3an1 1160 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ Ο€ < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < (3 Β· (Ο€ / 2))) β†’ ((sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0))
56553expib 1119 . . . . . . 7 (𝐴 ∈ ℝ β†’ ((Ο€ < (𝐴 βˆ’ (Ο€ / 2)) ∧ (𝐴 βˆ’ (Ο€ / 2)) < (3 Β· (Ο€ / 2))) β†’ ((sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0)))
5747, 56sylbid 239 . . . . . 6 (𝐴 ∈ ℝ β†’ (((3 Β· (Ο€ / 2)) < 𝐴 ∧ 𝐴 < (2 Β· Ο€)) β†’ ((sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0)))
5849resincld 16114 . . . . . . . 8 (𝐴 ∈ ℝ β†’ (sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) ∈ ℝ)
5958lt0neg1d 11808 . . . . . . 7 (𝐴 ∈ ℝ β†’ ((sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ↔ 0 < -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2)))))
6059anbi1d 629 . . . . . 6 (𝐴 ∈ ℝ β†’ (((sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0 ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0) ↔ (0 < -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0)))
6157, 60sylibd 238 . . . . 5 (𝐴 ∈ ℝ β†’ (((3 Β· (Ο€ / 2)) < 𝐴 ∧ 𝐴 < (2 Β· Ο€)) β†’ (0 < -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0)))
62 recn 11223 . . . . . . . . . 10 (𝐴 ∈ ℝ β†’ 𝐴 ∈ β„‚)
63 pncan3 11493 . . . . . . . . . 10 (((Ο€ / 2) ∈ β„‚ ∧ 𝐴 ∈ β„‚) β†’ ((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2))) = 𝐴)
6415, 62, 63sylancr 585 . . . . . . . . 9 (𝐴 ∈ ℝ β†’ ((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2))) = 𝐴)
6564fveq2d 6894 . . . . . . . 8 (𝐴 ∈ ℝ β†’ (cosβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = (cosβ€˜π΄))
6649recnd 11267 . . . . . . . . 9 (𝐴 ∈ ℝ β†’ (𝐴 βˆ’ (Ο€ / 2)) ∈ β„‚)
67 coshalfpip 26442 . . . . . . . . 9 ((𝐴 βˆ’ (Ο€ / 2)) ∈ β„‚ β†’ (cosβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))))
6866, 67syl 17 . . . . . . . 8 (𝐴 ∈ ℝ β†’ (cosβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))))
6965, 68eqtr3d 2767 . . . . . . 7 (𝐴 ∈ ℝ β†’ (cosβ€˜π΄) = -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))))
7069breq2d 5156 . . . . . 6 (𝐴 ∈ ℝ β†’ (0 < (cosβ€˜π΄) ↔ 0 < -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2)))))
7164fveq2d 6894 . . . . . . . 8 (𝐴 ∈ ℝ β†’ (sinβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = (sinβ€˜π΄))
72 sinhalfpip 26440 . . . . . . . . 9 ((𝐴 βˆ’ (Ο€ / 2)) ∈ β„‚ β†’ (sinβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))))
7366, 72syl 17 . . . . . . . 8 (𝐴 ∈ ℝ β†’ (sinβ€˜((Ο€ / 2) + (𝐴 βˆ’ (Ο€ / 2)))) = (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))))
7471, 73eqtr3d 2767 . . . . . . 7 (𝐴 ∈ ℝ β†’ (sinβ€˜π΄) = (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))))
7574breq1d 5154 . . . . . 6 (𝐴 ∈ ℝ β†’ ((sinβ€˜π΄) < 0 ↔ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0))
7670, 75anbi12d 630 . . . . 5 (𝐴 ∈ ℝ β†’ ((0 < (cosβ€˜π΄) ∧ (sinβ€˜π΄) < 0) ↔ (0 < -(sinβ€˜(𝐴 βˆ’ (Ο€ / 2))) ∧ (cosβ€˜(𝐴 βˆ’ (Ο€ / 2))) < 0)))
7761, 76sylibrd 258 . . . 4 (𝐴 ∈ ℝ β†’ (((3 Β· (Ο€ / 2)) < 𝐴 ∧ 𝐴 < (2 Β· Ο€)) β†’ (0 < (cosβ€˜π΄) ∧ (sinβ€˜π΄) < 0)))
78773impib 1113 . . 3 ((𝐴 ∈ ℝ ∧ (3 Β· (Ο€ / 2)) < 𝐴 ∧ 𝐴 < (2 Β· Ο€)) β†’ (0 < (cosβ€˜π΄) ∧ (sinβ€˜π΄) < 0))
7978ancomd 460 . 2 ((𝐴 ∈ ℝ ∧ (3 Β· (Ο€ / 2)) < 𝐴 ∧ 𝐴 < (2 Β· Ο€)) β†’ ((sinβ€˜π΄) < 0 ∧ 0 < (cosβ€˜π΄)))
8010, 79sylbi 216 1 (𝐴 ∈ ((3 Β· (Ο€ / 2))(,)(2 Β· Ο€)) β†’ ((sinβ€˜π΄) < 0 ∧ 0 < (cosβ€˜π΄)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930   class class class wbr 5144  β€˜cfv 6543  (class class class)co 7413  β„‚cc 11131  β„cr 11132  0cc0 11133  1c1 11134   + caddc 11136   Β· cmul 11138  β„*cxr 11272   < clt 11273   βˆ’ cmin 11469  -cneg 11470   / cdiv 11896  2c2 12292  3c3 12293  4c4 12294  (,)cioo 13351  sincsin 16034  cosccos 16035  Ο€cpi 16037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211  ax-addf 11212
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7866  df-1st 7987  df-2nd 7988  df-supp 8159  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9381  df-fi 9429  df-sup 9460  df-inf 9461  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-ioo 13355  df-ioc 13356  df-ico 13357  df-icc 13358  df-fz 13512  df-fzo 13655  df-fl 13784  df-seq 13994  df-exp 14054  df-fac 14260  df-bc 14289  df-hash 14317  df-shft 15041  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-limsup 15442  df-clim 15459  df-rlim 15460  df-sum 15660  df-ef 16038  df-sin 16040  df-cos 16041  df-pi 16043  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17398  df-topn 17399  df-0g 17417  df-gsum 17418  df-topgen 17419  df-pt 17420  df-prds 17423  df-xrs 17478  df-qtop 17483  df-imas 17484  df-xps 17486  df-mre 17560  df-mrc 17561  df-acs 17563  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-submnd 18735  df-mulg 19023  df-cntz 19267  df-cmn 19736  df-psmet 21270  df-xmet 21271  df-met 21272  df-bl 21273  df-mopn 21274  df-fbas 21275  df-fg 21276  df-cnfld 21279  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-lp 23053  df-perf 23054  df-cn 23144  df-cnp 23145  df-haus 23232  df-tx 23479  df-hmeo 23672  df-fil 23763  df-fm 23855  df-flim 23856  df-flf 23857  df-xms 24239  df-ms 24240  df-tms 24241  df-cncf 24811  df-limc 25808  df-dv 25809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator