MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq4sgn Structured version   Visualization version   GIF version

Theorem sincosq4sgn 25993
Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq4sgn (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))

Proof of Theorem sincosq4sgn
StepHypRef Expression
1 3re 12288 . . . . 5 3 ∈ ℝ
2 halfpire 25956 . . . . 5 (π / 2) ∈ ℝ
31, 2remulcli 11226 . . . 4 (3 · (π / 2)) ∈ ℝ
43rexri 11268 . . 3 (3 · (π / 2)) ∈ ℝ*
5 2re 12282 . . . . 5 2 ∈ ℝ
6 pire 25950 . . . . 5 π ∈ ℝ
75, 6remulcli 11226 . . . 4 (2 · π) ∈ ℝ
87rexri 11268 . . 3 (2 · π) ∈ ℝ*
9 elioo2 13361 . . 3 (((3 · (π / 2)) ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π))))
104, 8, 9mp2an 691 . 2 (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)))
11 df-3 12272 . . . . . . . . . . . 12 3 = (2 + 1)
1211oveq1i 7414 . . . . . . . . . . 11 (3 · (π / 2)) = ((2 + 1) · (π / 2))
13 2cn 12283 . . . . . . . . . . . 12 2 ∈ ℂ
14 ax-1cn 11164 . . . . . . . . . . . 12 1 ∈ ℂ
152recni 11224 . . . . . . . . . . . 12 (π / 2) ∈ ℂ
1613, 14, 15adddiri 11223 . . . . . . . . . . 11 ((2 + 1) · (π / 2)) = ((2 · (π / 2)) + (1 · (π / 2)))
176recni 11224 . . . . . . . . . . . . 13 π ∈ ℂ
18 2ne0 12312 . . . . . . . . . . . . 13 2 ≠ 0
1917, 13, 18divcan2i 11953 . . . . . . . . . . . 12 (2 · (π / 2)) = π
2015mullidi 11215 . . . . . . . . . . . 12 (1 · (π / 2)) = (π / 2)
2119, 20oveq12i 7416 . . . . . . . . . . 11 ((2 · (π / 2)) + (1 · (π / 2))) = (π + (π / 2))
2212, 16, 213eqtrri 2766 . . . . . . . . . 10 (π + (π / 2)) = (3 · (π / 2))
2322breq1i 5154 . . . . . . . . 9 ((π + (π / 2)) < 𝐴 ↔ (3 · (π / 2)) < 𝐴)
24 ltaddsub 11684 . . . . . . . . . 10 ((π ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π + (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
256, 2, 24mp3an12 1452 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π + (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
2623, 25bitr3id 285 . . . . . . . 8 (𝐴 ∈ ℝ → ((3 · (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
27 ltsubadd 11680 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (3 · (π / 2)) ∈ ℝ) → ((𝐴 − (π / 2)) < (3 · (π / 2)) ↔ 𝐴 < ((3 · (π / 2)) + (π / 2))))
282, 3, 27mp3an23 1454 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (3 · (π / 2)) ↔ 𝐴 < ((3 · (π / 2)) + (π / 2))))
29 df-4 12273 . . . . . . . . . . . . 13 4 = (3 + 1)
3029oveq1i 7414 . . . . . . . . . . . 12 (4 · (π / 2)) = ((3 + 1) · (π / 2))
311recni 11224 . . . . . . . . . . . . 13 3 ∈ ℂ
3231, 14, 15adddiri 11223 . . . . . . . . . . . 12 ((3 + 1) · (π / 2)) = ((3 · (π / 2)) + (1 · (π / 2)))
3320oveq2i 7415 . . . . . . . . . . . 12 ((3 · (π / 2)) + (1 · (π / 2))) = ((3 · (π / 2)) + (π / 2))
3430, 32, 333eqtrri 2766 . . . . . . . . . . 11 ((3 · (π / 2)) + (π / 2)) = (4 · (π / 2))
35 4cn 12293 . . . . . . . . . . . . 13 4 ∈ ℂ
36 2cnne0 12418 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
37 div12 11890 . . . . . . . . . . . . 13 ((4 ∈ ℂ ∧ π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (4 · (π / 2)) = (π · (4 / 2)))
3835, 17, 36, 37mp3an 1462 . . . . . . . . . . . 12 (4 · (π / 2)) = (π · (4 / 2))
39 4d2e2 12378 . . . . . . . . . . . . . 14 (4 / 2) = 2
4039oveq2i 7415 . . . . . . . . . . . . 13 (π · (4 / 2)) = (π · 2)
4117, 13mulcomi 11218 . . . . . . . . . . . . 13 (π · 2) = (2 · π)
4240, 41eqtri 2761 . . . . . . . . . . . 12 (π · (4 / 2)) = (2 · π)
4338, 42eqtri 2761 . . . . . . . . . . 11 (4 · (π / 2)) = (2 · π)
4434, 43eqtri 2761 . . . . . . . . . 10 ((3 · (π / 2)) + (π / 2)) = (2 · π)
4544breq2i 5155 . . . . . . . . 9 (𝐴 < ((3 · (π / 2)) + (π / 2)) ↔ 𝐴 < (2 · π))
4628, 45bitr2di 288 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < (2 · π) ↔ (𝐴 − (π / 2)) < (3 · (π / 2))))
4726, 46anbi12d 632 . . . . . . 7 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) ↔ (π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2)))))
48 resubcl 11520 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
492, 48mpan2 690 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
506rexri 11268 . . . . . . . . . . 11 π ∈ ℝ*
51 elioo2 13361 . . . . . . . . . . 11 ((π ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2)))))
5250, 4, 51mp2an 691 . . . . . . . . . 10 ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))))
53 sincosq3sgn 25992 . . . . . . . . . 10 ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
5452, 53sylbir 234 . . . . . . . . 9 (((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
5549, 54syl3an1 1164 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
56553expib 1123 . . . . . . 7 (𝐴 ∈ ℝ → ((π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0)))
5747, 56sylbid 239 . . . . . 6 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0)))
5849resincld 16082 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
5958lt0neg1d 11779 . . . . . . 7 (𝐴 ∈ ℝ → ((sin‘(𝐴 − (π / 2))) < 0 ↔ 0 < -(sin‘(𝐴 − (π / 2)))))
6059anbi1d 631 . . . . . 6 (𝐴 ∈ ℝ → (((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0) ↔ (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
6157, 60sylibd 238 . . . . 5 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
62 recn 11196 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
63 pncan3 11464 . . . . . . . . . 10 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
6415, 62, 63sylancr 588 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
6564fveq2d 6892 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
6649recnd 11238 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
67 coshalfpip 25986 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6866, 67syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6965, 68eqtr3d 2775 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
7069breq2d 5159 . . . . . 6 (𝐴 ∈ ℝ → (0 < (cos‘𝐴) ↔ 0 < -(sin‘(𝐴 − (π / 2)))))
7164fveq2d 6892 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
72 sinhalfpip 25984 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
7366, 72syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
7471, 73eqtr3d 2775 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
7574breq1d 5157 . . . . . 6 (𝐴 ∈ ℝ → ((sin‘𝐴) < 0 ↔ (cos‘(𝐴 − (π / 2))) < 0))
7670, 75anbi12d 632 . . . . 5 (𝐴 ∈ ℝ → ((0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0) ↔ (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
7761, 76sylibrd 259 . . . 4 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0)))
78773impib 1117 . . 3 ((𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0))
7978ancomd 463 . 2 ((𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))
8010, 79sylbi 216 1 (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5147  cfv 6540  (class class class)co 7404  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  *cxr 11243   < clt 11244  cmin 11440  -cneg 11441   / cdiv 11867  2c2 12263  3c3 12264  4c4 12265  (,)cioo 13320  sincsin 16003  cosccos 16004  πcpi 16006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19643  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-fbas 20926  df-fg 20927  df-cnfld 20930  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-ntr 22506  df-cls 22507  df-nei 22584  df-lp 22622  df-perf 22623  df-cn 22713  df-cnp 22714  df-haus 22801  df-tx 23048  df-hmeo 23241  df-fil 23332  df-fm 23424  df-flim 23425  df-flf 23426  df-xms 23808  df-ms 23809  df-tms 23810  df-cncf 24376  df-limc 25365  df-dv 25366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator